## Riemann Surfaces Lecture 3

We begin today by considering the fundamental groups of the spheres and torus.

In groups of peers, discuss the following examples. Feel free to ask me any questions, but please discuss your questions with your group first.

**Example 1**  $S^n$  is simply connected for  $n \ge 2$ .

**Example 2**  $S^1$  is *not* simply connected. Compute the fundamental group of  $S^1$  as follows.

Let  $\pi: \mathbb{R} \to S^1: t \mapsto (\cos(2\pi t), \sin(2\pi t))$  map the real line onto  $S^1$  (considered as the unit circle in  $\mathbb{R}^2$ ). For  $n \in \mathbb{Z}$  let  $L_n: [0,1] \to \mathbb{R}: s \mapsto n \cdot s$ . This map, called left-translation by n, maps the interval [0,1] to the interval [0,n]. Now define a map  $\varphi_n: [0,1] \to S^1$  by  $\varphi_n = \pi \circ L_n$ .

Let  $p = (1,0) \in S^1$ , and define a function  $\Phi : \mathbb{Z} \to \pi_1(S^1,p)$  by  $\Phi(n) = [\varphi_n]$ , the homotopy class of  $\varphi_n$ . Recall that since  $S^1$  is connected,  $\pi_1(S^1,p) = \pi_1(S^1)$ .

**Goal**: Show that  $\Phi$  is an isomorphism of groups.

This can be done by proving the following statements.

**Lemma 3** Let  $\alpha : [0,1] \to \mathbb{R}$  be a path such that  $\alpha(0) = 0$  and  $\alpha(1) = n$ . Then  $[\pi \circ \alpha] = [\varphi_n] \in \pi_1(S^1)$ .

**Corollary 4** If  $\beta : [0,1] \to \mathbb{R}$  with  $\beta(0), \beta(1) \in \mathbb{Z}$  and  $\beta(1) - \beta(0) = n \in \mathbb{Z}$ , then  $[\pi \circ \beta] = [\varphi_n] \in \pi_1(S^1)$ .

**Proposition 5**  $\Phi$  is a homomorphism; *i.e.*,  $\Phi$  preserves group operations.

**Remark 6** The proofs of the \*-ed lemmas below (7 and 9) are a bit involved. At this moment, you should consider them as "well known" and use them to prove the propositions that follow. We'll actually prove versions of them each together in class later this week or early next week.

**Lemma 7\*** Let  $f:[0,1]\to S^1$  be a path in  $S^1$  with f(0)=f(1)=p. Then there exists a unique  $lift\ \widetilde{f}:[0,1]\to\mathbb{R}$  such that  $\pi\circ\widetilde{f}=f$  and  $\widetilde{f}(0)=0$ . Note: since  $\pi(\widetilde{f})(1)=p$ , then  $\widetilde{f}(1)\in\mathbb{Z}$ .

Use Lemma 7\* to prove:

**Proposition 8**  $\Phi$  is an epimorphism (surjective).

**Lemma 9\*** Suppose  $G:[0,1]\times[0,1]\to S^1$  is a homotopy of loops at p between a loop  $\gamma(s)=F(s,0)$  and the constant loop  $p(s)\equiv p$ . Then there exists a map  $\widetilde{F}:[0,1]\times[0,1]\to\mathbb{R}$  such that  $\pi\circ\widetilde{F}=F$ .

Remark 10 The previous lemma is an example of "Homotopy Lifting."

Use Lemma 9\* to prove:

**Proposition** 11  $\Phi$  is a monomorphism (injective).

Taking the three propositions together, you have proved

Theorem 12  $\pi_1(S^1) = \mathbb{Z}$ .

This concludes the example.

**Remark 13** Consider  $S^1 \hookrightarrow \mathbb{C}$  as the unit circle. The loops  $\varphi_n$  above may be realized as  $\varphi_n(t) = e^{2\pi i n t}$  for  $t \in [0,1]$ . Then the homotopy classes of loops  $[\varphi_n]$  in  $\pi_1(S^1)$  essentially count the number of times that each loop "winds around" the origin  $0 \in \mathbb{C}$ . The connection with the winding number of complex analysis should be obvious to those familiar with it.

 $\Diamond$ 

The result of the previous example can be used to justify the following claim about the fundamental group of the flat torus.

Example 14  $\pi_1(\mathbb{T}^2) = \mathbb{Z}^2$ .

We now turn our attention to

**Covering Spaces** 

**Definition 15** Local homeomorphisms.

**Definition 16** Coverings.

**Lemma 17** If  $\pi : \widetilde{M} \to M$  is a covering, then each point is covered the same number of times. That is,  $\pi^{-1}(p)$  has the same number of elements for each  $p \in M$ .

**Proof** Recommended Exercise.

Definition 18 Lifts.

**Lemma 19** Let  $\pi: \widetilde{M} \to M$  be a covering,  $p \in M$ ,  $q \in \pi^{-1}(p)$ , and  $\gamma: [0,1] \to M$  a curve with  $\gamma(0) = p$ . Then  $\gamma$  can be lifted to a curve  $\widetilde{\gamma}: [0,1] \to \widetilde{M}$  with  $\widetilde{\gamma}(0) = q$ , so that  $\pi \circ \widetilde{\gamma} = \gamma$ . Moreover,  $\widetilde{\gamma}$  is uniquely determined by the choice of  $q \in \widetilde{M}$ .

**Proof** 

**Lemma 20** Let  $\pi:\widetilde{M}\to M$  be a covering, and  $\Gamma:[0,1]\times[0,1]\to M$  a homotopy of paths  $\gamma_0:=\Gamma(\cdot,0)$  and  $\gamma_1=\Gamma(\cdot,1)$  with fixed endpoints  $\gamma_0(0)=\gamma_1(0)=p_0$  and  $\gamma_0(1)=\gamma_1(1)=p_1$ . Let  $q_0\in\pi^{-1}(p_0)$ . The  $\Gamma$  can be lifted to a homotopy  $\widetilde{\Gamma}:[0,1]\times[0,1]\to\widetilde{M}$  with initial point  $q_0$ , so that  $\pi\circ\widetilde{\Gamma}=\Gamma$ . In particular, the lifted paths  $\widetilde{\gamma}_0$  and  $\widetilde{\gamma}_1$  have the same initial and terminal points, and are homotopic in  $\widetilde{M}$ .

## **Proof**

These lemmas can be used to prove

**Theorem 21** Let  $\pi:\widetilde{M}\to M$  be a covering, N a simply connected manifold, and  $f:N\to M$  a continuous map. Then there exists a continuous map  $\widetilde{f}:N\to\widetilde{M}$  with  $\pi\circ\widetilde{f}=f$ .

Remark 21 This is a generalization of Lemma 7\*.

**Proof**