
Riemann Surfaces
Lecture 5

We ended last week with the following.

Definition 1.3.4 Let π1 : M̃1 → M and π2 : M̃2 → M be coverings. (π2, M̃2) is

said to dominate (π1, M̃1) if and only if there exists a covering π21 : M̃2 → M̃1

with π2 = π1 ◦ π21. (π2, M̃2) is said to be equivalent to (π1, M̃1) if and only if

there exists a homeomorphism π21 : M̃2 → M̃1 with π2 = π1 ◦ π21.

Let π : M̃ → M be a covering, p ∈ M, q1 ∈ π
−1(p), γ : I → M a loop with

γ(0) = γ(1) = p, and γ̃ : I → M̃ the lift of γ with γ̃(0) = q1. By Corollary 1.3.1

(HW 1.2), if γ ∼ p, then γ̃ is closed and γ̃ ∼ q1.

Definition Let Gπ(q1) = G(π, q1) := {[γ] ∈ π1(M, p) | γ̃ : I → M with γ̃(0) =

γ̃(1) = q1}. That is, Gπ(q1) is the set of all equivalence classes of loops in M

based at p whose lifts beginning at q1 ∈ π
−1(p) are closed in M̃.

Lemma 1.3.4 Gπ(q1) is a subgroup of π1(M, p).
�

Suppose q2 ∈ π
−1(p), q2 , q1, and let γ̃ be a path in M̃ such that γ̃(0) = q1) and

γ̃(1) = q2. Then γ := π(̃γ) is a loop at p ∈ M. If g is any loop at p ∈ M, then

the lift of g starting at q1 is closed precisely when the lift of κγ(g) = γgγ−1 is

closed at q2. Hence,

Gπ(q2) = [γ] ·Gπ(q1) · [γ
−1].

Thus, Gπ(q1) and Gπ(q2) are conjugate subgroups of π1(M, p). Conversely,

every conjugate subgroup of Gπ(q1) can be obtained in this way. It is also

easy to see that equivalence classes of coverings yield the same conjugacy

classes of subgroups in π1(M, p).

This leads us to

Theorem 1.3.2 π1(M̃) is isomorphic to Gπ, and we obtain in this way a bijective

correspondence between conjugacy classes of π1(M) and equivalence classes of

coverings π : M̃ → M.
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Sketch of the proof

Corollary 1.3.2 If M is simply connected, then every covering π : M̃ → M is

a homeomorphism.
�

Corollary 1.3.3 If Gπ = {1} and π : M̃ → M is the corresponding covering,

then π1(M̃) = 1, and a path γ̃ in M̃ is closed precisely when π(̃γ) is closed and

null-homotopic. Moreover, if π1(M) = {1}, then M̃ = M.
�

Definition 1.3.5 The covering M̃ of M with π1(M̃) = {1} is called the universal

covering of M.
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Theorem 1.3.3 Let f : N → M be a continuous map, and πM : M̃ → M,

πN : Ñ → N the universal coverings. Then there exists a lift f̃ : Ñ → M̃ of

covering spaces.

The diagram commutes.

Proof Apply Thereom 1.3.1 to f ◦ πN .
�

Definition 1.3.6 Let π : M̃ → M be a local homeomorphism. Then a

homeomorphism ϕ : M̃ → M̃ is called a deck transformation (or covering

transformation in the book) iff π ◦ ϕ = π.

The covering transformations of a covering form a group. (RE)

Lemma 1.3.5 If ϕ , Id is a covering transformation, then ϕ has no fixed

point.

Proof

It follows that if ϕ1, ϕ2 ∈ Hπ with ϕ1(q) = ϕ2(q) for any single point q ∈ M̃,

then ϕ1 = ϕ2.

Definition 1.3.7 Let G ⊂ H be groups. Then N(G) := {h ∈ H | h−1Gh ∈ G} is

called the normaliser of G in H. If N(G) = G, then G is said to be a normal

subgroup of H and we write G E H.
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Theorem 1.3.4 For any covering π : M̃ → M, the group Hπ of covering

transformations is isomorphic to N(Gπ)/Gπ. Thus, if π : M̃ → M is the universal

covering of M, then

Hπ � π1(M).

First, we note

Corollary 1.3.4 Let G be a normal subgroup of π1(M, p) and π : M̃ → M

the covering corresponding to G according to Theorem 1.3.2. Let q1 ∈ π
−1(p).

Then, for every q2 ∈ π
−1(p), there exists precisely one covering transformation

ϕ with ϕ(q1) = q2. This ϕ corresponds to π(̃γ) ∈ π(M, p), where γ̃ is any path in

M̃ from q1 to q2.
�

Now, we prove the theorem.

Proof of the theorem
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Example 1.3.2 Covering spaces of the torus, T2.
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