
L01 Linear space, linear combination and linear transformation

1. Linear space (LS)

(1) Linear space is a set of elements (vectors)
Cm×n is the collection of all m by n complex matrices; Cn = Cn×1;
Rm×n is the collection of all m by n real matrices; Rm = Rm×1.

(2) Addition is defined in linear sapce
For A, B ∈ Cm×n, A+B = (aij)m×n + (bij)m×n = (aij + bij)m×n; (elements)

A+B = (A1, ..., An) + (B1, ..., Bn) = (A1 +B1, ..., An +Bn); (Columns)
A+B = (A(1), ..., A(m))

′+(B(1), ..., B(m))
′ = (A(1)+B(1), ...A(m)+B(m))

′; (rows)

A+B =

(
A11 A12 A13

A21 A22 A23

)
+

(
B11 B12 B13

B21 B22 B23

)
=

(
A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

)
.Blocks

(3) Scalar multiplication
In scalar multiplication αx, α is an element of a field, usually a complex number or a
real number.

(4) The operations meet a set of familiar requirements
x+ y = y + x; ∃0, 0 + x = x∀x; ∀x ∃(−x), (−x) + x = 0; α(x+ y) = αx+ αy,....

Ex1: Cm×n, Rm×n, Cm, Rn are all LSs.

2. Linear combination (LC)

(1) Linear combination (LC)
V is a LS. xi ∈ V , i = 1, ..., k. αi, i = 1, ..., k, are scalars.

α1x1+· · ·+αkxk is a vector in V called a linear combination (LC) of x1, ..., xk. α =

α1

...
αk


is the coefficient vector of that LC.

(2) Subspace
V is a linear space.

S is a subspace of V
def⇐⇒ S ⊂ V and S is a linear space
⇐⇒ S is closed under two linear operations
⇐⇒ S is closed under linear combinations.

x1, ..., xk are vectors in a LS V . Let S be the collection of all LCs of x1, ..., xk. Then S
is a subspace of V called the Span of x1, ..., xn denoted by Span(x1, ..., xk).

(3) Span(A) = C(A) = L(A)

For A ∈ Cm×n and x ∈ Cn, Ax = (A1, ..., An)

x1
...
xn

 = x1A1+ · · ·+xnAn is a LC of the

columns of A. So {Ax : x ∈ Cn} is the span of the columns of A, also called the column
space of A, this is the basic linear space associated with A and hence is denoted by

Span(A) = C(A) = L(A) = {Ax : x ∈ Cn} ⊂ Cm is a subspace of Cm.

Ex2: Suppose S1 and S2 are two subspaces of S. Then S1 ∩ S2 and S1 + S2 are two
subspaces of S.
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Proof. Show the last one. Suppose x = x1+x2 ∈ S1+S2 and y = y1+y2 ∈ S1+S2 where
x1, y1 ∈ S1 and x2, y2 ∈ S2. Then αx+ βy = (αx1 + βy1) + (αx2 + βy2) ∈ S1 + S2.
So S1 + S2 is closed under LCs. Hence S1 + S2 is a subspace of S. �.

3. Linear transformation (LT)

(1) Linear transformation (LT)
U and V are two LSs, for x ∈ V f(x) ∈ U is a linear transformation (LT) if

f(αx+ βy) = αf(x) + βf(y).

Here V = Domain(f), {f(x) ∈ U : x ∈ V } = Rangle(f), and {x ∈ V : f(x) = 0} =
Kernel(f).

Ex3: For A ∈ Cm×n, with x ∈ Cn f(x) = Ax ∈ Cm is a LT from Cn to Cm since

f(αx+ βy) = A(αx+ βy) = αAx+ βAy = αf(x) + βf(y).

(2) Range and Kernel of a LT
For the LT in (1), the Range is a subspace of U and the Kernel is a subspace of V .

Proof. If y1, y2 ∈ Range(f), then y1 = f(x1) and y2 = f(x2) for some x1, x2 ∈ V . So

αy1 + βy2 = αf(x1) + βf(x2) = f(αx1 + βx2) ∈ Range(f).

Thus Range(f) is a subspace of U . If x1, x2 ∈ Kernel(f), then f(x1) = 0 = f(x2).
So f(αx1 + βx2) = αf(x1) + βf(x2) = 0, i.e., αx1 + βx2 ∈ Kernel(f).
Thus Kernel(f) is a subspace of V . �

(3) Range(A) = R(A) and Kernel(A) = N (A).
With A ∈ Cm×n for the LT y = Ax,

Range(A) = R(A) = {Ax : x ∈ Cn} = Span(A) = C(A) = L(A) is a subspace of Cm.
Kernel(A) = N (A) = {x ∈ Cn : Ax = 0} is a subspace of Cn.

4. Other operations

(1) Transpose, conjugate, conjugate-transphse

Transpose of A: A′ = AT . A′ =

(
A11 A12

A21 A22

)′
=

(
A′

11 A′
21

A′
12 A′

22

)
. A′ = A

def⇐⇒ A is symmetric

A = (aij)m×n = (aij)m×n. A = A
def⇐⇒ A is real

A∗ = AH = (A′) = (A)′. A∗ = A
def⇐⇒ A is Hermitian

Ex4: A real symmetric matrix is Hermitian.

(2) Multiplication
Suppose B ∈ Cn×k. Then AB = A(B1, ..., Bk) = (AB1, ..., ABk) is a set of k ordered LCs
of the columns of A with coefficient vectors B1, ..., Bk. When the columns of A and the

rows of B are divided the same way, AB =

(
A11 A12

A21 A22

)(
B1

B2

)
=

(
A11B1 +A12B2

A21B1 +A22B2

)
.

(3) Relations
(AB)′ = B′A′; AB = AB; (AB)∗ = B∗A∗. For A ∈ Cm×n, ImA = An = A.
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L02 Rank of a matrix

1. Ranks and dimensions

(1) Linear dependence (LD)

x1, ..., xk are LD
def⇐⇒ ∃α1x1 + · · ·+ αkxk = 0 with at least one αi ̸= 0
⇐⇒ ∃xi that is a LC of others

⇒: Suppose α1x1 + · · ·+ αkxk = 0 with αi ̸= 0. Solve the equation for xi.

⇐: Write xi as a LC of others. Move xi to the other side of the equation. �
(2) Linear independence (LI)

x1, ..., xk are LI
def⇐⇒ x1, ..., xk are not LD
⇐⇒ If α1x1 + · · ·+ αkxk = 0, then α1 = · · · = αk = 0
∗⇐⇒ If y is a LC of x1, .., xk, then the expression is unique.

∗⇒: If y =
∑

i αixi and y =
∑

i βixk, then
∑

i(αi − βi)xi = 0. So αi = βi ∀ i.
∗⇐: If

∑
i αixi = 0, then αi = 0 ∀ i since

∑
i 0xi = 0. �

(3) Rank
Suppose [x1, ..., xr] ⊂ D ⊂ V where V is a LS.

[x1, ..., xr] is a largest set of LI vectors in D
def⇐⇒ x1, .., xr are LI and x1, .., xr, x are LD ∀x ∈ D
⇐⇒ x1, ...xr are LI and x is a LC of x1, ..., xr for all x ∈ D.
⇐⇒ x can be expressed as a unique LC of x1, ..., xr for all x ∈ D.

If both [x1, ..., xr] and [y1, ..., ys] are largest set of LI vectors in D, then r = s. This
common value is called the rank of D, rank(D) = r.

(4) Basis and dimension
Suppose [x1, ..., xr] ⊂ D ⊂ V where V is a LS.

If [x1, ..., xr] is a largest set of LI vectors in V , then [x1, ..., xr] is called a basis of V , and
r is called the dimension of V , dim(V ) = r.V is a LS,

(5) Relation
Suppose [x1, ..., xr] ⊂ D ⊂ V where V is a LS.

If [x1, ..., xr] is a largest set of LI vectors in D, then [x1, ..., xr] is a basis for Span(D).
So rank(D) = dim[Span(D)].

Proof. [x1, .., xr] ⊂ D ⊂ Span(D); x1, ..., xk are LI; For x ∈ Span(D), x is a LC of
vectors in D, and vectors in D are LCs of x1, ..., xr, so x is a LC of x1, ..., xr. �.

Ex1: If one vectors in [x1, ..., xn] is 0, then x1, ..., xn are LD.
If x1, ..., xn are LD, then x1, ..., xn, x are LD. If x1, ..., xn are LI, then x1, .., xn−1 are LI.

Ex2: D1 ⊂ D2 =⇒ rank(D1) ≤ rank(D2).
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2. Matrix ranks

(1) rank(A)
The rank of n columns of A ∈ Cm×n is called the column rank of A
The rank of m rows of A ∈ Cm×n is called the row rank of A
It can be shown that the column rank and row rank of A are equal. This common value
is called the rank of A denoted as rank(A)
Clearly 0 ≤ rank(A) ≤ m and 0 ≤ rank(A) ≤ n.

(2) rank(A) = dim[Span(A)] = dim[C(A)] = dim[R(A)] = dim[L(A)].

Ex3: (i) rank(A′) = rank(A).
(ii) For xi ∈ Cm, i = 1, ..., n,

∑
i αixi = 0 ⇐⇒

∑
i αi xi = 0 and αi = 0 ⇐⇒ αi = 0.

So rank(A) = rank(A).
(iii) Consequently, rank(A∗) = rank(A). So A, A′, A and A∗ share the same rank.

3. Two equations on dimensions
We present two results without proofs.

(1) If S1 and S2 are two subspaces of S, so are S1 + S2 = {x+ y : x ∈ S1 and y ∈ S2} and
S1 ∩ S2. Moreover,

dim(S1 + S2) = dim(S1) + dim(S2)− dim(S1 ∩ S2).

(2) For LT f without proof we present

dim[domain(f)] = dim[Kernel(f)] + dim[Range(f)]

Ex4: L[(A, B)] = L(A) + L(B).

Proof. ⊂: y ∈ L[(A, B)] =⇒ y = (A, B)

(
x1
x2

)
= Ax1 +Bx2 ∈ L(A) + L(B).

⊃: y ∈ L(A) + L(B) =⇒ y = Ax1 +Bx2 = (A, B)

(
x1
x2

)
∈ L[(A, B)]. �

Ex5: rank[(A, B)] = dim{L[(A, B)]} = dim[L(A) + L(B)]
= dim[L(A)] + dim[L(B)]− dim[L(A) ∩ L(B)]
= rank(A) + rank(B)− dim[L(A) ∩ L(B)].

So rank[(A, B)] = rank(A)+rank(B)−dim[L(A)∩L(B)] ≤ rank(A)+rank(B)

Ex6: With A ∈ Cm×n, dim[N (A)] = n− rank(A).

Proof. f(x) = Ax is LT with domain(f) = Cn, Kernel(f) = N (A) and
Range(f) = L(A). So

n = dim(Cn) = dim[N (A)] + dim[L(A)] = dim[N (A)] + rank(A).

Thus dim[N (A)] = n− rank(A).
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