
L03 Bases of R(A) and N(A)

1. Bases of R(A) and N(A) for A in reduced row echelon form

(1) Bases of R(A) and N (A)
If A ∈ Cm×n has rank r, then dim[R(A)] = r. So A has r LI columns that form a basis
for R(A). Also dim[N (A)] = n − r. So there are n − r LI vectors in Cn that form a
basis for N (A). How can we find these bases?

(2) Matrices in reduced row echelon form
A matrix is in reduced row echelon form if

(i) the number of leading zeros in rows is increasing

(ii) the first non-zero element is 1, and is the only non-zero element in the column.

Ex1: A =

1 2 0 5
0 0 1 3
0 0 0 0

 and B =


1 0 0
0 1 0
0 0 1
0 0 0

 are in the reduced row echelon form.

(3) Bases of R(A) and N (A) when A is in reduced row echelon form.
The columns of A associated with (ii) form a basis of R(A).
Solve equation Ax = 0 for variables in x associated with the columns in (ii), using other
variables as free ones, one can find a basis for N(A).

Ex2: For A in Ex1, A1 and A3 are LI; A2 = 2A1 and A4 = 5A1 + 3A3.
So rank(A) = 2 = dim[R(A)] and [A1, A3] is a basis for R(A).
With dim[N (A)] = n− rank(A) = 4− 2 = 2 and

x ∈ N(A) ⇐⇒ Ax = 0 ⇐⇒

1 2 0 5
0 0 1 3
0 0 0 0



x1

x2

x3

x4

 = 0

⇐⇒


x1

x2

x3

x4

 =


−2x2 − 5x4

x2

−3x4

x4

 = x2


−2
1
0
0

+ x4


−5
0
−3
1

 ⇐⇒ x ∈ Span



−2
1
0
0

 ,


−5
0
−3
1


 .



−2
1
0
0

 ,


−5
0
−3
1


 is a basis for N (A).

(4) Find bases of R(A) and N (A) via matrix B
Suppose Ax = 0 ⇐⇒ Bx = 0. Then
x ∈ N (A) ⇐⇒ Ax = 0 ⇐⇒ Bx = 0 ⇐⇒ x ∈ N (B). Thus N (A) = N (B) share basis.
If Bi1 , ..., Bir form a basis for R(B), then Ai1 , ..., Air form a basis for R(A).

Ex3: Suppose Ax = 0 ⇐⇒ Bx = 0, B = (B1, B2, B3) and [B1, B3] is a basis for R(B).

A

x1
0
x3

 = 0 =⇒ B

x1
0
x3

 = 0 =⇒

x1
0
x3

 = 0. So A1 and A3 are LI.

∃x =

x1
1
x3

 such that Bx = 0 =⇒ Ax = 0. So A2 is a LC of A1 and A3.

Hence [A1, A3] is a basis for R(A).
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2. Elementary row operations and elementary matrices

(1) Elementary row operations

(i) Interchanging ith row and jth row (r : (i) ↔ (j))

(ii) Multiplying the ith row by α ̸= 0 (r : α(i))

(iii) Changing the jth row to the original jth row plus α× ith row (r : α(i)+ (j) → (j))

(2) Elementary matrices
Elementary row operations on identity matrices produce elementary matrices.

Ex4: I3
r: 2(1)+(3)→(3)

−−−−−−− >

1 0 0
0 1 0
2 0 1

 = E.

(3) Effects of multiplying a matrix from left by an elementary matrix.

Suppose I
∗−→ E(∗). Then E(∗)A = B ⇐⇒ A

∗−→ B.

Ex5: With E in Example 4, EA =

1 0 0
0 1 0
2 0 1

1 1 1 1
2 2 2 2
3 3 3 3

 =

1 1 1 1
2 2 2 2
5 5 5 5

.

(4) Properties of elementary matrices
Elementary matrices are non-singular. If E is an elementary matrix, so are E−1 and E′.

Ex6: With elementary matrix E in Example 4, EF =

1 0 0
0 1 0
2 0 1

 1 0 0
0 1 0
−2 0 1

 = I3.

So E−1 =

 1 0 0
0 1 0
−2 0 1

 is an elementary matrix produced by −2(1) + (3) → (3).

3. Find bases of R(A) and N (A).

(1) Convert A by a sequence of elementary operations to B in reduced row echelon form.

Ex7: A =

2 2 6 0
3 −3 −3 6
1 0 1 1

 r: (1)↔(3)
−−−−→

1 0 1 1
3 −3 −3 6
2 2 6 0

 →

1 0 1 1
1 −1 −1 2
1 1 3 0


r: [−(1)](1)+(i)→(i), i=2,3
−−−−−−−−→

1 0 1 1
0 −1 −2 1
0 1 2 −1

 →

1 0 1 1
0 1 2 −1
0 0 0 0

 = B

(2) With the operations in (1)
(Ek · · ·E1)A = B and hence A = (E−1

1 · · ·E−1
k )B. So Ax = 0 ⇐⇒ Bx = 0.

Pf Ax = 0 =⇒ (Ek · · ·E1)Ax = 0 =⇒ Bx = 0 =⇒ (E−1
1 · · ·E−1

k )Bx = 0 =⇒ Ax = 0.

(3) Find bases of R(A) and N (A)

(i) Convert A to its reduced row echelon for B

(ii) Find bases of R(B) and N (B)

(iii) If Bi1, ..., Bir for a basis of R(B), then Ai1, .., Air form a basis of R(A)
A basis of N (B) is a basis of N (A).

Ex8: For A in Ex7, rank(A) = 2 = dim[R(A)]. [A1, A2] is a basis for R(A).
A3 = A1 + 2A2 and A4 = A1 −A2. dim[N (A)] = 4− 2 = 2,....
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L04 Matrix inverses

1. Inverses

(1) Definitions

For A ∈ Cm×n, B is a left-inverse of A
def⇐⇒ BA = In.

C is a right-inverse of A
def⇐⇒ AC = Im.

For A ∈ Cn×n D is inverse of A
def⇐⇒ AD = In = DA.

(2) Iff-conditions for left-inverses
Let AL be any individual left-inverse or the collection of all left-inverses of A. Then

(a) AL ̸= ∅ (b) rank(A) = n (c) rank(AB) = rank(B) ∀B ∈ Cn×p

are equivalent.

(a)⇒(b): n = rank(In) = rank(ALA) ≤ rank(A) ≤ n. So rank(A) = n.

(a)⇐(b): The reduced row echelon form for A is

(
In
0

)
. There exists H =

(
H1

H2

)
such

that HA =

(
H1A
H2A

)
=

(
In
0

)
. So H1A = In. Hence H1 ∈ AL. Hence AL ̸= ∅.

(a)⇒(c): rank(AB) ≤ rank(B) = rank(ALAB) ≤ rank(AB). So rank(AB) = rank(B).

(b)⇐(c): rank(A) = rank(AIn) = rank(In) = n.

Comment: Not all A has L-inverse since not all A has full column rank.

Ex1: For A =

(
1
0

)
, B = (1, a) ∈ AL for all a ∈ R. So left-inverse for A is not unique.

(3) Iff-conditions for right-inverses
Let AR be any individual right-inverse or the collection of all right-inverses of A. Then

(a) AR ̸= ∅ (b) rank(A) = m (c) rank(BA) = rank(B) ∀B ∈ Cp×m

are equivalent.

Proof. Skipped.

Comments: AR may or may not be existent, may or may not be unique.

(4) Iff-conditions for inverse
Let A−1 be a inverse of A. Then

(a) A−1 exists (b) rank(A) = n
(c) rank(BA) = rank(B) ∀B and rank(AD) = rank(D) ∀D

are equivalent.

Proof. (a)=⇒(b): A−1 exists =⇒ AL ̸= ∅ ⇒ rank(A) = n.

(b)=⇒(c): A has full row rank=⇒ rank(BA) = rank(B);
A has full column rank=⇒ rank(AD) = rank(D).

(c)=⇒(a): rank(BA) = rank(B) for all B =⇒ AR ̸= ∅.
rank(AD) = rank(D) for all D =⇒ AL ̸= ∅.
AL = ALIn = ALAAR = InA

R = AR. Let B = AL = AR.
Then AB = In = BA. So B is an inverse of A.

Ex2: If A−1 exists, then it is unique.
Suppose both B1 and B2 are inverse of A. Then B1 = B1In = B1AB2 = InB2 = B2.
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2. Useful properties

(1) If A−1 exists, then AL = A−1 = AR.

Proof. Show AL = A−1. ⊂: B ∈ AL =⇒ BA = I =⇒ BAA−1 = IA−1 =⇒ B = A−1.
⊃: A−1A = I =⇒ A−1 ∈ AL.

(2) If A ∈ Cn×n and AB = In, then B = A−1; If A ∈ Cn×n and BA = In, then B = A−1.

Proof. Show the first one. n = rank(In) = rank(AB) ≤ rank(A) ≤ n.
So rank(A) = n. Hence A−1 exists. AB = In =⇒ B = A−1AB = A−1I = A−1.

(3) If (A|I) e.r.−→ (I|B), then B = A−1.

Proof. (A|I) e.r.−→ (I|B) implies that DA = I and DI = B. So B = D = A−1.

3. Some useful inverses

(1) Simple rules
(A′)−1 = (A−1)′; (A)−1 = (A−1); (A∗)−1 = (A−1)∗

(αA)−1 = 1
αA

−1 where α ̸= 0; (AB)−1 = B−1A−1.
Proof. Skipped.

(2) Diagonal blocked matrices

(
A 0
0 B

)−1

=

(
A−1 0
0 B−1

)
.

Proof.

(
A 0
0 B

)(
A−1 0
0 B−1

)
=

(
AA−1 0

0 BB−1

)
= I.

(3) Four-blocked matrices(
A11 A12

A21 A22

)−1

=

(
I 0

−A−1
22 A21 I

)(
A−1

11.2 0

0 A−1
22

)(
I −A12A

−1
22

0 I

)
where A11.2 = A11 −A12A

−1
22 A21.

Pf:

(
I −A12A

−1
22

0 I

)(
A11 A12

A21 A22

)(
I 0

−A−1
22 A21 I

)
=

(
A11.2 0
0 A22

)
.(

I 0

−A−1
22 A21 I

)−1(
A11 A12

A21 A22

)−1(
I −A12A

−1
22

0 I

)−1

=

(
A−1

11.2 0

0 A−1
22

)
.(

A11 A12

A21 A22

)−1

=

(
I 0

−A−1
22 A21 I

)(
A−1

11.2 0

0 A−1
22

)(
I −A12A

−1
22

0 I

)
Ex3: Let A22.1 = A22 −A21A

−1
11 A12. Then(

A11 A12

A21 A22

)−1

=

(
I −A−1

11 A12

0 I

)(
A−1

11 0

0 A−1
22.1

)(
I 0

−A21A
−1
11 I

)
.

Proof.

(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)(
A−1

11 0

0 A−1
22.1

)(
I 0

−A21A
−1
11 I

)
= I

Ex4: (A|I) =

1 0 2 1 0 0
1 1 1 0 1 0
0 1 0 0 0 1

 e.r.−→ · · · e.r.−→

1 0 0 −1 2 −2
0 1 0 0 0 1
0 0 1 1 −1 1

.

So

1 0 2
1 1 1
0 1 0

−1

=

−1 2 −2
0 0 1
1 −1 1


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