
Riemann Surfaces
Lecture 3

We begin today by considering the fundamental groups of the spheres and

torus.

In groups of peers, discuss the following examples. Feel free to ask me any

questions, but please discuss your questions with your group first.

Example 1 S n is simply connected for n ≥ 2.

Example 2 S 1 is not simply connected. Compute the fundamental group of

S 1 as follows.

Let π : R→ S 1 : t 7→ (cos(2πt), sin(2πt)) map the real line onto S 1 (considered

as the unit circle in R2). For n ∈ Z let Ln : [0, 1] → R : s 7→ n · s. This map,

called left-translation by n, maps the interval [0, 1] to the interval [0, n]. Now

define a map ϕn : [0, 1]→ S 1 by ϕn = π ◦ Ln.

Let p = (1, 0) ∈ S 1, and define a function Φ : Z→ π1(S
1, p) by Φ(n) = [ϕn], the

homotopy class of ϕn. Recall that since S 1 is connected, π1(S
1, p) = π1(S

1).

Goal: Show that Φ is an isomorphism of groups.

This can be done by proving the following statements.

Lemma 3 Let α : [0, 1]→ R be a path such that α(0) = 0 and α(1) = n. Then

[π ◦ α] = [ϕn] ∈ π1(S
1).

Corollary 4 If β : [0, 1]→ R with β(0), β(1) ∈ Z and β(1) − β(0) = n ∈ Z, then

[π ◦ β] = [ϕn] ∈ π1(S
1).

Proposition 5 Φ is a homomorphism; i.e., Φ preserves group operations.

Remark 6 The proofs of the *-ed lemmas below (7 and 9) are a bit involved.

At this moment, you should consider them as “well known" and use them to

prove the propositions that follow. We’ll actually prove versions of them each

together in class later this week or early next week.

Lemma 7* Let f : [0, 1] → S 1 be a path in S 1 with f (0) = f (1) = p. Then

there exists a unique lift f̃ : [0, 1]→ R such that π◦ f̃ = f and f̃ (0) = 0. Note:

since π( f̃ )(1) = p, then f̃ (1) ∈ Z.

Use Lemma 7* to prove:

Proposition 8 Φ is an epimorphism (surjective).
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Lemma 9* Suppose G : [0, 1] × [0, 1] → S 1 is a homotopy of loops at p

between a loop γ(s) = F(s, 0) and the constant loop p(s) ≡ p. Then there

exists a map F̃ : [0, 1] × [0, 1]→ R such that π ◦ F̃ = F.

Remark 10 The previous lemma is an example of “Homotopy Lifting."

Use Lemma 9* to prove:

Proposition 11 Φ is a monomorphism (injective).

Taking the three propositions together, you have proved

Theorem 12 π1(S
1) = Z.

This concludes the example.
^

Remark 13 Consider S 1 ֒→ C as the unit circle. The loops ϕn above may

be realized as ϕn(t) = e2πint for t ∈ [0, 1]. Then the homotopy classes of

loops [ϕn] in π1(S
1) essentially count the number of times that each loop

“winds around" the origin 0 ∈ C. The connection with the winding number

of complex analysis should be obvious to those familiar with it.

The result of the previous example can be used to justify the following claim

about the fundamental group of the flat torus.

Example 14 π1(T
2) = Z2.

We now turn our attention to

Covering Spaces

Definition 15 Local homeomorphisms.

Definition 16 Coverings.
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Lemma 17 If π : M̃ → M is a covering, then each point is covered the same

number of times. That is, π−1(p) has the same number of elements for each

p ∈ M.

Proof Recommended Exercise.

Definition 18 Lifts.

Lemma 19 Let π : M̃ → M be a covering, p ∈ M, q ∈ π−1(p), and γ : [0, 1]→

M a curve with γ(0) = p. Then γ can be lifted to a curve γ̃ : [0, 1] → M̃ with

γ̃(0) = q, so that π ◦ γ̃ = γ. Moreover, γ̃ is uniquely determined by the choice

of q ∈ M̃.

Proof
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Lemma 20 Let π : M̃ → M be a covering, and Γ : [0, 1] × [0, 1] → M a

homotopy of paths γ0 := Γ(·, 0) and γ1 = Γ(·, 1) with fixed endpoints γ0(0) =

γ1(0) = p0 and γ0(1) = γ1(1) = p1. Let q0 ∈ π
−1(p0). The Γ can be lifted to

a homotopy Γ̃ : [0, 1] × [0, 1] → M̃ with initial point q0, so that π ◦ Γ̃ = Γ.

In particular, the lifted paths γ̃0 and γ̃1 have the same initial and terminal

points, and are homotopic in M̃.

Proof
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These lemmas can be used to prove

Theorem 21 Let π : M̃ → M be a covering, N a simply connected manifold,

and f : N → M a continuous map. Then there exists a continuous map

f̃ : N → M̃ with π ◦ f̃ = f .

Remark 21 This is a generalization of Lemma 7*.

Proof
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