Riemann Surfaces Homework 1 solutions

1. Construct a 3-dimensional torus \mathbb{T}^3 by defining an appropriate equivalence relation on \mathbb{R}^3 , following the construction of \mathbb{T}^2 in the book. Be sure to prove that the equivalence relation you define is indeed an equivalence relation, and to provide the charts. Give an example of what a transition function $\varphi_{\alpha\beta} : \mathbb{R}^3 \to \mathbb{R}^3$ would look like. You do not need to prove that the transition function functions are smooth (although it should be obvious).

Solution Choose $w_1, w_2, w_3 \in \mathbb{R}^3$ linearly independent, and define a relation on \mathbb{R}^3 by $x_1 \sim x_2$ if and only if there exists $(m, n, k) \in \mathbb{Z}^3$ such that

$$x_2 - x_1 = mw_1 + nw_2 + kw_3.$$

For every $x \in \mathbb{R}^3$, $x - x = \mathbf{0} = 0w_1 + 0w_2 + 0w_3$, so ~ is reflexive. Suppose $x_1 \sim x_2$ so that there exists $(m, n, k) \in \mathbb{Z}^3$ such that $x_2 - x_1 = mw_1 + nw_2 + kw_3$. Then $x_1 - x_2 = -mw_1 - nw_2 - kw_3$ with $(-m, -n, -k) \in \mathbb{Z}^3$ and $x_2 \sim x_1$. Thus ~ is symmetric. Now suppose $x_1, x_2, x_3 \in \mathbb{R}^3$ with $x_1 \sim x_2$ and $x_2 \sim x_3$. Then there exist $(m_1, n_1, k_1), (m_2, n_2, k_2) \in \mathbb{Z}^3$ such that $x_2 - x_1 = m_1w_1 + n_1w_2 + k_1w_3$ and $x_3 - x_2 = m_2w_1 + n_2w_2 + k_2w_3$. Then

$$x_3 - x_1 = (m_1 + m_2)w_1 + (n_1 + n_2)w_2 + (k_1 + k_2)w_3$$

with $(m_1 + m_2, n_1 + n_2, k_1 + k_2) \in \mathbb{Z}^3$, so $x_1 \sim x_3$ and \sim is transitive. Therefore \sim is an equivalence relation.

Let $\pi : \mathbb{R}^3 \to \mathbb{R}^3 / \sim : x \mapsto [x]_{\sim}$ be the projection defined by \sim , and define $\pi(\mathbb{R}^3) = \mathbb{T}^3$. Define charts on \mathbb{T}^3 as follows. Let Δ_{α} be a connected open set in \mathbb{R}^3 for which no two points are equivalent with respect to \sim and define $U_{\alpha} = \pi(\Delta_{\alpha})$. Then $\pi|_{\Delta_{\alpha}}$ is a homeomorphism; put $\varphi_{\alpha} := (\pi|_{\Delta_{\alpha}})^{-1}$. The pair $(U_{\alpha}, \varphi_{\alpha})$ define a chart on \mathbb{T}^3 .

To understand the transition functions, consider two such charts $(U_{\alpha}, \varphi_{\alpha})$ and $(U_{\beta}, \varphi_{\beta})$ with $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset$. Any point $x \in U_{\alpha\beta}$ has local coordinates

$$\varphi_{\alpha}(x) = y + m_1 w_1 + n_1 w_2 + k_1 w_3$$
, and
 $\varphi_{\beta}(x) = y + m_2 w_1 + n_2 w_2 + k_2 w_3$

for some $y \in \mathbb{R}^3$ and $(m, n, k)_i \in \mathbb{Z}^3$, i = 1, 2. The transition function is then given by

$$\varphi_{\alpha\beta}(x) = x + (m_2 - m_1)w_1 + (n_2 - n_1)w_2 + (k_2 - k_1)w_3$$

for all $x \in \varphi_a(U_{\alpha\beta})$. This is just translation by the fixed vector $(m_2 - m_1)w_1 + (n_2 - n_1)w_2 + (k_2 - k_1)w_3$ in \mathbb{R}^3 and is clearly smooth.

2. Prove that the lift $\tilde{f}: N \to \tilde{M}$ of theorem 1.3.1 is continuous.

Solution We begin by recalling how \tilde{f} was defined. Choose an arbitrary point $y_0 \in N$. For $y \in N$, choose a path $\gamma : I \to N$ with $\gamma(0) = y_0$ and $\gamma(1) = y$. Now $g := f \circ \gamma : I \to M$ is a path which can be lifted to \tilde{M} by Lemma 1.3.2. Define $\tilde{f}(y) = \tilde{g}(1)$. By Lemma 1.3.3 and since N is simply connected, the value $\tilde{f}(y)$ is independent of the choice of path γ .

Now let $\Sigma = \{y \in N \mid \tilde{f} \text{ is continuous at } y\}$. Suppose $y \in \Sigma$ and choose a neighborhood V of $\tilde{f}(y)$ such that $\pi|_V$ is a homeomorphism onto $U := \pi(V) \subset M$. Write $\varphi := (\pi|_V)^{-1}$. Now since f is continuous, there exists an open neighborhood $W \ni y$ in N such that $f(W) \subset U$, and $\tilde{f}|_W = \varphi \circ f$. Since \tilde{f} is the composition of continuous functions, it is continuous on W. Therefore Σ is open.

Now let $(y_n) \subset \Sigma$ with $y_n \to y \in N$. Let U be a neighborhood of $f(y) \in M$ such that π^{-1} is a homeomorphism to each of its connected components. Since f is continuous, there exists a neighborhood W of y with $f(W) \subset U$, and an integer n_0 such that $y_n \in W$ for $n \ge n_0$. Now let V denote the connected component of $\pi^{-1}(f(W))$ containing $\tilde{f}(y_{n_0})$ in \tilde{M} , and write $\varphi = (\pi|_V)^{-1}$, as before. Again, we have that $\tilde{f}|_W = \varphi \circ f$ is a composition of continuous functions. Thus \tilde{f} is continuous on W, and in particular at y. Therefore Σ is closed.

By Lemma 1.3.2, if $\gamma : I \to N$ is any path, then $(f \circ \gamma)$ can be lifted to $(\tilde{f} \circ \gamma)$. Therefore Σ is nonempty and \tilde{f} is continuous on N.

3. Prove Corollary 1.3.1: Let $\pi : \widetilde{M} \to M$ be a covering, and $\gamma : I \to M$ a null-homotopic loop in M. Then a lift $\widetilde{\gamma} : I \to \widetilde{M}$ is closed an null-homotopic in \widetilde{M} .

Solution Let $\Gamma : I^2 \to M$ be the homotopy between $\gamma = \Gamma(\cdot, 0)$ and $p = \gamma(0) = \Gamma(\cdot, 1)$. By Lemma 1.3.3 (not 1.3.2!), this lifts to a homotopy $\widetilde{\Gamma} : I^2 \to \widetilde{M}$ between $\widetilde{\gamma} := \widetilde{\Gamma}(\cdot, 0)$ and $\widetilde{\Gamma}(\cdot, 1) \equiv q \in \pi^{-1}(p)$.