## Riemann Surfaces Lecture 8

In groups, discuss the following examples.

**Definition 2.3.8** The *hyperbolic* metric on H is the conformal metric on H given by  $\lambda(z) = \frac{1}{y}$ , where z = x + iy. The hyperbolic metric is thus given by

$$g_H = \frac{1}{v^2} \, dz \, d\bar{z}.$$

**Example** Find a potential function for  $g_H$ , compute the norm  $\|\cdot\|_H$ , and determine the curvature  $K_H$ . Show (or at least justify) that  $g_H$  is complete.

**Lemma 2.3.6** The hyperbolic metric on *D* is given by  $\lambda(z) = \frac{2}{1-|z|^2}$ . Thus,

$$g_D = \frac{4}{(1 - |z|^2)^2} \, dz \, d\bar{z}.$$

Proof The Möbius transformation

$$w(z) = \frac{z - i}{z + i}$$

is a conformal map from H to D sending the metric  $\frac{1}{y^2} dz d\overline{z}$  to  $\frac{4}{(1-|w|^2)^2} dw d\overline{w}$ . Verify this claim.

**Example** The map  $w(z) = e^{iz}$  is a local homeomorphism of H to the punctured disk  $D \setminus \{0\}$ , inducing the hyperbolic metric

$$g = \frac{1}{|w|^2 (\log |w|^2)^2} dw d\overline{w}$$

on  $D \setminus \{0\}$ .

Finally, we consider the situation of HW 2.3,

Exercise 2.3.2 Consider the torus  $T^2$  as constructed in chapter 1 with universal covering  $\pi:\mathbb{C}\to T^2$  and group of covering transformations  $H_\pi\cong\mathbb{Z}^2$ . Let  $g_\lambda=\lambda^2(z)dz\,d\bar{z}$  be a conformal metric on  $\mathbb{C}$  such that  $H_\pi$  acts on  $(\mathbb{C},g_\lambda)$  by isometries. That is, each  $\varphi\in H_\pi$  is an isometry of  $g_\lambda$ . Then  $g_\lambda$  induces a conformal Riemannian metric on  $\mathbb{T}^2$ ,

$$\overline{g}_{\lambda}([z]) = \lambda^2([z]) \, dz \, d\overline{z}.$$

Moreover, every c.R. metric on  $\mathbb{T}^2$  lifts to a c.R. metric on  $\mathbb{C}$  that is invariant under elements of  $H_{\pi}$  (verify this).

What then must be true about a c.R. metric on  $\mathbb{T}^2$ , viewed as a c.R. metric on  $\mathbb{C}$ ? To understand this, I recommend choose a "standardized" fundamental domain in  $\mathbb{C}$  by setting  $w_1 = 1$  and  $w_2 = i$ . Then view the the resulting parallelogram as  $I^2 \subset \mathbb{R}^2$ . This will also help you in computing

$$\int_{T^2} K_{\lambda}$$

which you should regard as

$$\int_{I^2} K_{\lambda} \, dA$$

in  $\mathbb{R}^2$ .