Riemann Surfaces Homework 2 solutions

1. Let A be an \mathbb{R} -algebra, and let Der(A) denote the space of derivations of A. Show that (a) if $D \in Der(A)$ and $k \in \mathbb{R}$, then D(k) = 0; and (b) if $D_1, D_2 \in Der(A)$, then their commutator $[D_1, D_2] = D_1D_2 - D_2D_1$ is also in Der(A).

Solution (a) Let $a \in A$. On one hand, D(ka) = kD(a) by linearity. On the other hand, D(ka) = D(k)a + kD(a) by the defining property of a derivation. Thus kD(a) = D(k)a + kD(a) for all $a \in A$ implies that D(k) = 0.

(b) Let $a, b \in A$ and compute

$$\begin{split} [D_1, D_2] (ab) &= D_1(D_2(ab)) - D_2(D_1(ab)) \\ &= D_1(D_2(a)b + aD_2(b)) - D_2(D_1(a)b + aD_1(b)) \\ &= D_1(D_2(a)) \cdot b + D_2(a) \cdot D_1(b) + D_1(a) \cdot D_2(b) + a \cdot D_1(D_2(b)) \\ &- (D_2(D_1(a)) \cdot b + D_1(a) \cdot D_2(b) + D_2(a) \cdot D_1(b) + a \cdot D_2(D_1(b))) \\ &= D_1(D_2(a)) \cdot b + a \cdot D_1(D_2(b)) - D_2(D_1(a)) \cdot b - a \cdot D_2(D_1(b)) \\ &= [D_1(D_2(a)) - D_2(D_1(a))] \cdot b + a \cdot [D_1(D_2(b)) - D_2(D_1(b))] \\ &= [D_1, D_2] (a) \cdot b + a \cdot [D_1, D_2] (b). \end{split}$$

Thus $[D_1, D_2]$ satisfies the defining property of a derivation. That $[D_1, D_2]$ is linear follows easily from the linearity of D_1 and D_2 .

2. Let $g_{\lambda} = \lambda^2(z)dz \, d\overline{z}$ be a conformal Riemannian metric on a Riemann surface *S*. Show that the angle between two vectors $x, y \in T_pS$ as measured with respect to g_{λ} is exactly the angle between *x* and *y* determined by the dot product on T_pS regarded as \mathbb{R}^2 . How are the distances $d_{E,p}$ and $d_{\lambda,p}$ related? (Here $d_{E,p}$ is the Euclidean distance $d(x, y)_p := \sqrt{(x - y) \cdot (x - y)}$ in the vector space T_pS , and $d_{\lambda,p}$ is defined analogously with respect to the inner product $g_{\lambda,p}$.)

Solution We first consider the distance $d_{\lambda}(x, y)_p$ between tangent vectors

 $x, y \in T_P S$. We have

$$d_{\lambda}(x, y)_{p} = ||x - y||_{\lambda, p}$$

$$= \sqrt{g_{\lambda}(x - y, x - y)_{p}}$$

$$= \sqrt{\lambda^{2}(p) dz d\overline{z}(x - y, x - y)}$$

$$= \sqrt{\lambda^{2}(p) ||x - y||_{E}^{2}}$$

$$= \lambda(p) ||x - y||_{E, p}$$

$$= \lambda(p) d_{E}(x, y)_{p}.$$

Now the angle between x and y in T_pS is given by

$$\theta_{\lambda}(x, y)_{p} = \frac{g_{\lambda}(x, y)_{p}}{\|x\|_{\lambda, p} \|y\|_{\lambda, p}}$$
$$= \frac{\lambda^{2}(p)g_{E}(x, y)_{p}}{\lambda(p) \|x\|_{E, p} \lambda(p) \|y\|_{E, p}}$$
$$= \frac{g_{E}(x, y)_{p}}{\|x\|_{E, p} \|y\|_{E, p}}$$
$$= \theta_{E}(x, y)_{p}.$$

Thus a conformal Riemannian metric preserves the measure of angles, but not necessarily distances, with respect to the Euclidean metric. $\hfill\square$

3. Consider the torus \mathbb{T}^2 as constructed in Chapter 1. Regard $\pi : \mathbb{C} \to \mathbb{T}^2$ as the universal covering with covering transformation group $H_{\pi} \cong \mathbb{Z}^2$. Suppose $g_{\lambda} = \lambda^2(z) dz d\bar{z}$ is a conformal Riemannian metric on \mathbb{C} for which each $\varphi \in H_{\pi}$ is an isometry. Then g_{λ} defines a conformal Riemannian metric on \mathbb{T}^2 . Show that the curvature $K_{\lambda}([z]) = -\Delta \log \lambda([z])$ satisfies

$$\int_{\mathbb{T}^2} K_\lambda = 0.$$

This justifies calling \mathbb{T}^2 (as constructed) a *flat* torus.

Solution Choose $w_1 = 1$ and $w_2 = i$ in the construction of \mathbb{T}^2 , so that I^2 is a fundamental domain in \mathbb{C} ; that is, for every $z \in \mathbb{C}$ there exists a point in $z_0 \in I^2$ such that $\pi(z) = \pi(z_0)$, whereas no two points in the interior of I^2 are in the same equivalence class.

Now recall the definitions of curvature, Laplacian, and the area element for a conformal Riemannian metric. In conformal local coordinates z = x + iyregarded as coordinates in Euclidean \mathbb{R}^2 , we have

$$K_{\lambda} = -\Delta_{\lambda} \log(\lambda),$$

$$\Delta_{\lambda} = \frac{1}{\lambda^{2}} \Delta_{E},$$

$$dA_{\lambda} = \frac{i}{2} \lambda^{2} dz \wedge d\overline{z} = \lambda^{2} dx \wedge dy = \lambda^{2} dA_{E}.$$

In the last equality we usually suppress the wedge product and simply write $dA_E = dx \wedge dy = dx dy$, as in Calculus III.

Applying these definitions to the current situation, we have

$$\int_{\mathbb{T}^2} K_{\lambda} = \int_{\mathbb{T}^2} K_{\lambda} dA_{\lambda}$$
$$= \iint_{I^2} -\frac{1}{\lambda^2} \Delta_E \log(\lambda) \lambda^2 dA_E$$
$$= \iint_{I^2} \left(-\frac{\partial^2}{\partial x^2} \log(\lambda) - \frac{\partial^2}{\partial y^2} \log(\lambda) \right) dA_E$$

in local coordinates on $I^2 \subset \mathbb{R}^2$. Now Green's theorem applies with $Q = -\frac{\partial}{\partial x} \log \lambda$ and $P = \frac{\partial}{\partial y} \log \lambda$, transforming the area integral to a path integral along the positively-oriented boundary,

$$\int_{\mathbb{T}^2} K_{\lambda} = \int_{\partial I^2} P \, dx + Q \, dy. \tag{1}$$

The assumption that g_{λ} , hence also λ , is H_{π} -invariant on \mathbb{C} now implies that P and Q are H_{π} -invariant. In particular, the values of P at π -equivalent points along ∂I^2 coincide. The same is true for Q. Opposite sides are oppositely-oriented with respect to the path integral (1). Thus this integral is 0.