Riemann Surfaces
Lecture >

We ended last week with the following.

Definition 1.3.4 Let 7y : Ml — M and my : 1172 — M be coverings. (ﬂz,Mg) is
said to dominate (my, Ml) if and only if there exists a covering my; : Mz - 1\7[1
with 79 = my 0 m91. (719, Mz) is said to be equivalent to (7r1,11711) if and only if
there exists a homeomorphism mo; : Mz - Ml with me = 1 0 791,

Letm: M — Mbe a coverir_tg, pEM, q € 7r_1(p), v : I — M a loop with
¥(0) = ¥(1) = p, and y : I = M the lift of ¥ with ¥(0) = g;. By Corollary 1.3.1
(HW 1.2), if y ~ p, then ¥ is closed and ¥ ~ g;.

Definition Let GA(q1) = G(7,q1) := {[y] € m(M, p) | Yy : 1 > M with %(0) =
Y1) = q1}. That is, Gx(q1) is the set of all equivalence classes~ of loops in M
based at p whose lifts beginning at q; € n7(p) are closed in M.

Lemma 1.3.4 Gr(qi) is a subgroup of m1(M, p). -

Suppose g2 € 771(p), g2 # q1, and let 7 be a path in M such that ¥(0) = ¢1) and
¥Y() = g2. Then y := n(y) is a loop at p € M. If g is any loop at p € M, then
the lift of g starting at g; is closed precisely when the lift of ky(8) = yeylis
closed at ¢3. Hence,

Gr(g2) = [¥] - Go(q1) - [y 1.

Thus, G(q1) and Gn(g2) are conjugate subgroups of m(M, D). Conversely,
every conjugate subgroup of G(q;) can be obtained in this way. It is also
easy to see that equivalence classes of coverings yield the same conjugacy
classes of subgroups in m1(M, p).

This leads us to

Theorem 1.3.2 m(M)is isomorphic to G, and we obtain in this way a bijective
correspondence between conjugacy classes of ni(M) and equivalence classes of
coveringsm: M — M.
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Sketch of the proof
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Corollary 1.3.2 If M is simply connected, then every covering n . M- Mis

a homeomorphism. .

Corollar)j 1.3.3 IfG, = {1} and  : M — M is the corresponding covering,
then m(M) =1, and a pathy in M is closed pre_gisely when n(g) is closed and

null-homotopic. Moreover, if m(M) = {1}, then M = M. Y O

Definition 1.3.5 The covering M of M with 771(1\7) = {1} is called the universal
covering of M.

18




The0r~em 1.3.3 Let f: N - M be a continuous map, and M :J\Z —>~M,
ny : N — N the universal coverings. Then there exists a lift f : N — M of
covering spaces.

The diagram commudtes.

Wi

=2 — 2
—
-
3

Proof Apply Thereom 1.3.1 to f o y. -

Definition 1.3.6 Let 7 : Az — M be a local homeomorphism. Then a
homeomorphism ¢ : M — M is called a deck transformation (or covering
transformation in the book) iff mop = m.

The covering transformations of a covering form a group. (RE)

Lemma 1.3.5 If ¢ # Id is a covering transformation, then ¢ has no fixed
point.

Proof
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It follows that if ¢y, 9 € Hy with ¢1(q) = p2(q) for any single point g € 117,
then ¢ = @9.
Definition 1.3.7 Let G C H be groups. Then N(G):={(he H| h"'Gh e G} is

called the normaliser of G in H. If N(G) = G, then G is said to be a normal
subgroup of H and we write G < H.
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Theorem 1.3.4 For any covering © . M — M, the group H, of covering
trarisformations is isomorphic to N(G,)/Gy. Thus, if i : M — M is the universal
covering of M, then

H; = m(M).

First, we note

Corollary 1.3.4 Let G be a normal subgroup of m(M, p) and n : M- M
the covering corresponding to G according to Theorem 1.3.2. -Let q1 € n\(p).
Then, for every qz € 1~ \(p), there exists precisely one covering transformation
@ with ©(q1) = qa2. This ¢ corresponds to n(y) € n(M, p), where 7 is any path in

M from gy to go. O

Now, we prove the theorem.

Proof of the theorem
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Example 1.3.2 Covering spaces of the torus, T2.
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