L03 Bases of R(A) and N(A)

- 1. Bases of R(A) and N(A) for A in reduced row echelon form
 - (1) Bases of $\mathcal{R}(A)$ and $\mathcal{N}(A)$ If $A \in C^{m \times n}$ has rank r, then $\dim[\mathcal{R}(A)] = r$. So A has r LI columns that form a basis for $\mathcal{R}(A)$. Also dim $[\mathcal{N}(A)] = n - r$. So there are n - r LI vectors in \mathbb{C}^n that form a basis for $\mathcal{N}(A)$. How can we find these bases?
 - (2) Matrices in reduced row echelon form A matrix is in reduced row echelon form if
 - (i) the number of leading zeros in rows is increasing
 - (ii) the first non-zero element is 1, and is the only non-zero element in the column.

Ex1:
$$A = \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ are in the reduced row echelon form.

- (3) Bases of $\mathcal{R}(A)$ and $\mathcal{N}(A)$ when A is in reduced row echelon form. The columns of A associated with (ii) form a basis of R(A). Solve equation Ax = 0 for variables in x associated with the columns in (ii), using other variables as free ones, one can find a basis for N(A).
 - **Ex2:** For A in Ex1, A_1 and A_3 are LI; $A_2 = 2A_1$ and $A_4 = 5A_1 + 3A_3$. So $rank(A) = 2 = dim[\mathcal{R}(A)]$ and $[A_1, A_3]$ is a basis for R(A). With $\dim[\mathcal{N}(A)] = n - \operatorname{rank}(A) = 4 - 2 = 2$ and

$$x \in N(A) \iff Ax = 0 \iff \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0$$

$$\iff \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2x_2 - 5x_4 \\ x_2 \\ -3x_4 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -5 \\ 0 \\ -3 \\ 1 \end{pmatrix} \iff x \in \text{Span} \begin{bmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 0 \\ -3 \\ 1 \end{bmatrix} .$$

$$\begin{bmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 0 \\ -3 \\ 1 \end{pmatrix} \text{ is a basis for } \mathcal{N}(A).$$

(4) Find bases of $\mathcal{R}(A)$ and $\mathcal{N}(A)$ via matrix B Suppose $Ax = 0 \iff Bx = 0$. Then $x \in \mathcal{N}(A) \iff Ax = 0 \iff Bx = 0 \iff x \in \mathcal{N}(B)$. Thus $\mathcal{N}(A) = \mathcal{N}(B)$ share basis. If $B_{i_1},...,B_{i_r}$ form a basis for $\mathcal{R}(B)$, then $A_{i_1},...,A_{i_r}$ form a basis for $\mathcal{R}(A)$.

Ex3: Suppose $Ax = 0 \iff Bx = 0, B = (B_1, B_2, B_3)$ and $[B_1, B_3]$ is a basis for $\mathcal{R}(B)$.

Solutions
$$Ax = 0 \iff Bx = 0, B = (B_1, B_2, B_3)$$
 and $[B_1, B_3]$ is a B and A and A are LI.
$$\begin{pmatrix} x_1 \\ 0 \\ x_3 \end{pmatrix} = 0 \implies B \begin{pmatrix} x_1 \\ 0 \\ x_3 \end{pmatrix} = 0 \implies \begin{pmatrix} x_1 \\ 0 \\ x_3 \end{pmatrix} = 0. \text{ So } A_1 \text{ and } A_3 \text{ are LI.}$$

 $\exists x = \begin{pmatrix} x_1 \\ 1 \\ x_3 \end{pmatrix} \text{ such that } Bx = 0 \Longrightarrow Ax = 0. \text{ So } A_2 \text{ is a LC of } A_1 \text{ and } A_3.$

Hence $[A_1, A_3]$ is a basis for $\mathcal{R}(A)$

- 2. Elementary row operations and elementary matrices
 - (1) Elementary row operations
 - (i) Interchanging ith row and jth row $(r:(i)\leftrightarrow(j))$
 - (ii) Multiplying the *i*th row by $\alpha \neq 0$ $(r: \alpha(i))$
 - (iii) Changing the jth row to the original jth row plus $\alpha \times i$ th row $(r: \alpha(i) + (j) \rightarrow (j))$
 - (2) Elementary matrices

Elementary row operations on identity matrices produce elementary matrices.

Ex4:
$$I_3 - \frac{r:2(1)+(3)\to(3)}{r-1} > \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = E.$$

(3) Effects of multiplying a matrix from left by an elementary matrix.

Suppose $I \stackrel{*}{\longrightarrow} E(*)$. Then $E(*)A = B \iff A \stackrel{*}{\longrightarrow} B$.

Ex5: With
$$E$$
 in Example 4, $EA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 5 & 5 & 5 & 5 \end{pmatrix}.$

(4) Properties of elementary matrices

Elementary matrices are non-singular. If E is an elementary matrix, so are E^{-1} and E'.

Ex6: With elementary matrix
$$E$$
 in Example 4, $EF = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} = I_3.$

So
$$E^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
 is an elementary matrix produced by $-2(1) + (3) \to (3)$.

- 3. Find bases of $\mathcal{R}(A)$ and $\mathcal{N}(A)$.
 - (1) Convert A by a sequence of elementary operations to B in reduced row echelon form.

(2) With the operations in (1)

$$(E_k \cdots E_1)A = B$$
 and hence $A = (E_1^{-1} \cdots E_k^{-1})B$. So $Ax = 0 \iff Bx = 0$.
Pf $Ax = 0 \implies (E_k \cdots E_1)Ax = 0 \implies Bx = 0 \implies (E_1^{-1} \cdots E_k^{-1})Bx = 0 \implies Ax = 0$.

- (3) Find bases of $\mathcal{R}(A)$ and $\mathcal{N}(A)$
 - (i) Convert A to its reduced row echelon for B
 - (ii) Find bases of $\mathcal{R}(B)$ and $\mathcal{N}(B)$
 - (iii) If $B_{i1}, ..., B_{ir}$ for a basis of $\mathcal{R}(B)$, then $A_{i1}, ..., A_{ir}$ form a basis of $\mathcal{R}(A)$ A basis of $\mathcal{N}(B)$ is a basis of $\mathcal{N}(A)$.

2

Ex8: For A in Ex7, rank(A) = 2 = dim[$\mathcal{R}(A)$]. [A_1 , A_2] is a basis for $\mathcal{R}(A)$. $A_3 = A_1 + 2A_2$ and $A_4 = A_1 - A_2$. dim[$\mathcal{N}(A)$] = 4 - 2 = 2,....

L04 Matrix inverses

1. Inverses

(1) Definitions

For $A \in C^{m \times n}$, B is a left-inverse of $A \stackrel{def}{\iff} BA = I_n$. C is a right-inverse of $A \stackrel{def}{\iff} AC = I_m$. For $A \in C^{n \times n}$ D is inverse of $A \stackrel{def}{\iff} AD = I_n = DA$.

(2) Iff-conditions for left-inverses

Let A^L be any individual left-inverse or the collection of all left-inverses of A. Then (a) $A^L \neq \emptyset$ (b) $\operatorname{rank}(A) = n$ (c) $\operatorname{rank}(AB) = \operatorname{rank}(B) \ \forall B \in C^{n \times p}$ are equivalent.

(a) \Rightarrow (b): $n = \text{rank}(I_n) = \text{rank}(A^L A) \le \text{rank}(A) \le n$. So rank(A) = n.

(a) \Leftarrow (b): The reduced row echelon form for A is $\begin{pmatrix} I_n \\ 0 \end{pmatrix}$. There exists $H = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$ such that $HA = \begin{pmatrix} H_1A \\ H_2A \end{pmatrix} = \begin{pmatrix} I_n \\ 0 \end{pmatrix}$. So $H_1A = I_n$. Hence $H_1 \in A^L$. Hence $A^L \neq \emptyset$.

(a) \Rightarrow (c): rank $(AB) \le \text{rank}(B) = \text{rank}(A^LAB) \le \text{rank}(AB)$. So rank(AB) = rank(B).

(b) \Leftarrow (c): rank(A) = rank(A I_n) = rank(I_n) = n.

Comment: Not all A has L-inverse since not all A has full column rank.

Ex1: For $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $B = (1, a) \in A^L$ for all $a \in R$. So left-inverse for A is not unique.

(3) Iff-conditions for right-inverses

Let A^R be any individual right-inverse or the collection of all right-inverses of A. Then (a) $A^R \neq \emptyset$ (b) $\operatorname{rank}(A) = m$ (c) $\operatorname{rank}(BA) = \operatorname{rank}(B) \ \forall B \in C^{p \times m}$ are equivalent.

Proof. Skipped.

Comments: A^R may or may not be existent, may or may not be unique.

(4) Iff-conditions for inverse

Let A^{-1} be a inverse of A. Then

(a) A^{-1} exists (b) rank(A) = n

(c) $\operatorname{rank}(BA) = \operatorname{rank}(B) \ \forall B \text{ and } \operatorname{rank}(AD) = \operatorname{rank}(D) \ \forall D$ are equivalent.

Proof. (a) \Longrightarrow (b): A^{-1} exists $\Longrightarrow A^L \neq \emptyset \Rightarrow \operatorname{rank}(A) = n$.

(b) \Longrightarrow (c): A has full row rank \Longrightarrow rank(BA) = rank(B); A has full column rank \Longrightarrow rank(AD) = rank(D).

(c) \Longrightarrow (a): rank(BA) = rank(B) for all $B \Longrightarrow A^R \neq \emptyset$. rank(AD) = rank(D) for all $D \Longrightarrow A^L \neq \emptyset$. $A^L = A^L I_n = A^L A A^R = I_n A^R = A^R$. Let $B = A^L = A^R$.

3

Then $AB = I_n = BA$. So B is an inverse of A.

Ex2: If A^{-1} exists, then it is unique.

Suppose both B_1 and B_2 are inverse of A. Then $B_1 = B_1I_n = B_1AB_2 = I_nB_2 = B_2$.

2. Useful properties

(1) If A^{-1} exists, then $A^{L} = A^{-1} = A^{R}$.

Proof. Show $A^L = A^{-1}$. $\subset: B \in A^L \Longrightarrow BA = I \Longrightarrow BAA^{-1} = IA^{-1} \Longrightarrow B = A^{-1}$. $\supset: A^{-1}A = I \Longrightarrow A^{-1} \in A^L$

(2) If $A \in C^{n \times n}$ and $AB = I_n$, then $B = A^{-1}$; If $A \in C^{n \times n}$ and $BA = I_n$, then $B = A^{-1}$. **Proof.** Show the first one. $n = \text{rank}(I_n) = \text{rank}(AB) \leq \text{rank}(A) \leq n$.

So rank(A) = n. Hence A^{-1} exists. $AB = I_n \Longrightarrow B = A^{-1}AB = A^{-1}I = A^{-1}$.

(3) If $(A|I) \xrightarrow{e.r.} (I|B)$, then $B = A^{-1}$.

Proof. $(A|I) \xrightarrow{e.r.} (I|B)$ implies that DA = I and DI = B. So $B = D = A^{-1}$.

3. Some useful inverses

(1) Simple rules $\begin{array}{ll} (A')^{-1} = (A^{-1})'; & (\overline{A})^{-1} = \overline{(A^{-1})}; & (A^*)^{-1} = (A^{-1})^* \\ (\alpha A)^{-1} = \frac{1}{\alpha} A^{-1} \text{ where } \alpha \neq 0; & (AB)^{-1} = B^{-1} A^{-1}. \end{array}$

Proof. Skipped.

- (2) Diagonal blocked matrices $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{pmatrix}.$ $\mathbf{Proof.} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{pmatrix} = \begin{pmatrix} AA^{-1} & 0 \\ 0 & BB^{-1} \end{pmatrix} = I.$
- (3) Four-blocked matrices

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} I & 0 \\ -A_{22}^{-1} A_{21} & I \end{pmatrix} \begin{pmatrix} A_{11.2}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & -A_{12} A_{22}^{-1} \\ 0 & I \end{pmatrix}$$
 where $A_{11.2} = A_{11} - A_{12} A_{22}^{-1} A_{21}$.

$$\mathbf{Pf:} \ \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix} = \begin{pmatrix} A_{11.2} & 0 \\ 0 & A_{22} \end{pmatrix}.$$

$$\begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix}^{-1} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} A_{11.2}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix}.$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix} \begin{pmatrix} A_{11.2}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & I \end{pmatrix}.$$

Proof.
$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22.1}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} = I$$

$$\mathbf{Ex4:}\ (A|I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{e.r.} \cdots \xrightarrow{e.r.} \begin{pmatrix} 1 & 0 & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}.$$

So
$$\begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 2 & -2 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$