Riemann Surfaces Lecture 5

We ended last week with the following.

Definition 1.3.4 Let $\pi_1: \widetilde{M}_1 \to M$ and $\pi_2: \widetilde{M}_2 \to M$ be coverings. (π_2, \widetilde{M}_2) is said to dominate (π_1, \widetilde{M}_1) if and only if there exists a covering $\pi_{21}: \widetilde{M}_2 \to \widetilde{M}_1$ with $\pi_2 = \pi_1 \circ \pi_{21}$. (π_2, \widetilde{M}_2) is said to be equivalent to (π_1, \widetilde{M}_1) if and only if there exists a homeomorphism $\pi_{21}: \widetilde{M}_2 \to \widetilde{M}_1$ with $\pi_2 = \pi_1 \circ \pi_{21}$.

Let $\pi:\widetilde{M}\to M$ be a covering, $p\in M$, $q_1\in \pi^{-1}(p)$, $\gamma:I\to M$ a loop with $\gamma(0)=\gamma(1)=p$, and $\widetilde{\gamma}:I\to \widetilde{M}$ the lift of γ with $\widetilde{\gamma}(0)=q_1$. By Corollary 1.3.1 (HW 1.2), if $\gamma\sim p$, then $\widetilde{\gamma}$ is closed and $\widetilde{\gamma}\sim q_1$.

Definition Let $G_{\pi}(q_1) = G(\pi, q_1) := \{ [\gamma] \in \pi_1(M, p) \mid \widetilde{\gamma} : I \to M \text{ with } \widetilde{\gamma}(0) = \widetilde{\gamma}(1) = q_1 \}$. That is, $G_{\pi}(q_1)$ is the set of all equivalence classes of loops in M based at p whose lifts beginning at $q_1 \in \pi^{-1}(p)$ are closed in \widetilde{M} .

Lemma 1.3.4 $G_{\pi}(q_1)$ is a subgroup of $\pi_1(M, p)$.

Suppose $q_2 \in \pi^{-1}(p)$, $q_2 \neq q_1$, and let $\widetilde{\gamma}$ be a path in \widetilde{M} such that $\widetilde{\gamma}(0) = q_1$) and $\widetilde{\gamma}(1) = q_2$. Then $\gamma := \pi(\widetilde{\gamma})$ is a loop at $p \in M$. If g is any loop at $p \in M$, then the lift of g starting at q_1 is closed precisely when the lift of $\kappa_{\gamma}(g) = \gamma g \gamma^{-1}$ is closed at q_2 . Hence,

$$G_{\pi}(q_2) = [\gamma] \cdot G_{\pi}(q_1) \cdot [\gamma^{-1}].$$

Thus, $G_{\pi}(q_1)$ and $G_{\pi}(q_2)$ are conjugate subgroups of $\pi_1(M,p)$. Conversely, every conjugate subgroup of $G_{\pi}(q_1)$ can be obtained in this way. It is also easy to see that equivalence classes of coverings yield the same conjugacy classes of subgroups in $\pi_1(M,p)$.

This leads us to

Theorem 1.3.2 $\pi_1(\overline{M})$ is isomorphic to G_{π} , and we obtain in this way a bijective correspondence between conjugacy classes of $\pi_1(M)$ and equivalence classes of coverings $\pi: \widetilde{M} \to M$.

Sketch of the proof

Let $\tilde{Y} \in \Pi_1(\tilde{M}, q)$ and put $Y := \Pi(\tilde{Y})$. $Y \in G_{\overline{M}}$ since \tilde{Y} is closed, and Π maps homotopic curves to homotopic curves, so $\Pi_{M}: \Pi_1(\tilde{M}, q) \to G_{\overline{M}}(q)$

is an isomorphism. (Apply Lemma 1.2.3 and Cor 1.3.1).

conversely, let G be a subgroup of $\pi_i(M_ip)$, and let M_G be the set of all equivalence classes (r) of paths in M ul $\gamma(0)=p$, two paths being equivalent if $\pi_i(1)=\gamma_2(1)$ and $(r,r_2^{-1})\in G$. Define a projection by $\pi_G((r))=\gamma(1)$.

The vest of the proof defines a manifold structure on MG making Tig: Mg -> M a covering.

You should read it! pp. 10-11.

Corollary 1.3.2 If M is simply connected, then every covering $\pi: \widetilde{M} \to M$ is a homeomorphism.

Corollary 1.3.3 If $G_{\pi} = \{1\}$ and $\pi : \widetilde{M} \to M$ is the corresponding covering, then $\pi_1(\widetilde{M}) = 1$, and a path $\widetilde{\gamma}$ in \widetilde{M} is closed precisely when $\pi_{\mathfrak{A}}$ is closed and null-homotopic. Moreover, if $\pi_1(M) = \{1\}$, then $\widetilde{M} = M$.

Definition 1.3.5 The covering \widetilde{M} of M with $\pi_1(\widetilde{M}) = \{1\}$ is called the *universal* covering of M.

Theorem 1.3.3 Let $f: N \to M$ be a continuous map, and $\pi_M : \widetilde{M} \to M$, $\pi_N : \widetilde{N} \to N$ the universal coverings. Then there exists a lift $\widetilde{f} : \widetilde{N} \to \widetilde{M}$ of covering spaces.

The diagram commutes.

Proof Apply Thereom 1.3.1 to $f \circ \pi_N$.

Definition 1.3.6 Let $\pi:\widetilde{M}\to M$ be a local homeomorphism. Then a homeomorphism $\varphi:\widetilde{M}\to\widetilde{M}$ is called a *deck transformation* (or *covering transformation* in the book) iff $\pi\circ\varphi=\pi$.

The covering transformations of a covering form a group. (RE)

Lemma 1.3.5 If $\varphi \neq Id$ is a covering transformation, then φ has no fixed point.

Proof Let $\Sigma = \{g \in M : \varphi(g) = g.\}$. Let $g \in \Sigma$ and Ω and of g s.t. $\pi : \widetilde{U} \Rightarrow \pi(\widetilde{u}) = U$ is a homeo. Let $\widetilde{V} \subset \widetilde{U}$ s.t. $\varphi(\widetilde{V}) \subset \widetilde{U}$, $u/g \in \widetilde{V}$. For $g' \in \widetilde{V}$, we have $\pi(\psi(g)) = \pi(g) \in U$, hence $\varphi(g') = g'$ since both g' and $\varphi(g') \in \widetilde{U}$. Thus Σ is open. Since Σ is obviously closed, either $\Sigma = \emptyset$ or $\Sigma = \widetilde{M}$. In the latter case, $\varphi = Id$. Ω

It follows that if $\varphi_1, \varphi_2 \in H_{\pi}$ with $\varphi_1(q) = \varphi_2(q)$ for any single point $q \in \widetilde{M}$, then $\varphi_1 = \varphi_2$.

Definition 1.3.7 Let $G \subset H$ be groups. Then $N(G) := \{h \in H \mid h^{-1}Gh \in G\}$ is called the *normaliser* of G in H. If N(G) = G, then G is said to be a *normal subgroup* of H and we write $G \subseteq H$.

Theorem 1.3.4 For any covering $\pi: \widetilde{M} \to M$, the group H_{π} of covering transformations is isomorphic to $N(G_{\pi})/G_{\pi}$. Thus, if $\pi: \widetilde{M} \to M$ is the universal covering of M, then

 $H_{\pi} \cong \pi_1(M)$.

First, we note

Corollary 1.3.4 Let G be a normal subgroup of $\pi_1(M, p)$ and $\pi : \widetilde{M} \to M$ the covering corresponding to G according to Theorem 1.3.2. Let $q_1 \in \pi^{-1}(p)$. Then, for every $q_2 \in \pi^{-1}(p)$, there exists precisely one covering transformation φ with $\varphi(q_1) = q_2$. This φ corresponds to $\pi(\widetilde{\gamma}) \in \pi(M, p)$, where $\widetilde{\gamma}$ is any path in \widetilde{M} from q_1 to q_2 .

Now, we prove the theorem.

Proof of the theorem

Choose $p \in M$ and $g \in \pi^{-1}(p)$, and let $\gamma \in N(G_{\pi}(g))$. For any $\gamma \in \widetilde{M}$, let $\widetilde{\sigma}: C_{\sigma}(J) \to \widetilde{M}$ be a path joining g to γ . Put $\sigma:=\overline{\eta}(\widetilde{\sigma})$, and $\psi_{\gamma}(g)=(\overline{\sigma,\gamma})(1)$.

If η is another path from g to g, then η or $\varepsilon G_{\overline{g}}$, hence v η or v $\varepsilon G_{\overline{g}}$ since v ε $N(G_{\overline{g}})$. Thus $(\eta, v)(1) = (\overline{v}, v)(1)$ and ψ_{γ} does not depend on \overline{v} . We have,

 $TT(\psi_{Y}(g)) = T((r, Y)(i) = T(F(i)) = T(g)$, so that ψ_{Y} is a covering transformation. Moreover,

hence Przy = Prz · Pr, by lemma 1.35 and

$$\vec{\gamma}(i) = q$$

Thus, we have defined a morphism of N(GN) into Hyr W/ kernel GW.

Let $\varphi \in H_{\overline{H}}$ and let $\widetilde{Y}: C_{0}; \widetilde{D} \to \widetilde{M}$ be a path from g to $\varphi(g)$. Set $\gamma := \varphi(\widetilde{Y})$. Then $C_{7}; \widetilde{D} \in N(G_{\overline{H}})$ and $\Psi_{Y}(q) = \varphi(g)$. Hence $\Psi_{Y} = \varphi$ by Lemma 1.3.5. Thus "our" morphism is an epimorphism.

1.34 ...

and the second and the second second

Example 1.3.2 Covering spaces of the torus, \mathbb{T}^2 .

Work through this example together in class.

 $\pi: G \to \mathbb{R}^2$ is a covering and $\pi_1(G^2) = \{i\}$, so G is the universal covering. The covering transformations are

Thus, $H_{TI} \approx 2\ell^2$. By the Thin, we conclude, $H_{I}(T^2) = 2\ell^2$. T^2 abelian \Rightarrow coin. subgroups are identical, therefore equivalence classes of coverings of T^2 are in bijective correspondence we subgroups of T^2 .

Consider the Subgroup

$$G_{p,q} := \{ (p_n, q_m) \mid n, m \in \mathbb{Z} \}$$
 for $p,q \in \mathbb{Z} \setminus \{o\}$.

This group corresponds to the covering

where Tp. 8 is the torus generated by pw, and gwz as before.

By Thm 1.3.4, the group of covering transformations is

$$I^2/G_{p,q} = Z_p \times Z_q$$
. $(A,p) \in Z_p \times Z_q$ note on $T_{p,q}^2$ by

2+ 2+ dw, +pw2

The group $G_{1,0} = \{(n,0) \mid n \in \mathbb{Z}\}$ now

Corresponds to the cylinder, and the group $G_{p,0} = \{(pn,0) \mid n \in \mathbb{Z}\}$, $p \neq 0$, corresponds to the cylinder G_p covering C.

profit and the second

and the first of the property of the first

And the Control of the say of the