L01 Linear space, linear combination and linear transformation

- 1. Linear space (LS)
 - (1) Linear space is a set of elements (vectors) $C^{m \times n}$ is the collection of all m by n complex matrices; $C^n = C^{n \times 1}$; $R^{m \times n}$ is the collection of all m by n real matrices; $R^m = R^{m \times 1}$.
 - (2) Addition is defined in linear sapce

For
$$A, B \in C^{m \times n}, A + B = (a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n}$$
; (elements)
 $A + B = (A_1, ..., A_n) + (B_1, ..., B_n) = (A_1 + B_1, ..., A_n + B_n)$; (Columns)
 $A + B = (A_{(1)}, ..., A_{(m)})' + (B_{(1)}, ..., B_{(m)})' = (A_{(1)} + B_{(1)}, ...A_{(m)} + B_{(m)})'$; (rows)
 $A + B = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{pmatrix}$
 $= \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & A_{13} + B_{13} \\ A_{21} + B_{21} & A_{22} + B_{22} & A_{23} + B_{23} \end{pmatrix}$. Blocks

(3) Scalar multiplication

In scalar multiplication αx , α is an element of a field, usually a complex number or a real number.

(4) The operations meet a set of familiar requirements x + y = y + x; $\exists 0, 0 + x = x \forall x$; $\forall x \ \exists (-x), (-x) + x = 0$; $\alpha(x + y) = \alpha x + \alpha y,...$

 $x + y = y + x, \exists 0, 0 + x = x \forall x, \forall x \exists (-x), (-x) + x = 0, \alpha(x + y) = \alpha x + x = 0$

Ex1: $C^{m \times n}$, $R^{m \times n}$, C^m , R^n are all LSs.

- 2. Linear combination (LC)
 - (1) Linear combination (LC)

V is a LS. $x_i \in V$, i = 1, ..., k. α_i , i = 1, ..., k, are scalars.

$$\alpha_1 x_1 + \dots + \alpha_k x_k$$
 is a vector in V called a linear combination (LC) of x_1, \dots, x_k . $\alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}$

is the coefficient vector of that LC.

(2) Subspace

V is a linear space.

S is a subspace of $V \iff S \subset V$ and S is a linear space $\iff S$ is closed under two linear operations $\iff S$ is closed under linear combinations.

 $x_1, ..., x_k$ are vectors in a LS V. Let S be the collection of all LCs of $x_1, ..., x_k$. Then S is a subspace of V called the Span of $x_1, ..., x_n$ denoted by $\text{Span}(x_1, ..., x_k)$.

(3) $\operatorname{Span}(A) = \mathcal{C}(A) = L(A)$

For
$$A \in C^{m \times n}$$
 and $x \in C^n$, $Ax = (A_1, ..., A_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A_1 + \cdots + x_n A_n$ is a LC of the

columns of A. So $\{Ax : x \in C^n\}$ is the span of the columns of A, also called the column space of A, this is the basic linear space associated with A and hence is denoted by

$$\operatorname{Span}(A) = \mathcal{C}(A) = L(A) = \{Ax : x \in \mathbb{C}^n\} \subset \mathbb{C}^m \text{ is a subspace of } \mathbb{C}^m.$$

Ex2: Suppose S_1 and S_2 are two subspaces of S. Then $S_1 \cap S_2$ and $S_1 + S_2$ are two subspaces of S.

1

Proof. Show the last one. Suppose $x = x_1 + x_2 \in S_1 + S_2$ and $y = y_1 + y_2 \in S_1 + S_2$ where $x_1, y_1 \in S_1$ and $x_2, y_2 \in S_2$. Then $\alpha x + \beta y = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2) \in S_1 + S_2$. So $S_1 + S_2$ is closed under LCs. Hence $S_1 + S_2$ is a subspace of S. \square .

- 3. Linear transformation (LT)
 - (1) Linear transformation (LT) U and V are two LSs, for $x \in V$ $f(x) \in U$ is a linear transformation (LT) if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Here V = Domain(f), $\{f(x) \in U : x \in V\} = \text{Rangle}(f)$, and $\{x \in V : f(x) = 0\} = \text{Kernel}(f)$.

Ex3: For $A \in C^{m \times n}$, with $x \in C^n$ $f(x) = Ax \in C^m$ is a LT from C^n to C^m since

$$f(\alpha x + \beta y) = A(\alpha x + \beta y) = \alpha Ax + \beta Ay = \alpha f(x) + \beta f(y).$$

(2) Range and Kernel of a LT

For the LT in (1), the Range is a subspace of U and the Kernel is a subspace of V.

Proof. If $y_1, y_2 \in \text{Range}(f)$, then $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for some $x_1, x_2 \in V$. So

$$\alpha y_1 + \beta y_2 = \alpha f(x_1) + \beta f(x_2) = f(\alpha x_1 + \beta x_2) \in \text{Range}(f).$$

Thus Range(f) is a subspace of U. If $x_1, x_2 \in \text{Kernel}(f)$, then $f(x_1) = 0 = f(x_2)$. So $f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2) = 0$, i.e., $\alpha x_1 + \beta x_2 \in \text{Kernel}(f)$. Thus Kernel(f) is a subspace of V. \square

(3) Range(A) = $\mathcal{R}(A)$ and Kernel(A) = $\mathcal{N}(A)$. With $A \in C^{m \times n}$ for the LT y = Ax,

> Range $(A) = \mathcal{R}(A) = \{Ax : x \in C^n\} = \operatorname{Span}(A) = \mathcal{C}(A) = L(A)$ is a subspace of C^m . Kernel $(A) = \mathcal{N}(A) = \{x \in C^n : Ax = 0\}$ is a subspace of C^n .

- 4. Other operations
 - (1) Transpose, conjugate, conjugate-transphse

Transpose of A: $A' = A^T$. $A' = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}' = \begin{pmatrix} A'_{11} & A'_{21} \\ A'_{12} & A'_{22} \end{pmatrix}$. $A' = A \iff A$ is symmetric $\overline{A} = \overline{(a_{ij})}_{m \times n} = (\overline{a}_{ij})_{m \times n}$. $\overline{A} = A \iff A$ is real $A^* = A^H = \overline{(A')} = (\overline{A})'$. $A^* = A \iff A$ is Hermitian **Ex4:** A real symmetric matrix is Hermitian.

(2) Multiplication

Suppose $B \in C^{n \times k}$. Then $AB = A(B_1, ..., B_k) = (AB_1, ..., AB_k)$ is a set of k ordered LCs of the columns of A with coefficient vectors $B_1, ..., B_k$. When the columns of A and the rows of B are divided the same way, $AB = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = \begin{pmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{pmatrix}$.

(3) Relations $(AB)' = B'A'; \overline{AB} = \overline{A}\overline{B}; (AB)^* = B^*A^*. \text{ For } A \in C^{m \times n}, I_m A = A_n = A.$

L02 Rank of a matrix

- 1. Ranks and dimensions
 - (1) Linear dependence (LD)

$$x_1,...,x_k$$
 are LD \iff $\exists \alpha_1 x_1 + \cdots + \alpha_k x_k = 0$ with at least one $\alpha_i \neq 0$ \iff $\exists x_i$ that is a LC of others

 \Rightarrow : Suppose $\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$ with $\alpha_i \neq 0$. Solve the equation for x_i .

 \Leftarrow : Write x_i as a LC of others. Move x_i to the other side of the equation. \square

(2) Linear independence (LI)

$$x_1,...,x_k$$
 are LI $\stackrel{def}{\Longleftrightarrow}$ $x_1,...,x_k$ are not LD $\stackrel{*}{\Longleftrightarrow}$ If $\alpha_1x_1+\cdots+\alpha_kx_k=0$, then $\alpha_1=\cdots=\alpha_k=0$ $\stackrel{*}{\Longleftrightarrow}$ If y is a LC of $x_1,...,x_k$, then the expression is unique.

*: If
$$y = \sum_{i} \alpha_{i} x_{i}$$
 and $y = \sum_{i} \beta_{i} x_{k}$, then $\sum_{i} (\alpha_{i} - \beta_{i}) x_{i} = 0$. So $\alpha_{i} = \beta_{i} \ \forall i$.
 *: If $\sum_{i} \alpha_{i} x_{i} = 0$, then $\alpha_{i} = 0 \ \forall i$ since $\sum_{i} 0 \ x_{i} = 0$. \square

(3) Rank

Suppose $[x_1,...,x_r] \subset \mathcal{D} \subset V$ where V is a LS.

$$[x_1,...,x_r]$$
 is a largest set of LI vectors in \mathcal{D}
 $\stackrel{def}{\Longleftrightarrow} x_1,...,x_r$ are LI and $x_1,...,x_r,x$ are LD $\forall x \in \mathcal{D}$
 $\iff x_1,...x_r$ are LI and x is a LC of $x_1,...,x_r$ for all $x \in \mathcal{D}$.
 $\iff x$ can be expressed as a unique LC of $x_1,...,x_r$ for all $x \in \mathcal{D}$.

If both $[x_1,...,x_r]$ and $[y_1,...,y_s]$ are largest set of LI vectors in \mathcal{D} , then r=s. This common value is called the rank of \mathcal{D} , rank $(\mathcal{D})=r$.

(4) Basis and dimension

Suppose $[x_1, ..., x_r] \subset \mathcal{D} \subset V$ where V is a LS.

If $[x_1, ..., x_r]$ is a largest set of LI vectors in V, then $[x_1, ..., x_r]$ is called a basis of V, and r is called the dimension of V, dim $(V) = r \cdot V$ is a LS,

(5) Relation

Suppose $[x_1,...,x_r] \subset \mathcal{D} \subset V$ where V is a LS.

If $[x_1, ..., x_r]$ is a largest set of LI vectors in \mathcal{D} , then $[x_1, ..., x_r]$ is a basis for $\mathrm{Span}(\mathcal{D})$. So $\mathrm{rank}(\mathcal{D}) = \dim[\mathrm{Span}(\mathcal{D})]$.

Proof. $[x_1,...,x_r] \subset \mathcal{D} \subset \operatorname{Span}(\mathcal{D}); \ x_1,...,x_k \ \text{are LI; For } x \in \operatorname{Span}(\mathcal{D}), \ x \ \text{is a LC of vectors in } \mathcal{D}, \ \text{and vectors in } \mathcal{D} \ \text{are LCs of } x_1,...,x_r, \ \text{so } x \ \text{is a LC of } x_1,...,x_r. \ \Box.$

Ex1: If one vectors in $[x_1,...,x_n]$ is 0, then $x_1,...,x_n$ are LD.

If $x_1, ..., x_n$ are LD, then $x_1, ..., x_n$, x are LD. If $x_1, ..., x_n$ are LI, then $x_1, ..., x_{n-1}$ are LI.

Ex2: $\mathcal{D}_1 \subset \mathcal{D}_2 \Longrightarrow \operatorname{rank}(\mathcal{D}_1) \leq \operatorname{rank}(\mathcal{D}_2)$.

2. Matrix ranks

 $(1) \operatorname{rank}(A)$

The rank of n columns of $A \in C^{m \times n}$ is called the column rank of A

The rank of m rows of $A \in C^{m \times n}$ is called the row rank of A

It can be shown that the column rank and row rank of A are equal. This common value is called the rank of A denoted as rank(A)

Clearly $0 \le \operatorname{rank}(A) \le m$ and $0 \le \operatorname{rank}(A) \le n$.

(2) $\operatorname{rank}(A) = \dim[\operatorname{Span}(A)] = \dim[\mathcal{C}(A)] = \dim[\mathcal{R}(A)] = \dim[L(A)].$

Ex3: (i) rank(A') = rank(A).

- (ii) For $x_i \in C^m$, i = 1, ..., n, $\sum_i \alpha_i x_i = 0 \iff \sum_i \overline{\alpha}_i \overline{x}_i = 0$ and $\alpha_i = 0 \iff \overline{\alpha}_i = 0$. So $\operatorname{rank}(\overline{A}) = \operatorname{rank}(A)$.
- (iii) Consequently, $\operatorname{rank}(A^*) = \operatorname{rank}(A)$. So A, A', \overline{A} and A^* share the same rank.
- 3. Two equations on dimensions

We present two results without proofs.

(1) If S_1 and S_2 are two subspaces of S, so are $S_1 + S_2 = \{x + y : x \in S_1 \text{ and } y \in S_2\}$ and $S_1 \cap S_2$. Moreover,

$$\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2).$$

(2) For LT f without proof we present

$$\dim[\operatorname{domain}(f)] = \dim[\operatorname{Kernel}(f)] + \dim[\operatorname{Range}(f)]$$

Ex4: L[(A, B)] = L(A) + L(B).

Proof.
$$\subset$$
: $y \in L[(A, B)] \Longrightarrow y = (A, B) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Ax_1 + Bx_2 \in L(A) + L(B).$
 \supset : $y \in L(A) + L(B) \Longrightarrow y = Ax_1 + Bx_2 = (A, B) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in L[(A, B)].$

Ex5:
$$\operatorname{rank}[(A, B)] = \dim\{L[(A, B)]\} = \dim[L(A) + L(B)]$$

 $= \dim[L(A)] + \dim[L(B)] - \dim[L(A) \cap L(B)]$
 $= \operatorname{rank}(A) + \operatorname{rank}(B) - \dim[L(A) \cap L(B)].$
So $\operatorname{rank}[(A, B)] = \operatorname{rank}(A) + \operatorname{rank}(B) - \dim[L(A) \cap L(B)] \le \operatorname{rank}(A) + \operatorname{rank}(B)$

Ex6: With $A \in C^{m \times n}$, dim $[\mathcal{N}(A)] = n - \text{rank}(A)$.

Proof.
$$f(x) = Ax$$
 is LT with domain $(f) = C^n$, Kernel $(f) = \mathcal{N}(A)$ and Range $(f) = L(A)$. So

$$n = \dim(C^n) = \dim[\mathcal{N}(A)] + \dim[L(A)] = \dim[\mathcal{N}(A)] + \operatorname{rank}(A).$$

Thus $\dim[\mathcal{N}(A)] = n - \operatorname{rank}(A)$.