
Riemann Surfaces
Homework 2 solutions
1. Let A be an R-algebra, and let Der(A) denote the space of derivations
of A. Show that (a) if D ∈ Der(A) and k ∈ R, then D(k) = 0; and (b) if
D1,D2 ∈ Der(A), then their commutator [D1,D2] = D1D2 − D2D1 is also in
Der(A).

Solution (a) Let a ∈ A. On one hand, D(ka) = kD(a) by linearity. On the
other hand, D(ka) = D(k)a + kD(a) by the defining property of a derivation.
Thus kD(a) = D(k)a + kD(a) for all a ∈ A implies that D(k) = 0.

(b) Let a, b ∈ A and compute

[D1,D2] (ab) = D1(D2(ab)) − D2(D1(ab))

= D1(D2(a)b + aD2(b)) − D2(D1(a)b + aD1(b))

= D1(D2(a)) · b + D2(a) · D1(b) + D1(a) · D2(b) + a · D1(D2(b))

− (D2(D1(a)) · b + D1(a) · D2(b) + D2(a) · D1(b) + a · D2(D1(b)))

= D1(D2(a)) · b + a · D1(D2(b)) − D2(D1(a)) · b − a · D2(D1(b))

= [D1(D2(a)) − D2(D1(a))] · b + a · [D1(D2(b)) − D2(D1(b))]

= [D1,D2] (a) · b + a · [D1,D2] (b).

Thus [D1,D2] satisfies the defining property of a derivation. That [D1,D2] is
linear follows easily from the linearity of D1 and D2. �

2. Let gλ = λ2(z)dz dz be a conformal Riemannian metric on a Riemann
surface S . Show that the angle between two vectors x, y ∈ TpS as measured
with respect to gλ is exactly the angle between x and y determined by the dot
product on TpS regarded as R2. How are the distances dE,p and dλ,p related?
(Here dE,p is the Euclidean distance d(x, y)p :=

√
(x − y) · (x − y) in the vector

space TpS , and dλ,p is defined analogously with respect to the inner product
gλ,p.)

Solution We first consider the distance dλ(x, y)p between tangent vectors
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x, y ∈ TPS . We have

dλ(x, y)p = ‖x − y‖λ,p

=

√
gλ(x − y, x − y)p

=

√
λ2(p) dz dz(x − y, x − y)

=

√
λ2(p) ‖x − y‖2E

= λ(p) ‖x − y‖E,p
= λ(p)dE(x, y)p.

Now the angle between x and y in TpS is given by

θλ(x, y)p =
gλ(x, y)p

‖x‖λ,p ‖y‖λ,p

=
λ2(p)gE(x, y)p

λ(p) ‖x‖E,p λ(p) ‖y‖E,p

=
gE(x, y)p

‖x‖E,p ‖y‖E,p
= θE(x, y)p.

Thus a conformal Riemannian metric preserves the measure of angles, but
not necessarily distances, with respect to the Euclidean metric. �

3. Consider the torus T2 as constructed in Chapter 1. Regard π : C → T2 as
the universal covering with covering transformation group Hπ � Z

2. Suppose
gλ = λ2(z)dz dz is a conformal Riemannian metric on C for which each ϕ ∈ Hπ

is an isometry. Then gλ defines a conformal Riemannian metric on T2. Show
that the curvature Kλ([z]) = −∆ log λ([z]) satisfies∫

T2
Kλ = 0.

This justifies calling T2 (as constructed) a flat torus.

Solution Choose w1 = 1 and w2 = i in the construction of T2, so that I2 is
a fundamental domain in C; that is, for every z ∈ C there exists a point in
z0 ∈ I2 such that π(z) = π(z0), whereas no two points in the interior of I2 are
in the same equivalence class.
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Now recall the definitions of curvature, Laplacian, and the area element
for a conformal Riemannian metric. In conformal local coordinates z = x + iy
regarded as coordinates in Euclidean R2, we have

Kλ = −∆λ log(λ),

∆λ =
1
λ2

∆E ,

dAλ =
i
2
λ2 dz ∧ dz = λ2 dx ∧ dy = λ2 dAE .

In the last equality we usually suppress the wedge product and simply write
dAE = dx ∧ dy = dx dy, as in Calculus III.

Applying these definitions to the current situation, we have∫
T2

Kλ =

∫
T2

Kλ dAλ

=

∫∫
I2
−

1
λ2

∆E log(λ) λ2 dAE

=

∫∫
I2

(
−
∂2

∂x2
log(λ) −

∂2

∂y2
log(λ)

)
dAE

in local coordinates on I2 ⊂ R2. Now Green’s theorem applies with Q =

− ∂
∂x log λ and P = ∂

∂y log λ, transforming the area integral to a path integral
along the positively-oriented boundary,∫

T2
Kλ =

∫
∂I2

P dx + Q dy. (1)

The assumption that gλ, hence also λ, is Hπ-invariant on C now implies that
P and Q are Hπ-invariant. In particular, the values of P at π-equivalent points
along ∂I2 coincide. The same is true for Q. Opposite sides are oppositely-
oriented with respect to the path integral (1). Thus this integral is 0. �
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