
Riemann Surfaces
Homework 1 solutions
1. Construct a 3-dimensional torus T3 by defining an appropriate equivalence
relation on R3, following the construction of T2 in the book. Be sure to prove
that the equivalence relation you define is indeed an equivalence relation,
and to provide the charts. Give an example of what a transition function
ϕαβ : R3 → R3 would look like. You do not need to prove that the transition
functions are smooth (although it should be obvious).

Solution Choose w1,w2,w3 ∈ R
3 linearly independent, and define a relation

on R3 by x1 ∼ x2 if and only if there exists (m, n, k) ∈ Z3 such that

x2 − x1 = mw1 + nw2 + kw3.

For every x ∈ R3, x − x = 0 = 0w1 + 0w2 + 0w3, so ∼ is reflexive. Suppose
x1 ∼ x2 so that there exists (m, n, k) ∈ Z3 such that x2 − x1 = mw1 + nw2 + kw3.
Then x1 − x2 = −mw1 − nw2 − kw3 with (−m,−n,−k) ∈ Z3 and x2 ∼ x1. Thus
∼ is symmetric. Now suppose x1, x2, x3 ∈ R3 with x1 ∼ x2 and x2 ∼ x3. Then
there exist (m1, n1, k1), (m2, n2, k2) ∈ Z3 such that x2 − x1 = m1w1 + n1w2 + k1w3
and x3 − x2 = m2w1 + n2w2 + k2w3. Then

x3 − x1 = (m1 + m2)w1 + (n1 + n2)w2 + (k1 + k2)w3

with (m1 + m2, n1 + n2, k1 + k2) ∈ Z3, so x1 ∼ x3 and ∼ is transitive. Therefore
∼ is an equivalence relation.

Let π : R3 → R3/ ∼: x 7→ [x]∼ be the projection defined by ∼, and define
π(R3) = T3. Define charts on T3 as follows. Let ∆α be a connected open set
in R3 for which no two points are equivalent with respect to ∼ and define
Uα = π(∆α). Then π|∆α is a homeomorphism; put ϕα := (π|∆a)−1. The pair
(Uα, ϕα) define a chart on T3.

To understand the transition functions, consider two such charts (Uα, ϕα)
and (Uβ, ϕβ) with Uαβ := Uα∩Uβ , ∅. Any point x ∈ Uαβ has local coordinates

ϕα(x) = y + m1w1 + n1w2 + k1w3, and
ϕβ(x) = y + m2w1 + n2w2 + k2w3

for some y ∈ R3 and (m, n, k)i ∈ Z
3, i = 1, 2. The transition function is then

given by
ϕαβ(x) = x + (m2 − m1)w1 + (n2 − n1)w2 + (k2 − k1)w3
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for all x ∈ ϕa(Uαβ). This is just translation by the fixed vector (m2 − m1)w1 +

(n2 − n1)w2 + (k2 − k1)w3 in R3 and is clearly smooth. �

2. Prove that the lift f̃ : N → M̃ of theorem 1.3.1 is continuous.

Solution We begin by recalling how f̃ was defined. Choose an arbitrary
point y0 ∈ N. For y ∈ N, choose a path γ : I → N with γ(0) = y0 and γ(1) = y.
Now g := f ◦ γ : I → M is a path which can be lifted to M̃ by Lemma 1.3.2.
Define f̃ (y) = g̃(1). By Lemma 1.3.3 and since N is simply connected, the
value f̃ (y) is independent of the choice of path γ.

Now let Σ = {y ∈ N | f̃ is continuous at y}. Suppose y ∈ Σ and choose a
neighborhood V of f̃ (y) such that π|V is a homeomorphism onto U := π(V) ⊂
M. Write ϕ := (π|V )−1. Now since f is continuous, there exists an open
neighborhood W 3 y in N such that f (W) ⊂ U, and f̃ |W = ϕ ◦ f . Since f̃ is
the composition of continuous functions, it is continuous on W . Therefore Σ

is open.
Now let (yn) ⊂ Σ with yn → y ∈ N. Let U be a neighborhood of f (y) ∈ M

such that π−1 is a homeomorphism to each of its connected components. Since
f is continuous, there exists a neighborhood W of y with f (W) ⊂ U, and an
integer n0 such that yn ∈ W for n ≥ n0. Now let V denote the connected
component of π−1( f (W)) containing f̃ (yn0) in M̃, and write ϕ = (π|V )−1, as
before. Again, we have that f̃ |W = ϕ ◦ f is a composition of continuous
functions. Thus f̃ is continuous on W, and in particular at y. Therefore Σ is
closed.

By Lemma 1.3.2, if γ : I → N is any path, then ( f ◦ γ) can be lifted to
( f̃ ◦ γ). Therefore Σ is nonempty and f̃ is continuous on N. �

3. Prove Corollary 1.3.1: Let π : M̃ → M be a covering, and γ : I → M a
null-homotopic loop in M. Then a lift γ̃ : I → M̃ is closed an null-homotopic in
M̃.

Solution Let Γ : I2 → M be the homotopy between γ = Γ(·, 0) and p =

γ(0) = Γ(·, 1). By Lemma 1.3.3 (not 1.3.2!), this lifts to a homotopy Γ̃ : I2 → M̃
between γ̃ := Γ̃(·, 0) and Γ̃(·, 1) ≡ q ∈ π−1(p). �
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