L05 Determinant

1. Determinant

(1) Definition

Matrix $A = (a_{ij})_{n \times n}$ has n! products of elements from different rows and columns, $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$, where $j_1...j_n$ is a permutation of 12...n. Let $f(j_1...j_n)$ be the number of interchanges that convert $j_1...,j_n$ to 12...n. Then

$$\det(A) = |A| = \sum_{j_1, \dots, j_n} (-1)^{f(j_1, \dots, j_n)} a_{1j_1} \cdots a_{nj_n}.$$

Ex1: By definition,
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21};$$
 $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdots a_{nn};$

and
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$
.

(2) Simple equations: |A'| = |A|, $|\overline{A}| = |\overline{A}|$ and $|A^*| = |\overline{A}|$.

(3) Interchanging two rows/columns changes the sign of determinant

$$A \xrightarrow{(i)\leftrightarrow(j)} B \Longrightarrow |B| = -|A|.$$

Pf: For each term in the summation, $f(j_1,...j_n)$ changed by 1.

Ex2: If A has two identical rows (columns), then |A| = 0.

(4) Multiplying one row/column by $\alpha \Longrightarrow$ multiplying the determinant by α .

Ex3: Suppose $(j) = \alpha(i)$ in A. If $\alpha = 0$, then |A| = 0.

If
$$\alpha \neq 0$$
, then $A \xrightarrow{\alpha(i)} B \Longrightarrow |B| = \alpha |A|$. $|A| = \frac{1}{\alpha} |B| = 0$.

(5) If a row/column is a sum of two vectors,

$$|x+y, A_2, ..., A_n| = |x, A_2, ..., A_n| + |y, A_2, ..., A_n|.$$

(6) For $A \in C^{n \times n}$, $|\alpha A| = \alpha^n |A|$.

(7) Type III elementary operation will not change the determinant

$$A \xrightarrow{\alpha(i)+(j)\leftrightarrow(j)} B \Longrightarrow |B| = |A|.$$

Ex4: By elementary row operations,

$$\begin{vmatrix} 1 & 3 & 5 \\ 0 & -3 & 3 \\ 2 & 1 & 2 \end{vmatrix} = (-3) \begin{vmatrix} 1 & 0 & 8 \\ 0 & 1 & -1 \\ 0 & 1 & -14 \end{vmatrix} = (-3) \begin{vmatrix} 1 & 0 & 8 \\ 0 & 1 & -1 \\ 0 & 0 & -13 \end{vmatrix} = 39.$$

(8) For $A \in C^{n \times n}$, A is non-singular $\stackrel{def}{\Longleftrightarrow} A^{-1}$ exists $\iff \operatorname{rank}(A) = n \stackrel{*}{\iff} \det(A) \neq 0$.

1

Proof Type III elementary row operations convert A to upper-triangular matrix U. rank(A) = rank(U) and det(A) = det(U)

$$\operatorname{rank}(U) = n \iff \operatorname{All\ diagonal\ elements\ of\ U\ are\ non-zeros} \iff \det(U) \neq 0.$$

2. Elementary matrices

(1) Determinants of elementary matrices $\det[E((i) \leftrightarrow (j))] = -1$; $\det[E(\alpha(i))] = \alpha$ and $\det[E(\alpha(i) + (j) \rightarrow (j))] = 1$.

Proof Show the first one. Let $*: (i) \leftrightarrow (j)$. Then $I \xrightarrow{*} E(*) \iff |E(*)| = -|I| = -1$.

(2) Determinant of product of elementary matrix and matrix A $|E[(i) \leftrightarrow (j)]A| = |E((i) \leftrightarrow (j))| |A|, |E[\alpha(i)]A = |E[\alpha(i)]| |A|$ and $|E[\alpha(i) + (j) \rightarrow (j)]A| = |E[\alpha(i) + (j) \rightarrow (i)]| |A|$

Proof Show the second one. Let $*: \alpha(i)$. Then $E(*)A = B \iff A \stackrel{*}{\longrightarrow} B \implies |B| = \alpha |A| = |E(*)| |A|$.

(3) For $A \in C^{n \times n}$, A^{-1} exists $\iff |A| \neq 0 \iff \operatorname{rank}(A) = n \iff A = E_1 \cdots E_k$

Proof We show $\operatorname{rank}(A) = n \Longrightarrow A = E_1 \cdots E_k \Longrightarrow |A| \neq 0$. If $\operatorname{rank}(A) = n$, then $F_k \cdots F_1 A = I_n$ where $F_1, ..., F_k$ are elementary matrices. So $A = F_1^{-1} \cdots F_k^{-1} = E_1 \cdots E_k$ where $E_1, ..., E_k$ are elementary matrices. If $A = E_1 \cdots E_k$, then $|A| = |E_1| \cdots |E_k| \neq 0$.

Ex5 If $A = E_1 \cdots E_k$, then $|A| = |E_1| \cdots |E_k|$.

(4) $A, B \in C^{n \times n}$, then $|AB| = |A| \cdot |B|$

Pf: If tank(A) = n, then $|AB| = |E_1 \cdots E_k B| = |E_1| \cdots |E_k| |B| = |A| |B|$ If rank(A) < n, then $rank(AB) \le rank(A) < n$. So |AB| = 0 = 0|B| = |A| |B|. **Ex6:** $|A^{-1}| = \frac{1}{|A|} . |AA^{-1}| = |I| \Longrightarrow |A| . |A^{-1}| = 1 \Longrightarrow ||A^{-1}|| = \frac{1}{|A|}$.

(5) $\begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = |A||B| \text{ and } \begin{vmatrix} A & 0 \\ D & B \end{vmatrix} = |A||B|.$

Pf: Show the first one. By type III elementary row operations, $A \longrightarrow U_1$, $B \longrightarrow U_2$ and $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \longrightarrow \begin{pmatrix} U_1 & C_* \\ 0 & U_2 \end{pmatrix}$ where U_1 and U_2 are upper triangular matrices. Then $|A| = |U_1|$, $|B| = |U_2|$ and $\begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \begin{vmatrix} U_1 & C_* \\ 0 & U_2 \end{vmatrix} = |U_1| |U_2| = |A| |B|$

3. Cofactor matrix and adjoint matrix If $|A| \neq 0$, how to find A^{-1} ?

(1) Cofactor matrix and adjoint matrix Deleting *i*th row and *j*th column of $A = (a_{ij})_{n \times n}$ to get M_{ij} . $m_{ij} = |M_{ij}|$ is the minor of a_{ij} . $c_{ij} = (-1)^{i+j} m_{ij}$ is the cofactor of a_{ij} . Matrix $C = (c_{ij})_{n \times n}$ is the cofactor matrix of A, and $A_{\#} = C'$ is the adjoint matrix of A.

(2) Property: $AA_{\#} = |A| I_n = A_{\#}A$

Comment: Proof is skipped. There are 2n formulas for |A| according to n rows and n columns of cofactor expansion

Ex7: $\begin{vmatrix} 1 & 3 & 5 \\ 0 & -3 & 3 \\ 2 & 1 & 2 \end{vmatrix} = 1 \begin{vmatrix} -3 & 3 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 0 & 3 \\ 2 & 2 \end{vmatrix} + 5 \begin{vmatrix} 0 & -3 \\ 2 & 1 \end{vmatrix} = -9 + 18 + 30 = 39$

2

(3) $|A| \neq 0 \Longrightarrow A^{-1} = \frac{A_{\#}}{|A|}$