	Midterm Exam
Instructions : Answer all questions, showing as much work as necessary to prove that you understand your answer. You may use a single $8\frac{1}{2} \times 11$ in ² two-sided page of your own hand-written notes.	
in the sp	S points each] True or False? Write T if the statement is always true or F otherwise ace provided next to the question number. If you write F, use the space beneath the t to justify your answer.
1.	The fundamental group of the sphere is $\pi_1(S^2) = \{0\}.$
2.	Let $w_1, w_2 \in \mathbb{C}$ with $\frac{w_2}{w_1} \notin \mathbb{R}$, and $m, n \in \mathbb{Z}^+$ (in particular, $m, n \neq 0$). The torus $T_{m,n}^2$ generated by mw_1 and nw_2 is a universal covering of the torus T^2 generated by w_1 and w_2 .
3.	The torus T^2 can be endowed with a flat conformal metric.
4.	The Riemann sphere S^2 can be endowed with a flat conformal metric.
5.	Every geodesic on the torus T^2 is closed.

Name:____

Math 829F: Riemann Surfaces

Questions 6 through 12 are worth 10 points each.

6. Consider the statement: For a connected manifold M and distinct points $p, q \in M$, $\pi_1(M, p) \cong \pi_1(M, q)$. Describe the isomorphism used in the proof. (You don't need to prove it's an isomorphism.)

7. Let $I^2 \subset \mathbb{R}^2$ be a fundamental domain for the torus T^2 , with projection map $\pi: I^2 \to T^2$. Give an example of two curves in I^2 whose images in T^2 are *not* in the same homotopy class.

8. Let S be a surface endowed with a Riemannian metric. Prove that the exponential map $\exp_p: T_pS \to S$ is a local diffeomorphism from a neighborhood of $0 \in T_pS$ to a neighborhood of $p \in S$. [Hint: Compute the derivative at $0 \in T_pS$.]

9. Let $w_1, w_2 \in \mathbb{C}$ with $\frac{w_2}{w_1} \notin \mathbb{R}$. Let T^2 be the torus constructed by identifying $z \sim z + mw_1 + nw_2$, and C the cylinder constructed by identifying $z \sim z + kw_1$ for $z \in \mathbb{C}$, $m, n, k \in \mathbb{Z}$. As constructed, $\pi: C \to T^2$ is a covering. What is the corresponding group of covering transformations, H_{π} ?

10. Show that a non-constant holomorphic map $f: \mathbb{T}^2 \to \mathbb{T}^2$ between tori must be unramified.

11. Let $\Gamma < PSL(2,\mathbb{R})$ be a discrete group of isometries acting freely and properly discontinuously on (H,g_H) , such that the quotient $\Gamma \setminus H =: S$ is compact. Give an example of a closed geodesic in S. What is its length?

12. Let $\Gamma < PSL(2,\mathbb{R})$ be generated by a single hyperbolic transformation of H. Suppose that the generator γ fixes 0 and $P \neq \infty$ in ∂H . Sketch and describe a Dirichlet fundamental polygon for the action of Γ .