Riemann Surfaces Lecture 8 In groups, discuss the following examples. **Definition 2.3.8** The *hyperbolic* metric on H is the conformal metric on H given by $\lambda(z) = \frac{1}{y}$, where z = x + iy. The hyperbolic metric is thus given by $$g_H = \frac{1}{v^2} \, dz \, d\bar{z}.$$ **Example** Find a potential function for g_H , compute the norm $\|\cdot\|_H$, and determine the curvature K_H . Show (or at least justify) that g_H is complete. **Lemma 2.3.6** The hyperbolic metric on *D* is given by $\lambda(z) = \frac{2}{1-|z|^2}$. Thus, $$g_D = \frac{4}{(1 - |z|^2)^2} \, dz \, d\bar{z}.$$ Proof The Möbius transformation $$w(z) = \frac{z - i}{z + i}$$ is a conformal map from H to D sending the metric $\frac{1}{y^2} dz d\overline{z}$ to $\frac{4}{(1-|w|^2)^2} dw d\overline{w}$. Verify this claim. **Example** The map $w(z) = e^{iz}$ is a local homeomorphism of H to the punctured disk $D \setminus \{0\}$, inducing the hyperbolic metric $$g = \frac{1}{|w|^2 (\log |w|^2)^2} dw d\overline{w}$$ on $D \setminus \{0\}$. Finally, we consider the situation of HW 2.3, Exercise 2.3.2 Consider the torus T^2 as constructed in chapter 1 with universal covering $\pi:\mathbb{C}\to T^2$ and group of covering transformations $H_\pi\cong\mathbb{Z}^2$. Let $g_\lambda=\lambda^2(z)dz\,d\bar{z}$ be a conformal metric on \mathbb{C} such that H_π acts on (\mathbb{C},g_λ) by isometries. That is, each $\varphi\in H_\pi$ is an isometry of g_λ . Then g_λ induces a conformal Riemannian metric on \mathbb{T}^2 , $$\overline{g}_{\lambda}([z]) = \lambda^2([z]) \, dz \, d\overline{z}.$$ Moreover, every c.R. metric on \mathbb{T}^2 lifts to a c.R. metric on \mathbb{C} that is invariant under elements of H_{π} (verify this). What then must be true about a c.R. metric on \mathbb{T}^2 , viewed as a c.R. metric on \mathbb{C} ? To understand this, I recommend choose a "standardized" fundamental domain in \mathbb{C} by setting $w_1 = 1$ and $w_2 = i$. Then view the the resulting parallelogram as $I^2 \subset \mathbb{R}^2$. This will also help you in computing $$\int_{T^2} K_{\lambda}$$ which you should regard as $$\int_{I^2} K_{\lambda} \, dA$$ in \mathbb{R}^2 .