Riemann Surfaces
Homework 2 solutions

1. Let A be an R-algebra, and let Der(A) denote the space of derivations
of A. Show that (a) if D € Der(A) and k € R, then D(k) = 0; and () if
D1, Dy € Der(A), then their commutator [Dy,Ds] = D1Dy — D9D; is also in
Der(A).

Solution (a) Let a € A. On one hand, D(ka) = kD(a) by linearity. On the
other hand, D(ka) = D(k)a + kD(a) by the defining property of a derivation.
Thus kD(a) = D(k)a + kD(a) for all a € A implies that D(k) = 0.

(b) Let a,b € A and compute

[D1, D2] (ab) = Di(Dz(ab)) — Do(Di(ab))
= Di(D2(a)b + aD2(b)) — Da(Di(a@)b + aD1(D))
= D1(D2(a)) - b + Da(a) - Di(b) + D1(a) - D2(b) + a - D1(Do(b))
— (D2(D1(a)) - b + Di(a) - Da(b) + Da(a) - D1(b) + a - Da(D1(b)))
= Di(D2(a)) - b + a - Di(D2(b)) — D2(D1(a)) - b — a - D2(D1(b))
= [D1(D2(a)) — D2(Di(@)] - b + a - [D1(D2(b)) — D2(D1(D))]
= [D1, D2] (@) - b+ a - [Dy, D2] (b).

Thus [Dy, D] satisfies the defining property of a derivation. That [Dy, Do] is
linear follows easily from the linearity of D; and Ds. m|

2. Let g4 = A%(z)dzdZ be a conformal Riemannian metric on a Riemann
surface §. Show that the angle between two vectors x,y € T,S as measured
with respect to g, is exactly the angle between x and y determined by the dot
product on T,S regarded as R% How are the distances dg, and d,, related?

(Here dg,, is the Euclidean distance d(x,y), := 4/(x —y) - (x —y) in the vector
space T),S, and d, ) is defined analogously with respect to the inner product

g/l,p-)

Solution We first consider the distance d,(x,y), between tangent vectors



x,y € TpS. We have
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Now the angle between x and y in T, is given by
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Thus a conformal Riemannian metric preserves the measure of angles, but
not necessarily distances, with respect to the Euclidean metric. m|

3. Consider the torus T? as constructed in Chapter 1. Regard 7 : C — T? as
the universal covering with covering transformation group H, = Z2. Suppose
g1 = A%(z)dz dz is a conformal Riemannian metric on C for which each ¢ € H,
is an isometry. Then g, defines a conformal Riemannian metric on T?. Show
that the curvature K,([z]) = —Alog A([z]) satisfies

f K, =0.
T2

This justifies calling T? (as constructed) a flat torus.

Solution Choose w; = 1 and wy = i in the construction of T2, so that I2 is
a fundamental domain in C; that is, for every z € C there exists a point in
20 € I? such that 7(z) = 71(zp), whereas no two points in the interior of I? are
in the same equivalence class.



Now recall the definitions of curvature, Laplacian, and the area element
for a conformal Riemannian metric. In conformal local coordinates z = x + iy
regarded as coordinates in Euclidean R2, we have

Ky, = —A,log(),
1
Ay = EAE’

dA, = é/lzdz/\dz = A%dx Ady = 22 dAg.

In the last equality we usually suppress the wedge product and simply write
dAg = dx ANdy = dxdy, as in Calculus III.
Applying these definitions to the current situation, we have
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in local coordinates on I? ¢ R%2. Now Green’s theorem applies with Q =
—% logd and P = a% log 4, transforming the area integral to a path integral
along the positively-oriented boundary,

fK,l—f Pdx+ Qdy. @

The assumption that g,, hence also A, is Hy-invariant on C now implies that
P and Q are Hy-invariant. In particular, the values of P at m-equivalent points
along OI? coincide. The same is true for Q. Opposite sides are oppositely-
oriented with respect to the path integral (1). Thus this integral is O. m|



