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Preface

This course is designed for a variety of students: those majoring or minoring in
mathematics, secondary math-ed majors, and any student who wishes to further
their knowledge of geometry beyond what they learned in high school. These
notes have been written because I have not found a current book that I like for
this course. I have written these notes to use until an acceptable book appears.

To the Student

The typical equipment for studying geometry are: pencil, paper, straightedge
and compass. The study of geometry requires drawing many figures to illustrate
and help understand the problem at hand, so a good compass and straightedge
is essential. When reading these notes, the student should carefully go through
each definition, theorem and proof to make sure they understand what is being
said or done.

Working exercises is an essential requirement for the understanding of any
course in mathematics. You should work as many exercises as possible beyond
those assigned by the instructor. An exercise is not completed until the student
goes back through the exercise and understands what was needed and used to
obtain the solution. I call these the “tools of the trade.” By working exercises,
we build up a tool box of tools that can be used to solve problems we encounter
later. Success in any mathematics course is measured by how full your tool box
is.

Please let the author of these notes know of any errors you may find. I can
be reached by email at either of the following addresses:
richardson@math.wichita.edu or william.richardson@wichita.edu

WHR
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Chapter 1

Euclid and Hilbert

1.1 Euclid - The Formal Beginning

The following material was taken from a translation of Euclid’s Elements by Sir
Thomas L. Heath. (Euclid the Thirteen Books of The Elements Translated with
Introduction and Commentary, Vol 1, Second edition by Sir Thomas L. Heath,
Dover Publications, 1956). This work (three volumes in all) not only contains
a translation of Euclid but also a large amount of historical and mathematical
commentary by Heath. We can see how Euclid formalized the treatment of
geometry by starting with a set of definitions and postulates. From a modern
viewpoint, his definitions certainly lack clarity.

BOOK I

DEFINITIONS

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on
itself.

8. A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie on a straight line.

3



4 CHAPTER 1. EUCLID AND HILBERT

9. And when the lines containing the angle are straight, the angle is called
rectilinear.

10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight
line standing on the other is called a perpendicular.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
are equal to one another;

16. And the point is called the center of the circle.

17. A diameter of a circle is any straight line drawn through the center and
terminated in both directions by the circumference of the circle, and such
a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference
cut off by it. And the center of the semicircle is the same as that of the
circle.

19. Rectilinear figures are those which are contained by straight lines, trilateral
figures being those contained by three, quadrilaterals those contained by
four, and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides
equal, an isosceles triangle that which has two of its sides alone equal, and
a scalene triangle that which has its three sides unequal.

21. Further of trilateral figure, a right-angled triangle is that which has a right
angle, an obtuse-angled triangle that which has an obtuse angle, and an
acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is right-angled but not equilateral; a
rhombus that which is equilateral but not right-angled; and a rhomboid
that which has its opposite sides and angles equal to one another but is
neither equilateral nor right- angled. And let quadrilaterals other than
these be called trapezia.

23. Parallel straight lines are straight lines which, being in the same plane and
being produced indefinitely in both directions, do not meet one another
in either direction.
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POSTULATES

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which are the angles less than
the two right angles.

COMMON NOTIONS (Axioms)

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

BOOK I. PROPOSITIONS

Proposition 1.

On a given straight line to construct an equilateral triangle.

Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight line

AB.
With center A and distance AB let the circle BCD be described; [Post. 3]

again with center B and distance BA let circle ACE be described; [Post. 3]
and from point C, in which the circles cut one another, to the points A,B let
the straight lines CA,CB be joined. [Post. 1]

Now, since the point A is the center of the circle CDB, AC is equal to AB.
[Def. 15]

Again, since the point B is the center of circle CAE, BC is equal to BA.
[Def. 15]
But CA was also proved equal to AB; therefore each of the straight lines CA,CB
is equal to AB.
And things which are equal to the same thing are also equal to one another;
[C.N. 1]
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therefore CA is also equal to CB.
Therefore the three straight lines CA,AB,BC are equal to one another.
Therefore the triangle ABC is equilateral; [Def. 20]

and it has been constructed on the given finite line AB

(Being) what it was required to do.

Figure 1.1.1: Proposition 1

Proposition 2.

To place at a given point (as an extremity) a straight line equal to a given straight
line.

Let A be the given point, and let BC the given straight line. Thus it is
required to place at the point A (as an extremity) a straight line equal to the
given straight line BC

From the point A to the point B let the straight line AB be joined; [Post.
1]
and on it let the equilateral triangle DAB be constructed. [Prop. 1]

Let straight lines AE, BF be produced in a straight line with DA, DB;
[Post. 2]
with center B and distance BC let the circle CGH be described; [Post. 3]
and again with center D and distance DG let circle GKL be described. [Post. 3]

Then, since the point B is the center of the circle CGH,

BC is equal to BG.

Again, since the point D is the center of the circle GKL

DL is equal to DG.
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And in these DA is equal to DB; therefore the remainder AL is equal to the
remainder BG. [C.N. 3]
But BC was proved to be equal to BG; therefore each of the straight lines
AL, BC is equal to BG and things which are equal to the same thing are also
equal to one another; [C.N. 1]
therefore AL is also equal to BC.

Therefore at the given point A the straight line AL is placed equal to the
given straight line BC.

(Being) what it was required to do.

Figure 1.1.2: Proposition 2

Proposition 3.

Given two unequal straight lines, to cut off from the greater a straight line equal
to the less.

Let AB, C be the two given unequal straight lines, and let AB be the greater
of them.

Thus it is required to cut off from AB the greater a straight line equal to C
the less.

At the point A let AD be placed equal to the straight line C; [Prop. 2]
and with center A and distance AD let the circle DEF be described. [Post. 3]
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Now since the point A is the center of the circle DEF ,

AE is equal to AD [Def. 15].

But C is also equal to AD. Therefore each of the straight lines AE, C is equal
to AD; so that AE is also equal to C. [C.N. 1]

Therefore, given the two straight lines AB, C, from AB the greater AE has
been cut off equal to C the less.

(Being) what it was required to do.

Figure 1.1.3: Proposition 3

The above figures are as they appeared in Euclid’s work. His figures were
merely illustrations for the propositions. Often much of the actual construction
was not included; only the lines and circles important in the proof were drawn.
On the next page is the complete construction for Proposition 3.

Exercises

1.1.1. Given three coplanar points A, B, C. Use Proposition 2 to construct a
circle with center at C and radius AB.

1.1.2. Repeat the construction in Figure 1.1.4 and explain the purpose and
reason for all steps of the construction.

1.1.3. Assume you have only a collapsing compass. Given points A, B, C, D,
with this compass only, construct the points of intersection of the circle with
center C and radius CD and the line on AB.
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Figure 1.1.4: Proposition 3 - Complete Construction

Historical Note.

Euclid was born about 325 BCE and died about 265 BCE. Very little is known of
his life except that he was a Greek mathematician who taught at Alexandria in
Egypt and is best known for his work on geometry: The Elements. Actually,The
Elements contained much more than just geometry; however, it is the geometry
for which Euclid is best known. Even the portions of The Elements devoted
to the theory of numbers is presented in a geometric setting. Euclid used
the writings of many mathematicians before him and contemporary to him to
create The Elements. He tried to formalize the mathematics known at the
time. He had the advantage of working in Alexandria, which afforded him
the vast resources of the Library at Alexandria. Euclid’s work influenced the
development of mathematics for more than 2000 years.
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1.2 Hilbert - Revising Euclid

David Hilbert (1862-1943) was a German mathematician of great renown. Among
his many contributions to mathematics was his version of the axioms of Eu-
clidean geometry. A systematic study of these axioms led Hilbert to propose a
revised set of axioms, or postulates. His book, Grundlagen der Geometrie, was
published in 1899 and put geometry in a formal axiomatic setting. This book
was a major influence in promoting the axiomatic approach to mathematics
which has been one of the major characteristics of the subject throughout the
20th century.

Because of his reputation as being possibly the leading mathematician of the
time, Hilbert was asked to address the Second International Congress of Mathe-
maticians in Paris at the turn of the 20th century and give his prediction of the
problems that would attract the attention of mathematicians in the 20th cen-
tury. (This was probably a self-fulfilling prophecy, since if Hilbert considered a
problem important, it must be important.) The resulting 23 soon-to-be-famous
problems contained in his speech, The Problems of Mathematics, challenged
(and continue to challenge) mathematicians to solve some very fundamental
questions in mathematics.

Hilbert’s Postulates for Plane Geometry1

PRIMITIVE TERMS

point, line, on, between, congruent

GROUP I: POSTULATES OF CONNECTION

I-1. There is one and only one line passing through any two given distinct
points.

I-2. Every line contains at least two distinct points, and for any given line
there is at least one point not on the line.

GROUP II: POSTULATES OF ORDER

II-1. If point C is between points A and B, then A, B, C are all on the same
line, and C is between B and A, and B is not between C and A, and A is
not between C and B.

II-2. For any two distinct points A and B there is always a point C that is
between A and B, and a point D that is such that B is between A and D.

Definition 1.2.1. By the segment AB is meant the points A and B and all
points that are between A and B. Points A and B are called the end points of
the segment. A point C is said to be on the segment AB if it is A or B or some
point between A and B.

1Material taken from A Survey of Geometry, Revised Edition, Howard Eves, Allyn and
Bacon, 1972.
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Definition 1.2.2. Two lines, a line and a segment, or two segments, are said
to intersect if there is a point that is on both of them.

Definition 1.2.3. Let A, B, C be three points not on the same line. Then by
the triangle ABC is meant the three segments AB, BC, CA. The segments AB,
BC, CA are called the sides of the triangle, and the points A, B, C are called
the vertices of the triangle.

II-3. (Pasch’s Postulate) A line that intersects one side of a triangle but does
not pass through any of the vertices of the triangle must also intersect
another side of the triangle.

GROUP III: POSTULATES OF CONGRUENCE

III-1. If A and B are distinct points and if A′ is a point on a line m, then there
are two and only two distinct points B′ and B′′ on m such that the pair
of points A′, B′ is congruent to the pair A,B and the pair of points A′, B′′

is congruent to the pair A,B; moreover, A′ is between B′ and B′′.

III-2. If two pairs of points are congruent to the same pair of points, then they
are congruent to each other.

III-3. If point C is between points A and B and point C ′ is between points A′

and B′, and if the pair of points A,C is congruent to the pair A′, C ′, and
the pair of points C,B is congruent to the pair C ′, B′, then the pair of
points A,B is congruent to the pair A′, B′.

Definition 1.2.4. Two segments are said to be congruent if the end points of
the segments are congruent pairs of points.

Definition 1.2.5. By the ray AB is meant the set of all points consisting of
those that are between A and B, the point B itself, and all points C such that B
is between A and C. The ray AB is said to emanate from point A.

Theorem 1.2.1. If B′ is any point on the ray AB, then the rays AB′ and AB
are identical.

Definition 1.2.6. By an angle is meant a point (called the vertex of the angle)
and two rays (called the sides of the angle) emanating from the point. By virtue
of the above theorem, if the vertex of the angle is point A and if B and C are any
two points other than A on the two sides of the angle, we may unambiguously
speak of the angle BAC (or CAB).

Definition 1.2.7. If ABC is a triangle, then the three angles BAC, CBA, ACB
are called the angles of the triangle. Angle BAC is said to be included by the
sides AB and AC of the triangle.

III-4. If BAC is an angle whose sides do not lie in the same line, and if A′ and
B′ are two distinct points, then there are two and only two distinct rays,
A′C ′ and A′C ′′, such that angle B′A′C ′ is congruent to angle BAC and



12 CHAPTER 1. EUCLID AND HILBERT

angle B′A′C ′′ is congruent to angle BAC; moreover, if D′ is any point
on the ray A′C ′ and D′′ is any point on the ray A′C ′′, then the segment
D′D′′ intersects the line determined by A′ and B′.

III-5. Every angle is congruent to itself.

III-6. If two sides and the included angle of one triangle are congruent, respec-
tively, to two sides and the included angle of another triangle, then each of
the remaining angles of the first triangle is congruent to the corresponding
angle of the second triangle.

GROUP IV: POSTULATE OF PARALLELS

IV-1. (Playfair’s Postulate) Through a given point A not on a given line m there
passes at most one line that does not intersect m.

GROUP V: POSTULATES OF CONTINUITY

V-1. (Postulate of Archimedes) If A, B, C, D are four distinct points, then
there is, on the ray AB, a finite set of distinct points A1, A2, . . . , An such
that (1) each of the pairs A,A1; A1, A2; . . . , An−1, An is congruent to the
pair C, D, and (2) B is between A and An .

V-2. (Postulate of Completeness) The points of a line constitute a system of
points such that no new points can be assigned to the line without causing
the line to violate at least one of the eight postulates I-l, I-2, II-l, II-2, 11-3,
111-1, III-2,V-1.

ALTERNATIVE GROUP V

Definition 1.2.8. Consider a segment AB. Let us call one end point, say A, the
origin of the segment, and the other point, B, the extremity of the segment.
Given two distinct points M and N of AB, we say that M precedes N (or N
follows M) if M coincides with the origin A or lies between A and N. A segment
AB, considered in this way, is called an ordered segment.

V′-1. (Dedekind’s Postulate) If the points of an ordered segment of origin A and
extremity B are separated into two classes in such a way that

(1) each point of AB belongs to one and only one of the classes,

(2) the points A and B belong to different classes (which we shall respec-
tively call the first class and the second class),

(3) each point of the first class precedes each point of the second class,

then there exists a point C on AB such that every point of AB which
precedes C belongs to the first class and every point of AB which follows
C belongs to the second class.
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1.3 Some Prerequisite Material

In this section we will review some definitions, theorems and other concepts that
are normally talked about in a first course in geometry. Many of the theorems
will be stated without proof. Our main goal is to introduce terminology and
properties associated with points, lines, ratios, parallel lines, triangles, angles
and circles.

Definition 1.3.1. A set of points is said to be collinear if they all lie on the
same line.

Sometimes a particular set of collinear points is referred to as a range of
points.

Definition 1.3.2. A set of lines all passing through the same point are called
concurrent lines and the common point they pass through is called the vertex.

Another term that is used for a set of concurrent lines is a pencil of lines.

Definition 1.3.3. A transversal is any line that cuts a collection of two or
more lines.

Definition 1.3.4. A proportion is an expression of equality of two ratios.

Theorem 1.3.1. If
a

b
=
c

d
, then ad = bc and the following hold:

a

c
=

b

d
d

b
=

c

a
b

a
=

d

c
a+ b

b
=

c+ d

d
a− b
b

=
c− d
d

Theorem 1.3.2. If
a

x
=
b

y
, a 6= 0, b 6= 0 and a = b, then x = y.

Theorem 1.3.3. If
a

b
=
c

x
and

a

b
=
c

y
, then x = y.

Theorem 1.3.4. If
a

b
=
c

d
=
e

f
= · · · , then

a+ c+ e+ · · ·
b+ d+ f + · · ·

=
a

b
.

Theorem 1.3.5. If a line is parallel to one side of a triangle and intersects the
other two sides, it divides these sides so that either side is to one of its segments
as the other is to its corresponding segment.
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In triangle ABC, Figure 1.3.1, if DE is parallel to AB, then CA
CD = CB

CE and
CA
DA = CB

EB . Furthermore, from Theorem 1.3.6, we can also obtain CD
DA = CE

EB .

Figure 1.3.1 Figure 1.3.2

Theorem 1.3.6. Parallel lines cut off proportional segments on two transver-
sals.

In Figure 1.3.2, we have by Theorem 1.3.6, AC
BD = AE

BF = CE
DF . To prove this

result, draw BH ‖ AE and apply Theorem 1.3.5.

Theorem 1.3.7. If a line divides two sides of a triangle proportionally, then it
is parallel to the third side.

Theorem 1.3.8. If a line divides two sides of a triangle so that either side is
to one of its segments as the other side is to its corresponding segment, then the
line is parallel to the third side.

Definition 1.3.5. An altitude of a triangle is the line through a vertex per-
pendicular to the side opposite the vertex.

Definition 1.3.6. The triangle formed by joining the feet of the altitudes of a
given triangle is called the orthic triangle of the given triangle.

Definition 1.3.7. A median of a triangle is the line joining a vertex of a
triangle to the midpoint of the opposite side.

Definition 1.3.8. A circle on which all three vertices of a triangle lie is called
the circumcircle of the triangle. Its center is called the circumcenter.

Definition 1.3.9. A circle is inscribed in a polygon if each side of the
polygon is tangent to the circle.

We will be primarily interested in circles inscribed in triangles. For the
triangle, we call the circle inscribed the incircle of the triangle and its center
is called the incenter.

Definition 1.3.10. Two polygons are similar if there is a matching of their
vertices for which the corresponding angles are congruent and the corresponding
sides are proportional.
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Theorem 1.3.9. If two triangles have the three angles of one congruent respec-
tively to the three angles of the other, then the triangles are similar.

Corollary 1.3.1. If triangles have two angles of one congruent to two angles
of the other, then the triangles are similar.

Corollary 1.3.2. If two right triangles have an acute angle of one congruent
to an acute angle of the other, then the right triangles are similar.

Corollary 1.3.3. Corresponding altitudes of two similar triangles have the
same ratio as that of any two corresponding sides.

Theorem 1.3.10. If two triangles have an angle of one congruent to an angle of
the other and the sides including these angles are proportional, then the triangles
are similar.

Theorem 1.3.11. If two triangles have their corresponding sides proportional,
then they are similar.

Theorem 1.3.12. The altitude on the hypotenuse of a right triangle forms two
triangles that are similar to the given triangle and similar to each other.

Figure 1.3.3

From Theorem 1.3.12, we have in Figure 1.3.3, that

4ABC ∼ 4ACD ∼ 4CBD.

Theorem 1.3.12 can be used to obtain a proof for the Pythagorean theorem.

Theorem 1.3.13. (Pythagoras) If triangle ABC is a right triangle with right
angle at C, then a2 + b2 = c2.

Proof. In Figure 1.3.4 draw CD ⊥ AB. From Theorem 1.3.12, we have that

4ABC ∼ 4ACD ∼ 4CBD. Therefore,
a

s
=
c

a
and

c

b
=
b

r
. Hence a2 = cs and

b2 = cr. Adding these two equations gives a2 + b2 = cs+ cr = c(s+ r) = c2.

We will now examine the angles associated with arcs on a circle. Let A, B
and C be points on a circle centered at O. ∠BAC is called an inscribed angle,
since it is inscribed in a circle. ∠BOC is called a central angle and the arc BC
has angular measure measured by ∠BOC, where the angle is measured on the
same side of O as the arc. ∠BAC is said to subtend the arc BC.



16 CHAPTER 1. EUCLID AND HILBERT

Figure 1.3.4

Figure 1.3.5

Theorem 1.3.14. (Star Trek Lemma). The measure of an inscribed angle
is half of the angular measure of the arc it subtends.

Proof. Let us first consider the two cases where the angle ∠BAC is an
acute angle. The first case we consider is where O lies inside the angle – the
left-hand part of Figure 1.3.6. First we draw diameter AOD Now OA = OB =
OC = OD, since they are all radii of the circle. 4AOB is an isosceles triangle,
since OA = OB. Therefore ∠BAO = ∠OBA. Since an exterior angle of a
triangle is equal to the sum of the two non-adjacent interior angles, we have
that ∠BOD = ∠OBA + ∠BAO = 2∠BAO. Similarly, using 4AOC, we have
that ∠COD = 2∠OAC. Combining these results gives the following and our
first case is done.

∠BOC = ∠BOD + ∠DOC = 2∠BAO + 2∠OAC = 2∠BAC.

In the right-hand part of Figure 1.3.6, we have the case where the center of
the circle is outside the acute angle ∠BAC. Our proof of this case is very similar
to the previous with one significant difference. First we again note the existence
of isosceles triangles because of the several radii that are drawn. In particular,
4BOA is an isosceles triangle with OA = OB. Thus ∠OAB = ∠OBA. As
in the case above, we use the fact that ∠BOD is an exterior angle for the



1.3. SOME PREREQUISITE MATERIAL 17

Figure 1.3.6

triangle and hence ∠BOD = 2∠OAB. Furthermore, 4AOC is isosceles with
∠OAC = ∠OCA. For this triangle, ∠DOC is the exterior angle and we have
∠DOC = 2∠OAC. Here we differ from the first case. Instead of adding, we
now subtract.

∠BOC = ∠DOC − ∠DOB = 2∠OAC − 2∠OAB = 2∠BAC.

If ∠BAC is obtuse, we have the following picture and the proof is identical to
the first case

Figure 1.3.7

An immediate result of this theorem is the following: An angle inscribed
in a semicircle is a right angle. In this case, ∠BOC = 180◦ and this would
imply that ∠BAC would be a right angle. The converse of this statement is
also true. If an inscribed angle ∠BAC = 90◦ then BC is a diameter of the cir-
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cle. ∠BAC = 90◦ implies that ∠BOC = 180◦ which says that BC is a diameter.

Another useful result is that if an angle A subtends a chord BC and arc
BPC, then the angle formed by the chord and the tangent to the circle at B,
which subtends arc BPC, is equal to angle A. See Figure 1.3.8.

Figure 1.3.8: Angle Formed by Tangent and Chord

Definition 1.3.11. A quadrilateral whose vertices lie on a circle is called a
cyclic quadrilateral.

Theorem 1.3.15. If two opposite angles of a quadrilateral are both right angles,
the quadrilateral is cyclic.

Figure 1.3.9

Proof. Exercise
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Problem Solving Strategy

Problem solving becomes more successful if one has a strategy to follow. Not
everyone uses the same strategy, but most are variations of the following.

1. Read the problem carefully.

2. Draw and label a picture or diagram.

3. Identify what is given.

4. Identify what needs to be proven or constructed.

5. Mentally review all definitions, theorems or problems relating to this prob-
lem.

6. Devise a plan of attack for solving the problem.

7. If this plan works, review the solution and make note of the strategy used
for future reference when solving problems of a similar type. Also see if
you can find another method to solve this problem. Many problems have
more than one method of solution.

8. If the plan did not work, return to step 1 and proceed through the process
again and try another approach.

Example 1.3.1. Prove that the diagonals of a parallelogram bisect each other.

We begin by drawing a parallelogram with its diagonals and label all points.

Given: The parallelogram ABCD with diagonals AC and BD.
Prove: AE = EC and BE = ED.

What we know: Parallelograms are quadrilaterals with opposite sides equal
and parallel; that is, AB = CD, AD = BC, AB ‖ CD and AD ‖ BC. Since
the diagonals are transversals for the parallel sides, the alternate interior angles
are equal. For example, ∠ADB = ∠CBD, ∠DAC = ∠BCA, etc. Vertical
angles are equal so that ∠AED = ∠CEB and ∠AEB = ∠CED. We see there
are similar, as well as congruent triangles available.

Plan of attack: We actually have two choices. We can use corresponding
parts of congruent triangles are congruent. Or, we can use corresponding sides
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of similar triangles are proportional.

Solution: ∠CAD = ∠ACB, ∠BDA = ∠DBC since they are alternate interior
angles on the transversals AC and BD. Now ∠EAD = ∠CAD = ∠ACB =
∠ECB and ∠EDA = ∠BDA = ∠DBC = ∠EBC and, furthermore, AD = CB
since they are opposite sides of a parallelogram. Hence 4AED ∼= 4CEB,
by ASA. Thus, the corresponding sides of these triangles must be equal and
AE = EC and BE = DE, so the diagonals AC and BD bisect each other.

Note. Since 4AED ∼ 4CEB and corresponding parts of similar triangles are

in the same ratio, we have that
AE

CE
=
DE

BE
=
AD

BC
. Since AD = BC,

AD

BC
= 1,

so
AE

CE
=
DE

BE
= 1. Thus AE = CE and DE = BE.

In the next example we show how we build on information we know to prove
new results.

Example 1.3.2. Prove that the diagonals of a rhombus are perpendicular.

Given: The rhombus ABCD with diagonals AC and BD.
Prove: AC ⊥ BD.

What we know: A rhombus is a parallelogram with all four sides equal.
From the previous example we know that AE = CE and DE = BE and
4AED ∼= 4CEB.

Plan of attack: Show all four triangles are congruent. If this is the case, then
the four angles formed by the diagonals at E will be equal and since their sum
is 360◦, they are all equal to 90◦ and the diagonals will be perpendicular.

Solution: From the previous example we have that the diagonals of a par-
allelogram, and hence the diagonals of a rhombus, bisect each other. Hence
AE = CE and DE = BE. Now the sides of a rhombus are all equal so that
AB = BC = CD = DA. We then have 4AEB ∼= 4CEB ∼= 4CED ∼= 4AED
by SSS. Thus ∠AEB = ∠CEB = ∠CED = ∠AED. The four angles sum to
360◦, so each is 90◦ and the diagonals will be perpendicular.
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Exercises

1.3.1. Use the following figure to prove the statement: If an angle A subtends
a chord BC and arc BPC, then the angle formed by the chord and the tangent
to the circle at B, which subtends arc BPC, is equal to angle A .

That is, prove that ∠CBD = ∠BAC. Explain all steps.

1.3.2. In the figure below, prove that PA · PB = PC · PD.

1.3.3. Given an equilateral triangle. Prove that for any point in the interior of
the triangle or on a side of the triangle, the sum of the perpendicular distances
from the point to the sides is constant. What is that constant?

1.3.4. Prove that the area of a triangle can be computed as 1
2 the product of

two sides and the sine of the included angle. For example, if |ABC| represents
the area of 4ABC, then |ABC| = 1

2ab sinC, |ABC| = 1
2ac sinB, |ABC| =

1
2bc sinA.
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1.3.5. Use the Extended Law of Sines and one of the above area formulas for a
triangle to prove that if R is the circumradius of triangle ABC, then |ABC| =
abc

4R
. This can also be written as R =

abc

4|ABC|
.

1.3.6. Use Figure 1.3.10 to give another proof for |ABC| = abc

4R
.

Figure 1.3.10

1.3.7. Prove that the area of a rhombus is 1
2 the product of its diagonals.

1.3.8. Prove that the midpoints of the sides of a quadrilateral form a parallelo-
gram.

1.3.9. In Figure 1.3.11, CD is a chord of circle O(r) (a circle with center O and
radius r) which is perpendicular to the diameter AB. If CE = a and AE = b,

prove that r =
a2 + b2

2b
.

Figure 1.3.11

1.3.10. Let ABCD be a rhombus. If the radius of the circumcircle for 4ABC
is 20 units and the radius of the circumcircle for 4ABD is 10 units, find the
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Figure 1.3.12

area of the rhombus. (Consider Figure 1.3.12.)

1.3.11. Prove Theorem 1.3.15.

1.3.12. Prove the following theorem.

Theorem. If P is a point on the circumcircle of triangle ABC and if D,
E, F are the feet of perpendiculars from P to sides BC, CA and AB, the points
D, E, F are collinear. This line of collinearity is called the Simpson line for the
point P and triangle ABC.

Figure 1.3.13: Simson Line
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1.4 Some Basic Geometric Constructions

We need to examine how to do some basic constructions that may be required
in later work. Most of the time, when we are asked to perform a construction,
it is very helpful to hand draw a picture of what you are trying to construct.
Of course, in order to do constructions, one must have available a straight-edge
and compass. Although a drawing or construction will not, by itself, prove
a result, it can often help in visualizing what one needs to do to generate a
proof. Throughout the course, we will have many instances in which we need to
construct a figure. We will now examine some basic constructions that we may
find useful later.

Construction 1.4.1. To divide a given segment into a given number of equal
parts.

Suppose we wish to divide a segment into five equal parts. If we recall
Theorem 1.3.6, which states

Parallel lines cut off proportional segments on two transversals.

we can make use of this theorem in the following way. Suppose at one end of
the given segment we draw a line of arbitrary length and on this new line we lay
off five equal segments. We can then connect the end of the last segment to the
end of our given line. At the other four dividing points we draw lines parallel
to the end line. The result, by Theorem 1.3.6, is the given segment divided into
five equal parts.

Figure 1.4.1: Dividing a Given Segment Into Five Equal Parts

In the above figure, we let A be the left endpoint of the given segment. Through
A we draw a line ` and on ` we lay off five equal segments: AB, BC, CD, DE,
EF. We then join point F to the endpoint F ′ of the given segment. Then at
points B, C, D, E we draw lines parallel to FF ′. This is done by reproducing
∠EFF ′ at each of the points B, C, D, E.

Theorem 1.4.1. The center of a circle lies on the perpendicular bisector of any
chord of the circle.
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Proof. The perpendicular bisector of a line segment is the locus of all points
equidistant from the endpoints. Let AB be a chord of the given circle and let
M be the midpoint of AB. The perpendicular to AB at M has the property
that every point on it is equidistant from A and B. Since all points on a circle
are equidistant from the center of the circle, the center O of the circle lies on
the perpendicular bisector of AB.

Figure 1.4.2: Perpendicular Bisector of a Chord

Construction 1.4.2. To construct the circumcircle for a given triangle.

Figure 1.4.3: The Circumcircle

Since the vertices of triangle ABC lie on the circumcircle, each side of the
triangle is a chord of the circle. Hence, by Theorem 1.4.1, the perpendicular
bisectors of the three sides all pass through the circumcenter. All we need do
then is find the point of intersection of any two of the perpendicular bisectors.
This will locate the center. We find the midpoint, D, of BC and construct the
perpendicular to BC at D. We then find the midpoint E of side AC and draw
the perpendicular there. These two perpendiculars meet in O, the circumcenter.
The circumradius is OA.

Construction 1.4.3. To draw the tangent lines to a given circle from a given
point outside the circle.
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Figure 1.4.4: Tangents to a Circle

Let the circle with center O be the given circle and P the given point. Since
the tangent to a circle is perpendicular to the radius drawn to the point of tan-
gency, we need to find a point T on the given circle so that OT is perpendicular
to PT . Now the locus of all points forming a right angle with lines from O and
P would be a circle drawn on OP as diameter. Hence we join O and P and
find the midpoint M and draw the circle with radius MO. Where this circle
cuts the given circle are the points T and S. The lines PT and PS are then the
required tangents.

Following are some examples of basic constructions. From the figures given,
determine the method of construction.

Example 1.4.1. To bisect a given angle.

Figure 1.4.5: Angle Bisection

Example 1.4.2. To draw a perpendicular from a given point P to a given line
`.

Figure 1.4.6: Perpendicular
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Exercises

1.4.1. Construct a line parallel to a given line through a given point.

1.4.2. Construct a circle with given center and tangent to a given line.

1.4.3. Construct a circle through a given point P and tangent to a given line `
at a given point Q.

1.4.4. Draw a tangent to a given circle parallel to a given line.

1.4.5. With a given radius construct a circle tangent to two given intersecting
lines.

1.4.6. Construct a circle tangent to each of three lines which intersect in three
distinct points.

1.4.7. Construct a circle having a given radius, tangent to a given circle, and
passing through a given point.

1.4.8. Construct a circle passing through three given non-collinear points.

1.4.9. Six mutually tangent circles of equal radii, r, are inscribed in a larger
circle of radius R, as in Figure 1.4.7 below.

(a) What is the radius r of the small circles?

(b) What is the area of the shaded region in Figure 1.4.8. below?

(c) Construct Figure 1.4.7 and explain the construction.

Figure 1.4.7: Figure for Part (a) Figure 1.4.8: Figure for Part (b)

With compass and straightedge we know we can draw circles and lines; however
it is possible to draw geometric figures with these tools that we might not expect
possible. Consider the following “Euclidean eggs,” which were constructed using
a compass and straightedge.

The middle egg was constructed as follows (See Figure 1.4.10):

1. Begin with a segment AB.
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Figure 1.4.9: Euclidean Eggs

2. Construct the perpendicular bisector of AB

3. Construct circle c1 on AB as diameter.

4. Construct circles c2 and c3 with radius AB on centers A and B.

5. Let O be the intersection of the perpendicular bisector of AB and circle
c1.

6. Construct lines AC and BD through O

7. Construct the circle with center O and radius OC.

The egg is the join of arcs AB, BC, CD and DA

1.4.10. Describe how eggs one and three are constructed in Figure 1.4.9.

1.4.11. Prove that the Euclidean egg is a smooth curve.

Figure 1.4.10: Construction of a Euclidean Egg
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1.5 Triangle Constructions

An important part of geometry has been the ability to construct, if possible,
a triangle from a given set of data. To this end, we recall, or introduce, some
common notations.

• A, B, C . . . will usually denote the vertices or corresponding angles of a
polygon. The upper case letters are also used to label points.

• a, b, c . . . will usually denote the sides of the polygon. In the case of
a triangle, the lower case letters will denote the side opposite the vertex
given by the upper case letter. Lower case letters are also used to label a
line.

• 2s will denote the perimeter of a triangle.

• ha, hb, hc will denote the altitudes of a triangle drawn to the sides a, b, c
respectively.

• ma, mb, mc will denote the medians of a triangle drawn to the sides a, b, c
respectively.

• ta, tb, tc will denote the internal, and t′a, t
′
b, t
′
c the external bisectors of

the angles A, B, C of a triangle.

Figure 1.5.1: Labeling of a Triangle

• R, r will denote the radii of the circumscribed and inscribed circles. For
these circles, we have the terminology: circumcircle, circumradius (R),
circumcenter (O), and incircle, inradius (r), incenter (I).

When trying to perform a construction it is worthwhile to hand draw what
the end figure should be and label the information that is given. Then try to de-
termine how you can get from the given information to the sought construction.
We use the following as an example of how this can be done.
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Construction 1.5.1. Construct a triangle given side a, altitude ha and median
ma

We start by drawing a rough picture of a triangle with an altitude to side a
and a median to side a. We then identify those parts of the triangle we know. In
Figure 1.5.2, we have drawn a triangle and circled the known parts: a, ha, ma.
We now try to determine how we might put this information to use in order to
actually construct such a triangle.

Figure 1.5.2: Sketch

Our first observation is that since we know a, we
know the midpoint of a. Using that as a center and
ma as a radius we get a circle which is the locus of
vertex A, since A is ma units from the midpoint of
a. We then need to determine where on that circle A
lies. Since we know ha, we know the perpendicular
distance of A from a. Hence if we construct the
perpendicular to a and measure off ha we only need
to draw a line parallel to a through the opposite end
of the line of length ha. Where this parallel meets the
circle are the locations for A. We see that in order to
have a solution we must have that ma ≥ ha. There
is exactly one solution if ma = ha and two solutions
if ma > ha.

Let’s test our analysis. Below we are given three
segments of length a, ha and ma. We want to construct a triangle, if one exists,
that satisfy this data. We begin by drawing a line ` and on this line lay off

Figure 1.5.3: Triangle Construction

a segment BC = a. We next bisect BC. Using this midpoint as a center, we
draw a circle of radius ma. Next, at any point on ` we erect a perpendicular
and measure ha on it. We then draw a line parallel to BC. This line cuts the
circle in two points. Each point will yield a solution. It is customary to identify
multiple solutions and to label the triangle, especially the given parts, as in
Figure 1.5.3.
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Construction Problems Given the Perimeter or
the Sum of Two Sides

Some problems seem to not have enough information to obtain a solution.
One such problem is to determine how to construct a triangle when we are given
the perimeter of the triangle, one angle and an additional piece of information.
We begin with the following theorem.

Theorem 1.5.1. If the perimeter and one angle of a triangle are given, the
locus of the vertex of this angle is an arc of the circle in which a chord equal to
the perimeter subtends an angle equal to 90◦ plus half the given angle.

Proof. Let ABC, in Figure 1.5.4, be the triangle in question having the
given perimeter 2s and the given angle A.[Recall that s = 1

2 (a+ b+ c).] Extend
the base BC to E on the left and to F on the right so that BE = BA and
CF = CA. Now triangles EBA and FCA are isosceles and ∠EAB = E = 1

2B
and ∠CAF = F = 1

2C. Thus we obtain

∠EAF =
1

2
B +A+

1

2
C =

1

2
(A+B + C) +

1

2
A = 90◦ +

1

2
A.

The circle in question is merely the circumcircle of triangle EAF whose center
is the intersection of the perpendicular bisectors of EA and FA.

Figure 1.5.4

Since EF was constructed to be equal to 2s and EF subtends the known
angle EAF at A, we see the locus of vertex A is indeed the arc of the circle in
the above figure.

We will now look at some of the properties that the figure (Figure 1.5.4) for
the above theorem gives.
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We first note that ∠EOA = 2F = C and ∠FOA = 2E = B. Since the
elongation of AO is a diameter of the circle, we have that

∠EAO =
1

2
(180◦ − C) =

1

2
(A+B).

Similarly

∠OAF =
1

2
(A+ C).

Now

∠BAO = ∠EAO − ∠EAB

=
1

2
(A+B)− 1

2
B =

1

2
A.

This implies that AO bisects A. Hence AP = ta. If R is the radius of the
circle we have that OP = R− ta. We further note that OB and OC lie on the
perpendicular bisectors of EA and FA, respectively. In addition, the altitude
of triangle EAF upon the side EF is AD = ha, the altitude of triangle ABC
on side BC.

Finally we observe that 4OEB ∼= 4OAB since EB = AB,OE = OA and
OB ≡ OB. Therefore, ∠OEF = ∠BAO = 1

2A. Likewise, ∠OFE = 1
2A.

Let us see how the above information can be used to create a method for
constructing such triangles.

Method: Construct a triangle given the perimeter, the angle opposite the
base and the altitude to the base (2s,A, ha).

Solution. Let triangle ABC, in the figure below, be the required triangle.
Extend BC on both sides and lay off BE = BA and CF = CA. Thus EF = 2s,
the perimeter of triangle ABC.

Figure 1.5.5
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The triangles EAB and FCA are then isosceles triangles and we have

∠E = ∠EAB =
1

2
∠ABC =

1

2
∠B, ∠F = ∠FAC =

1

2
∠ACB =

1

2
∠C.

Hence

∠EAF =
1

2
∠B + ∠A+

1

2
∠C =

1

2
(∠A+ ∠B + ∠C) +

1

2
∠A = 90◦ +

1

2
∠A

and therefore ∠EAF is a known angle. The altitude of triangle ABC is also the
altitude of triangle AEF . Thus in triangle AEF we know the base EF = 2s,
the opposite angle ∠EAF = 90◦ + 1

2∠A, and the altitude AD = ha. Hence
this triangle may be constructed. The vertex A belongs to the required triangle
ABC. Since BA = BE and CA = CF , the vertices B and C are the intersec-
tions of the perpendicular bisectors of EA and FA, respectively, with EF .

Note: This problem may have two, one or no solutions. In the two solution
case, the triangles are symmetric with respect to the perpendicular bisector of
EF .

Example 1.5.1. Construct a triangle given the perimeter, the angle opposite
the base and the altitude to the base (2s,A, ha).

Solution.

Figure 1.5.6

In Figure 1.5.6, we start by constructing EF = 2s. Then at E we construct an
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angle (∠FEG) equal to 90◦+ 1
2∠A. At E we construct the perpendicular to EG

and also the perpendicular bisector of EF , where these meet is the center of a
circle that is the locus of ∠EAF , since it is the circumcircle of triangle EAF . At
F construct a perpendicular of height ha and at its upper extremity construct a
parallel to EF . Where this line cuts the circumcircle is the location of A (there
will be two in this case and they will be symmetric about the perpendicular
bisector of EF ). Join E with A and F with A. The perpendicular bisector of
EA meets EF in the vertex B and the perpendicular bisector of AF meets EF
is the vertex C, giving the required triangle ABC.

We next look at the construction of a triangle given the sum of two of the
sides. We first look at the method and then an example.

Method: Construct a triangle given the base, the angle opposite, and the
sum of the other two sides (a,A, b+ c).

Solution. Let triangle ABC, in the figure below, be the required triangle.
Extend BA and lay off AD = AC.

Figure 1.5.7

Then triangle ACD is an isosceles triangles and we have ∠D = ∠ACD =
1
2∠BAC. Thus, in triangle BDC we know the base BC = a, the side BD = b+c,
and ∠D = 1

2∠A. Hence this triangle may be constructed. The vertices B and
C belong to the required triangle and the third vertex, A, is the intersection of
the perpendicular bisector of DC with BD.

Note: This problem is not possible unless a < (b+ c).

Example 1.5.2. Construct a triangle given the base, the angle opposite, and
the sum of the other two sides (a,A, b+ c).

Solution.
In the figure above, we start by constructing BC = a. Then at B we construct
an angle (∠CBE) equal to 1

2∠A. At B we construct the perpendicular to BE
and also the perpendicular bisector of BC, where these meet is the center of a
circle that is the locus of ∠D,since it is the circumcircle of triangle DBC. With
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Figure 1.5.8

B as center, draw circle with radius b+c. Where this intersects the circumcircle
is the point D. The perpendicular bisector of DC determines the vertex A of
the sought triangle ABC. Note: The two solutions are symmetric about the
perpendicular bisector of BC.

Exercises

1.5.1. Construct a triangle when given: a, b, c.

1.5.2. Construct a triangle when given: A, b, c.

1.5.3. Construct a triangle when given: A, B, c.

1.5.4. Construct a triangle when given: A, c, hc.

1.5.5. Construct a triangle when given: b, c, mc.

1.5.6. Construct a triangle when given: A, b, ta.

1.5.7. Construct a triangle when given: ha, ta, A.

1.5.8. Construct a triangle when given: ha, ma, a.
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1.5.9. Construct a triangle when given: B, ha, ma.

1.5.10. Construct a triangle when given: A, a, ma.

1.5.11. Construct a triangle when given: A, a, ha.

1.5.12. Construct a triangle when given: A, a, hc.

1.5.13. Construct a triangle given the angle at B, the altitude hc, and the sum
of two sides b+ c.

1.5.14. Construct a triangle given the base a, the altitude hc, and the sum of
the other two sides b+ c.

1.5.15. Construct a triangle given the angles at A and B, and the sum of two
sides b+ c.

1.5.16. Construct a triangle given the perimeter, 2s, and the angles A and B.

1.5.17. Construct a triangle given the perimeter, 2s, the altitude ha and angle
B.

Historical Note.

The compass we use today is much different than the compass used in Euclid’s
time. The Euclidean compass, also known as the collapsing compass, did not
allow for the transferring of distances. The Euclidean compass would collapse
when lifted from the drawing surface. To move a given length from one position
to another required some significant effort. For example, see Proposition 2 in
Section 1.1. With the modern compass, we would just measure off the line
with the compass and, with that fixed radius, take the line segment anywhere
we wished.

The constructions we do with relative ease (once we determine how it is to be
done) required much more effort with the collapsing compass. Think about the
examples and exercise given above. How would you bisect an angle, or draw a
perpendicular, if your compass lost its radius when you lifted it off the paper?

Pretend you have a collapsing compass; that is, you cannot transfer distances
with the compass. Try these exercises.

1.5.18. Bisect a given angle.

1.5.19. Construct a perpendicular from a given point to a given line.

1.5.20. Construct a parallel through a given point to a given line.

1.5.21. Given points A,P,B. At B construct a circle with radius AP .
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1.6 Constructible Numbers

For the Greek geometers the only numbers that existed were numbers that
could be constructed using only a compass and straightedge. With a compass
and straightedge we can construct the sum, difference, product and quotient
of two numbers as well as the squareroot of a number. We do these with the
modern compass. All numbers depend on a given unit length.

Constructing the number a+ b.

To construct the sum a+b on a line m lay off segments AB = a and BC = b.
The resulting segment AC = a+ b.

Figure 1.6.1: a+ b

Constructing the number a− b.

To construct the difference a − b on a line m lay off segments AB = a and
BC = b, from B toward A. The resulting segment AC = a− b.

Figure 1.6.2: a− b

Constructing the number a · b.

Let two lines m and m′ intersect at a point A. On line m lay off segment
AB = 1 and segment AC = a. On line m′ lay off segment AD = b. Connect
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points B and D. At point C duplicate ∠CBD and where the terminal side of
this angle meets m′ call E. Line AE = a · b. See Figure 1.6.3

Figure 1.6.3: a · b

Proof. 4ABD ∼ 4ACE, since they are equiangular. Hence,
AD

AB
=
AE

AC
.

That is,
AE

a
=
b

1
and AE = a · b.

Constructing the number
a

b
.

Let two lines m and m′ intersect at a point A. On line m lay off segment
AB = 1 and segment AC = b. On line m′ lay off segment AD = a. Connect
points C and D. At point B duplicate ∠C and where the terminal side of this

angle meets m′ call E. Line AE =
a

b
. See Figure 1.6.4

Proof. 4ABE ∼ 4ACD, since they are equiangular. Hence,
AD

AC
=
AE

AB
.

That is,
AE

1
=
a

b
and AE =

a

b
.

Although the early Pythagorean Greeks were restricting their concept of
number to the rational numbers, it became evident to them that there did , by
necessity, exist other numbers. They soon discovered the method of construct-
ing the square root of a rational number. However, the construction of other
roots could not in general be done. Roots which were powers of two could be
constructed by repeated constructions of square roots.
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Figure 1.6.4:
a

b

Constructing the number
√
a.

On a line m lay off segments AB = a and BC = 1. Bisect AC getting point
O. Using O as a center, construct the semicircle with diameter AC. At B erect
a perpendicular meeting the semicircle at point D. The segment BD =

√
a.

See Figure 1.6.5

Figure 1.6.5:
√
a

Proof. Draw lines AD and DC. Since ∠ADC is inscribed in a semicir-

cle, it is a right angle and rt4ABD ∼ rt4DBC. Therefore
BD

AB
=
BC

BD
and

BD2 = AB ·BC = a · 1 = a. Thus, BD =
√
a.

Now any number that can be represented as a combination of additions, sub-
tractions, multiplications, divisions and squareroots can be constructed. Since
4
√

3 =
√√

3, the fourth root of a number is constructible. However, the cube
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root of a number is not constructible. It is for this reason that the general angle
cannot be trisected using straight-edge and compass. In Euclid’s discussion of
arithmetic problems (number theory) in The Elements, all numbers are repre-
sented by line segments.

The following proposition, from The Elements, demonstrates how the Greek’s
dealt with problems in number theory through geometry.

Proposition 20. Prime numbers are more than any assigned multitude of
prime numbers.

Note. This is Euclid’s way of saying that the number of primes is infinite.

Let A, B, C be the assigned numbers; I say that there are more prime
numbers than A, B, C.

For let the least number measured by A, B, C be taken, and let it be DE;

This means that DE is the product of A,B, and C.

let the unit DF be added to DE.
Then EF is either a prime or not.
First let it be prime; then the numbers A,B,C,EF have been found which

are more than A, B, C.
Next, let EF not be prime; therefore it is measured by some prime number.

(VII, 31)

Prop. 31 of Book VII: Any composite number is measured by some prime number.

Let it be measured by the prime number G. I say that G is not the same with
any of the numbers A, B, C. For, if possible, let it be so. Now A, B, C
measure DE. Therefore G will also measure DE. But it also measured EF .
Therefore G, being a number, will measure the remainder, the unit DF ; which
is absurd.

Therefore G is not the same with any of the numbers A, B, C and by
hypothesis, it is prime.

Therefore the prime numbers A,B,C,G have been found which are more
than the assigned multitude A,B,C. Q.E.D.
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Exercises
In the following exercises, it may be assumed that given a unit length, other
integer lengths are obtainable. Therefore, lengths of 2, 3, 5, 7 and 10 can be
assumed.

1.6.1. Construct the numbers
5

2
and
√

7.

1.6.2. Construct the number

√
5
√

3

2
.

1.6.3. Construct the number 4
√

10.

1.6.4. There is an interesting way to construct the square root of a positive
integer. In the following figure, if A1B1 = 1, show that

(a) A2B2 =
√

2.

(b) A3B3 =
√

3.

(c) A5B5 =
√

5.

(d) Describe, in detail, this method of constructing
√
n.

Figure 1.6.6
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1.7 The Pythagorean Theorem

There are many proofs for the Pythagorean Theorem, which states:

Suppose a right angle triangle ABC has a right angle at C, hy-
potenuse c and sides a, and b. Then

c2 = a2 + b2.

We will present here a few of the proofs that have been presented at various times
in history. The first is believed, by some, to be close to what the Pythagoreans
may have produced as a proof. Since the Pythagoreans left no written records,
this is an assumption only. The proof we give uses notation that was not avail-
able to the Pythagoreans.

Proof 1 (Pythagoras). Let the right triangle have sides a and b and
hypotenuse c. Consider the following figure

Figure 1.7.1

This is a square with side a+b that has been partitioned by inscribing a square of
side c in it. Since the angles at A and B sum to 90◦ and the angle CBC ′ = 180◦,
the angle at the vertex of the inscribed quadrilateral is 90◦ and the quadrilateral
is indeed a square. Now the area of the large square can be computed in two
distinct ways–first as a square of side a+b, and second as the area of the smaller
square plus the four triangles. The first computation yields

(a+ b)2 = a2 + 2ab+ b2.
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In the second case each of the triangles has area 1
2ab and we have

c2 + 4 ·
(

1

2
ab

)
= 2ab+ c2.

Since we are computing the same area in each case, we have that

a2 + 2ab+ b2 = 2ab+ c2,

which reduces to the desired result that c2 = a2 + b2.

NOTE. The Pythagoreans would have given a purely geometric argument
rather than an algebraic one.

This next proof is similar to the one given by Euclid in his Elements.

Proof 2 (Euclid). In the figure below, let ABC be our given triangle. On
side AC construct square ACDE, on side BC construct square BCHK and on
the hypotenuse AB construct the square ABFG. We must show that the area
of square ABFG is equal to the area of square ACDE plus the area of square
BCHK.

Figure 1.7.2

Draw diagonal EC of square ACDE. 4|AEC| = 4|AEB| since they have the
same base AE and their altitudes are equal to AC. (Note. We use 4|AEC| to
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represent the area of triangle AEC.) We next note that, using the SAS theo-
rem for congruent triangles, 4AEB ∼= 4ACG, since AE = AC,AB = AG and
∠BAE = ∠GAC (both are equal to 90◦ + ∠BAC). Therefore 4|AEB| =
4|ACG|. Construct CM ⊥ AB and extend it to meet FG at N . Then
4|ACG| = 4|AMG, since they share the same base, AG, and both have
an altitude equal to AM . Thus, 4|AEC| = 4|AMG|. But 4|AEC| =
1
2area of squareACDE and4|AMG| = 1

2area of rectangleAMNG. Hence areaACDE
= areaAMNG.

By a similar argument, we can show that 4|BCK| = 4|BMF | and therefore
areaBCHK = areaBMNF . Since the area of square ABGF = areaAMNG+
areaBMNF , we have that, the square on the hypotenuse is equal to the sum of
the squares on the other two sides; that is, c2 = a2 + b2 where c = AB, b = AC
and a = BC.

Thâbit ibn Qurra (a.k.a. Thâbit ibn Korra) (ca. 836 - 901) gave a proof for the
Pythagorean Theorem by calculating the area of the figure below in two ways.

Figure 1.7.3

Proof 3 (Qurra). In the figure above, ABC is the given triangle with
sides a, b and hypotenuse c. Square ACED has sides of length b, square BCHJ
has sides of length a and square ABIF has sides of length c. Now triangles
CEG,CHG and IJB are all congruent to triangle ACB In the figure above,
JH = a and HG = b so the rectangle BJGE has area a(a + b). Using this
rectangle and the square ACED with area b2 and the triangle ACB with area
1
2ab we see that the area of the figure is

a(a+ b) + b2 +
1

2
ab = a2 + b2 +

3

2
ab.
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On the other hand, the figure consists of the square ABIF with area c2 and
three triangles (BJI,GCE and AFD) each with area 1

2ab. The area of the
figure using this square and triangles is

c2 + 3

(
1

2
ab

)
.

Thus, equating the two areas gives

c2 + 3

(
1

2
ab

)
= a2 + b2 +

3

2
ab.

Hence, c2 = a2 + b2.

The Indian mathematician Bhaskara II (ca. 1114 - 1185) gave a dissection proof
that he considered self-explanatory. I have added some labels to make sure it is
clear.

Proof 4 (Bhaskara).

Figure 1.7.4

The figure on the left can be disassembled and reassembled as the figure on the
right. The figure on the left is a square of side c and has area c2, whereas the
figure on the right can be seen to be two squares of areas a2 and b2. Since the
figure on the right was constructed from the parts of the figure on the left, we
have that c2 = a2 + b2.

Leonardo Da Vinci (1452 - 1519) also gave a diagram proof that he felt was
self-explanatory. His proof consisted of the following drawing. We will supply
some explanation.

Proof 5 (da Vinci). In the figure above, the line IF divides the hexagon
ABFGHI into two equal quadrilaterals. If quadrilateral ABFI is rotated about
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A, it will coincide with quadrilateral CADJ . If this quadrilateral is then rotated
about B, it will coincide with CBEJ . Therefore the hexagons ABFGHI and
CADJEB have the same area. The area of hexagon ABFGHI = a2 + b2 +
2
(
1
2ab
)

and the area of hexagon CADJEB = c2 + 2
(
1
2ab
)
. Thus, c2 = a2 + b2.

The next proof we present is due to James Garfield, who later became President
Garfield. In 1863 he was elected to the United States House of Representatives.
He succeeded in gaining re-election every two years up through 1878. During his
tenure as a member of the House of Representatives he came up with a proof of
the Pythagorean theorem. Later, in 1880, he was elected President of the United
States. He took office in March of 1881 and was assassinated in September of
1881. He served for only six months. This was the second shortest term in
U.S. history. Only William Henry Harrison served for a shorter period. It is an
interesting note that Garfield was ambidextrous and he could simultaneously
write in Greek with one hand and in Latin with the other.

Proof 6 (Garfield). In the figure below, we draw triangle ABC and extend
BC by b units in order to construct triangleBC ′B′ which is congruent to triangle
ACB. Connect A to B′. We now have a trapezoid ACC ′B′.

Since ∠CBA+∠C ′BB′ = 90◦, we have that ∠ABB′ = 90◦ and triangle ABB′



1.7. THE PYTHAGOREAN THEOREM 47

is a right triangle. Now the area of the trapezoid is given by

1

2
(a+ b)(a+ b).

On the other hand, the area of the three triangles making up the trapezoid is

1

2
c2 + 2

1

2
ab.

Since both represent the same area, we have

1

2
(a+ b)(a+ b) =

1

2
c2 + 2

1

2
ab

1

2
(a2 + 2ab+ b2) =

1

2
c2 + ab

a2 + 2ab+ b2 = c2 + 2ab

a2 + b2 = c2

A pretty slick proof.

Our final proof is one for which I do not know the origin. It is colorful and
again disassembles a square of side c and reassembles it into two squares of
sides a and b.

Proof 7 (Colorful). The figure below is self-explanatory, but we will give
a justification. Since this is a black and white printing, each color is labeled:
r =red, b = blue, g = green, v = violet and y = yellow.

We need to verify that 4EFG ∼= 4KJI,4BDE ∼= 4ALK and 4ACB ∼=
4IJG Since 4IJG is a copy of 4ACB the later congruence holds. For the
first pair of triangles we need to show that EF = JK and FG = JI. We are
given that FG = JI = b. Since FG ‖ HB, we have that ∠DBE = ∠FGE
and since angles DEB and FEG are vertical angles, they are equal. Therefore

4GFE ∼ 4BDE and
DE

FE
=
DB

FG
. But FG = HD = b so DB = a − b and
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Figure 1.7.5

DE = b−FE. Hence (b−FE)b = FE(a−b) so FE =
b2

a
and DE = b− b

2

a
. By a

similar argument JK =
b2

a
and KL = b− b2

a
. Thus, by SSS, 4EFG ∼= 4KJI.

Since we have all the required sides, it easily follows that 4BDE ∼= 4ALK.
The mapping in the above figure is then valid and we see that c2 = a2 + b2.
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1.8 The Incircle and Excircles

Theorem 1.8.1. The angle bisectors of a triangle intersect in a common point
I, called the incenter, which is the center of the unique circle inscribed in the
triangle. This circle is called the incircle of the triangle.

Proof . In Figure 1.8.1 below, let AD,BE,CF be the angle bisectors. Let
AD and BE intersect in a point I.

Figure 1.8.1: The Incircle

Let IJ be the perpendicular from I to side AB, let IH be the perpendicular
to side AC and let IG be the perpendicular to side BC of triangle ABC. Now
AI = AI and since AD is the angle bisector of ∠BAC, ∠JAI = ∠HAI. Fur-
thermore, angles IJA and IHA are right angles, by construction. Therefore,
4AIJ ∼= 4AIH and, hence, IJ = IH. Similarly, using triangles BIJ and
BIG, we can show that IJ = IG and hence IH = IG and I lies on the angle
bisector of ∠ACB. Thus, the three angle bisectors are concurrent.

We must now show that I is the center of a circle inscribed in triangle ABC.
The three points G,H, J determine a unique circle, since they are noncollinear
and three noncollinear points determine a unique circle. The fact that this circle
is inscribed in triangle ABC follows from the fact that IG, IH, IJ are radii of
the circle and are perpendicular to the sides BC,AC,AB at the points G,H, J
and hence are tangents to the circle. �

Using arguments very much like the above, we can establish the existence of
three circles which lie outside of the triangle and that are tangent to the sides
of the given triangle. In this case, the circles will be tangent to two extended
sides and one regular side. We call these circles excircles and we designate their
centers by Ia, Ib, Ic. The subscript designation comes from the non-extended
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side the circle is tangent to. The centers are determined by the intersection of
one internal angle bisector and the two external angle bisectors of the other two
angles. That is, Ia is the intersection of the internal angle bisector of the angle
at A and the external angle bisectors at B and C. The figure below shows the
incircle and the three excircles for triangle ABC. By convention, we use r

Figure 1.8.2: The Three Excircles for Triangle ABC

to represent the radius of the incircle and ra, rb, rc to represent the radii of the
three excircles.

Theorem 1.8.2. Let r be the radius of the incircle of triangle ABC and let
s = 1

2 (a+ b+ c) be the semiperimeter of triangle ABC. Then

|4ABC| = rs.
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[We use the notation |4ABC| to represent the area of triangle ABC.]

Proof . Let BC = a,AC = b and AB = c. Let D,E, F be the feet of
the perpendiculars to the sides from the incircle center I. We can subdivide

Figure 1.8.3

4ABC into three triangles: 4BIC,4CIA and 4AIB. The areas of these are
|4BIC| = 1

2ar, |4CIA| =
1
2br, and |4AIB| = 1

2cr. Thus,

|4ABC| = 1

2
ar +

1

2
br +

1

2
cr = r[

1

2
(a+ b+ c)] = rs.

�

Theorem 1.8.3. (The Law of Cosines) For any triangle ABC, we have

c2 = a2 + b2 − 2ab cosC.

Proof. Consider a triangle ABC with altitude AD, as in Figure 1.8.4.
Applying the Pythagorean theorem to triangle ABD, we have

Figure 1.8.4

c2 = AD2 +DB2.
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But AD = b sinC in all triangles and DC = b cosC in the triangle on the left,
but DC = −b cosC for the triangle in the middle. In both cases, DB = a−DC,
or DB = a − b cosC. However, in the triangle on the right a − DC < 0, so
DB = |a− b cosC|. Thus in all cases

c2 = (b sinC)2 + (a− b cosC)2

= b2 sin2 C + a2 − 2ab cosC + b2 cos2 C

= a2 + b2(sin2 C + cos2 C)− 2ab cosC

= a2 + b2 − 2ab cosC

�
Note that the Law of Cosines yields the Pythagorean theorem when ∠C = 90◦.
We further note that if ∠C < 90◦, then cosC > 0 and c2 < a2 + b2; but if
∠C > 90◦, then cosC < 0 and c2 > a2 + b2.

From the proof of the Law of Cosines, we note that since AD = b sinC
and AD is the altitude of triangle ABC, |4ABC| = 1

2ab sinC. In fact, for
any triangle, if we know two sides and the included angle, then the area of the
triangle is given by one-half the product of the two sides and the sine of the
included angle. That is,

|4ABC| =
1

2
ab sinC

=
1

2
ac sinB

=
1

2
bc sinA.

Theorem 1.8.4. (Heron’s Formula) For any triangle ABC,

|4ABC| =
√
s(s− a)(s− b)(s− c),

where s = 1
2 (a+ b+ c).

Proof. From our previous observation, we have that

|4ABC| = 1

2
ab sinC =

1

2
ab
√

1− cos2 C

and by the Law of Cosines cosC =
a2 + b2 − c2

2ab
.
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Thus,

|4ABC| =
1

2
ab
√

1− cos2 C

=
1

4

√
4a2b2 − (a2 + b2 − c2)2

=
1

4

√
(2ab+ a2 + b2 − c2)(2ab− a2 − b2 + c2)

=
1

4

√
[(a+ b)2 − c2][c2 − (a− b)2]

=
1

4

√
(a+ b+ c)(a+ b+ c− 2c)(a+ b+ c− 2b)(a+ b+ c− 2a)

=

√
(a+ b+ c)

2

(
(a+ b+ c)

2
− c
)(

(a+ b+ c)

2
− b
)(

(a+ b+ c)

2
− a
)

=
√
s(s− c)(s− b)(s− a).

�
We now look at a special incircle.

The Pythagorean Inradius

Let a = x2 − y2, b = 2xy, c = x2 + y2 with 0 < y < x, gcd(x, y) = 1 and x
and y being of opposite parity. Then (a, b, c) is a primitive Pythagorean triple.
All Pythagorean triples can be generated by multiplying the above generating
equations by λ, where λ ranges over all positive integers. Let triangle ABC,
in the figure below, be a right triangle with integral sides a, b and integral
hypotenuse c. Let the circle with center I be the inscribed circle for this triangle.
We will prove that the inradius is an integer.

Figure 1.8.5
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Proof. Let r be the inradius. Since the tangents to a circle from a point
outside the circle are equal, we have the sides of triangle ABC configured as in

Figure 1.8.5. Thus, c = (a − r) + (b − r) = a + b − 2r and r =
a+ b− c

2
. But

a = λ(x2 − y2), b = 2λxy, and c = λ(x2 + y2) which gives

r =
λ(x2 − y2 + 2xy − x2 − y2)

2
=
λ(2xy − 2y2)

2
= λy(x− y).

Thus, r is an integer given by r = λy(x− y).

An alternate proof uses the fact that

|4ABC| = |4AIB|+ |4BIC|+ |4AIC|.

So, 1
2ab = 1

2rc+ 1
2ra+ 1

2rb and

r =
ab

a+ b+ c
=

λ2(x2 − y2)2xy

λ(x2 − y2 + 2xy + x2 + y2)

=
λ(x2 − y2)2xy

2x2 + 2xy

=
λ2xy(x− y)(x+ y)

2x(x+ y)

= λy(x− y).

Thus, r is an integer given by r = λy(x− y). �

The Circumcircle and the Law of Sines

In addition to the incircle and excircles, there is another important circle asso-
ciated with a triangle. This is the circumcircle and its center is the intersection
of the perpendicular bisectors of the sides of the triangle. This center is called
the circumcenter for the triangle and is usually denoted by O. The radius R of
the circumcircle is called the circumradius. If in triangle ABC the midpoints of
the sides BC,CA,AB are denoted by D,E, F , then the perpendiculars drawn
at D,E, F meet in the circumcenter O and OC = R is the radius of the circum-
circle, as in Figure 1.8.6.

An important result in trigonometry is the Law of Sines which states: For

any triangle ABC with sides a, b, c, we have that
a

sinA
=

b

sinB
=

c

sinC
.

This says that the ratio of the length of a side to the sine of the angle
opposite that side is constant; however, in most trigonometry courses, we are
not told what that common ratio is. As we see in the following theorem, the
ratio is, indeed, a known quantity.
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Figure 1.8.6

Theorem 1.8.5. (The Extended Law of Sines.) For any triangle ABC
with circumradius R

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Proof. Let triangle ABC with its circumscribed circle with center O and
radius R be given. In the Figure 1.8.7, Figure A shows the case with all angles
acute and Figure B shows the case with an obtuse angle. Draw diameter CD

Figure 1.8.7: Law of Sines

and chord DB forming the right triangle CBD. ∠CBD is a right angle since it
is inscribed in a semicircle. In both figures we have that

sinD =
a

CD
=

a

2R
.
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In Figure A, ∠D = ∠A, since both angles have their vertex on the circle and
subtend the same arc of the circle. However, in Figure B, ∠D = 180◦ − ∠A,
because they are opposite angles in a cyclic quadrilateral and such angles are
supplementary. Since sin(180◦ − θ) = sin θ, we have that sinD = sinA. Thus,
regardless of whether ∠A is acute or obtuse, we have that

sinA =
a

2R
, or

a

sinA
= 2R.

We can apply the same procedure to the other angles of triangle ABC to obtain
b

sinB
= 2R and

c

sinC
= 2R. Thus, we have the extended law of sines:

a

sinA
=

b

sinB
=

c

sinC
= 2R.

�
The following problem is a classical problem that has many forms.

The Four Coin Problem. Suppose three congruent circles meet at a common
point P and meet, in pairs, at the points A,B, and C, as in the figure below.
Show that the circumcircle of triangle ABC has the same radius as the original
circles.

Figure 1.8.8: The Four Coin Problem

Solution. Suppose we look only at the points A,B,C,O′, O′′, O′′′, P . We then
have Figure 1.8.9 with the solid lines forming three rhombuses (rhombii). All
the solid lines are equal to the common radius, say r, of the three given circles.
Furthermore, we have that AO′ ‖ O′′′P ‖ CO′′, AO′′′ ‖ O′P ‖ BO′′ and O′B ‖
PO′′ ‖ O′′′C. If we draw a dashed line through A parallel to O′B and a dashed
line through B parallel to O′A, meeting in a point we will label O, then we have
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Figure 1.8.9

a parallelogram AOBO′ and since opposite sides of a parallelogram are equal,
|OA| = |BO′| = r and |OB| = |AO′| = r. We note further that OB is parallel
to CO′′ since it is parallel to AO′ which is parallel to O′′′P which is, in turn,
parallel to CO′′. Since |OB| = r = |CO′′|, the segment OC is parallel to BO′′.
Thus, |OC| = |BO′′| = r and the circle centered at O, with radius r, passes
through A,B, and C, as we see in Figure 1.8.10. Figure 1.8.11 shows all the
lines and circles. �

Figure 1.8.10
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Figure 1.8.11: All Lines Drawn

Exercises

1.8.1. Given a right triangle ABC with sides a, b and hypotenuse c. Use
Heron’s formula and the standard formula for the area of a triangle to prove
the Pythagorean Theorem.

1.8.2. In Figure 1.8.12 the points D,E, F,G,H,K,L,M,N are the contact
points of the excircles to triangle ABC. If s = 1

2 (a + b + c), prove the fol-
lowing

(a) BD = BF = s

(b) AG = AK = s

(c) CL = CN = s

(d) CF = CE = BL = BM = s− a

(e) AN = AM = CG = CH = s− b

(f) AD = AE = BK = BH = s− c
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Figure 1.8.12: Excircles

Historical Note.

Heron of Alexandria (ca. 10 - 75) was a very talented mathematician, engineer
and inventor. For centuries historians argued about when he lived ranging
from 150 BC to 250 AD; however, in 1938 O. Neugebauer,in his book, A
history of ancient mathematical astronomy (New York, 1975), discovered that
Heron referred to a recent eclipse in one of his works. This eclipse took place
in Alexandria on March 13, 62.

Heron was a prolific writer and inventor of many steam and water powered
devices. He developed a steam engine that would propel a little vehicle, temple
doors that appeared to open at a priests command, automated puppet shows,
surveying devices and numerous objects of amusement. Some of his inventions
can be seen at the URL:

http://www.mlahanas.de/Greeks/HeronAlexandria.htm
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Chapter 2

Euclid
A Modern Perspective

2.1 Extending the Euclidean Plane

In order to facilitate our treatment of geometry we introduce the extended plane.
In Euclidean geometry parallel lines never meet and, at times, this can be a
problem. So a collection of points are added to the plane at infinity. These
points are called ideal points. This then allows for any two lines in the plane
to intersect in a point. Parallel lines will intersect in an ideal point. Each ideal
point represents a direction in the plane, so that a family of parallel lines will
all meet in the same ideal point. The set of all ideal points lie on a single line,
called the ideal line.

The points and lines in the Euclidean plane are called ordinary points and
ordinary lines. Triangles are said to be ordinary triangles if all vertices are
ordinary points. Each ordinary line in the plane contains exactly one ideal
point. For the extended plane we have the following theorem.

Theorem 2.1.1. In the extended plane, any two distinct points determine one
and only one line and any two distinct lines intersect in one and only one point.

Historical Note.

The use of points at infinity was first used in a systematic way by Gérard Desar-
gues (1593-1662). He is credited with inventing the geometry we call “projective
geometry.” He was very original in his work; however, his writing style made
his work very difficult to read. This may be one of the reasons his work lay dor-
mant until projective geometry was reinvented by Gaspard Monge(1746-1818).
Projective geometry is considered to be a major advancement in the study of
synthetic geometry. We will study a major theorem of Desargues’ later in this
chapter.
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2.2 Sensed Magnitudes

Another innovation that improved the study of geometry is that of assigning a
direction to movement on a line. We will find that assigning a direction to a
line segment, called sensed magnitudes, will greatly enhance our ability to solve
problems and prove theorems. The positive direction assigned to a line can be
either direction. But once a direction is established if A and B are two points
on the line, then the directed distance (or sensed magnitude) is defined to be
such that AB = −BA. This could also be written as AB+BA = 0, which gives
the obvious result that AA = 0. The employment of direction greatly reduces
the amount of writing and work that has to be done, as the following theorem
illustrates.

Theorem 2.2.1. If A, B, C are any three collinear points then

AB +BC + CA = 0.

Proof. If the points A,B,C are distinct, then C satisfies exactly one of the
following conditions:

(i) C lies between A and B.

(ii) C lies on the prolongation of AB.

(iii) C lies on the prolongation of BA.

For Case (i) we have that AB = AC+CB, or AB−AC−CB = 0, which gives
AB +BC + CA = 0.
For Case (ii) we have that AB + BC = AC, or AB + BC − AC = 0, which
gives AB +BC + CA = 0.
For Case (iii) we have that CA + AB = CB, or CA + AB − CB = 0, which
gives AB +BC + CA = 0.

From the above proof, we see that there is economy in using directed dis-
tances. The equation AB +BC +CA = 0 actually represents three statements
in one.

Theorem 2.2.2. Let O be any point on the line AB. Then AB = OB −OA.

Proof Exercise

Introducing a new point on a given line is often a useful tool in problem
solving. We refer to such practice as inserting an origin on line AB. Sometimes,
rather than inserting a new origin, we use an existing point on the given line,
as we will see in the proof of the next theorem.

Theorem 2.2.3. (Euler’s Theorem) If A,B,C,D are any four collinear
points, then

AD ·BC +BD · CA+ CD ·AB = 0
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Proof. Using the point D as an origin, we can write BC = DC−DB,CA =
DA−DC, and AB = DB −DA. We then have

AD ·BC +BD · CA + CD ·AB

= AD(DC −DB) +BD(DA−DC) + CD(DB −DA)

= AD ·DC −AD ·DB +BD ·DA−BD ·DC

+CD ·DB − CD ·DA

= 0

The first and sixth terms add to zero, since −CD ·DA = −AD ·DC. Likewise,
the second and third terms add to zero, as do the fourth and fifth terms. Thus,
we have the desired result

AD ·BC +BD · CA+ CD ·AB = 0

Theorem 2.2.4. (Stewart’s Theorem) If A,B,C are any three points on a
line and P is any point, then

PA
2 ·BC + PB

2 · CA+ PC
2 ·AB +BC · CA ·AB = 0.

Proof. We first note that it was not specified that P be on line AB. There-
fore we must consider both cases: P on line AB, and P not on line AB. Using
P as an origin on line AB, we have

PA
2 ·BC + PB

2 · CA+ PC
2 ·AB +BC · CA ·AB

= PA
2
(PC − PB) + PB

2
(PA− PC) + PC

2
(PB − PA)

+(PC − PB)(PA− PC)(PB − PA)

= PA
2 · PC − PA

2 · PB + PB
2 · PA− PB

2 · PC + PC
2 · PB

−PC
2 · PA+ PC · PA · PB − PC · PA

2 − PC
2 · PB

+PC
2 · PA+ PB · PA

2
+ PB

2 · PC − PB · PC · PA

= 0

On the other hand, if P is not on line AB, let P ′ be the foot of the perpendicular
from P to line AB. Let PP ′ = h. (See Figure 2.2.1)

Figure 2.2.1
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Then, for any point X on the line AB, we have PX
2

= P ′X
2

+ h2. Thus,

PA
2

= P ′A
2

+h2, PB
2

= P ′B
2

+h2, and PC
2

= P ′C
2

+h2. Substitution gives

PA
2 ·BC + PB

2 · CA+ PC
2 ·AB +BC · CA ·AB

= (P ′A
2

+ h2)BC + (P ′B
2

+ h2)CA+ (P ′C
2

+ h2)AB +BC · CA ·AB

= P ′A
2 ·BC + P ′B

2 · CA+ P ′C
2 ·AB +BC · CA ·AB + h2(BC + CA+AB)

= 0

Since P ′ is on AB, P ′A
2 · BC + P ′B

2 · CA + P ′C
2 · AB + BC · CA · AB = 0

and, by Theorem 2.2.1, BC + CA+AB = 0.

Example 2.2.1. If A, B, C are collinear points and a, b, c are the tangents
from A, B, C to a given circle, then

a2BC + b2CA+ c2AB +BC · CA ·AB = 0.

Solution. Applying Stewart’s Theorem with O, A, B, C in the figure
below, we have

Figure 2.2.2

OA
2 ·BC +OB

2 · CA+OC
2 ·AB +BC · CA ·AB = 0.

But OA
2

= a2 + r2, OB
2

= b2 + r2, and OC
2

= c2 + r2. Thus,

(a2 + r2)BC + (b2 + r2)CA+ (c2 + r2)AB +BC · CA ·AB = 0.

Hence,

a2BC + b2CA+ c2AB +BC · CA ·AB + r2(BC + CA+AB) = 0.

However, by Theorem 2.2.1, BC + CA+AB = 0 and, therefore,

a2BC + b2CA+ c2AB +BC · CA ·AB = 0.
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Definition 2.2.1. By convention, the angle ∠AOB is generated by rotating the
side OA about the point O until it coincides with OB, the rotation not exceeding
180◦. If the rotation is counterclockwise, the angle is said to be positive; if the
rotation is clockwise, the angle is said to be negative. The directed angle will
be denoted by ∠AOB with the condition that ∠AOB = −∠BOA.

Definition 2.2.2. A triangle ABC will be considered as positive or negative
according as the tracing of the perimeter from A to B to C to A is counterclock-
wise or clockwise. Such a signed triangular area is called a directed area and
is denoted by 4ABC.

Theorem 2.2.5. If vertex A of triangle ABC is joined to any point L on line
BC, then

BL

LC
=
AB sinBAL

AC sinLAC
.

Proof. There are three possibilities for where L might lie, as we see in the
figure below.

Figure 2.2.3

In all three cases we have that

BL

LC
=
hBL

hLC
=

24ABL
24ALC

=
(AB)(AL) sinBAL

(AL)(AC) sinLAC
=
AB sinBAL

AC sinLAC
.

[ NOTE. Recall that the area of a triangle can be computed as 1
2bc sinA, where

b and c are any two sides of the triangle and A is the angle included between
them.]

Exercises

2.2.1. Prove Theorem 2.2.2 .

2.2.2. If AL is the bisector of angle A in triangle ABC, show that
BL

LC
=
AB

AC
.

2.2.3. If AL is the bisector of exterior angle A in triangle ABC, where AB 6=

AC show that
BL

LC
= −AB

AC
. [See Figure 2.2.4 on next page.]
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2.2.4. Find the lengths of the medians of a triangle having sides a, b, c. Hint.
Use Stewart’s Theorem.

2.2.5. Find the lengths of the angle bisectors of a triangle having sides a, b, c.
Hint. Use Stewart’s Theorem.

2.2.6. Prove the Steiner-Lehmus Theorem: If the bisectors of the base angles
of a triangle are equal, the triangle is isosceles.

2.2.7. Show that the sum of the squares of the distances of the vertex of the
right angle of a right triangle from the two points of trisection of the hypotenuse
is equal to 5

9 the square of the hypotenuse.

2.2.8. If A,B, P are collinear and M is the midpoint of AB, show that

PM =
PA+ PB

2
.

2.2.9. If O,A,B,C are collinear and OA+OB+OC = 0 and if P is any point
on line AB, show that PA+ PB + PC = 3PO.

Figure 2.2.4: The angles α, β, γ, δ, θ and ϕ are exterior angles of 4ABC
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2.3 Menelaus’ and Ceva’s Theorems

Very little is written about Menelaus of Alexandria (c.a. 100 CE); however,
Ptolemy and Pappus both refer to his works, of which there were many although
none are extant. One book, in particular, on spherical triangles, Sphaerica,
which is preserved through its Arabic translation, contains the theorem named
for him. As is often the case in mathematics, the theorem for plane triangles
was known before Menelaus wrote his work on spherical triangles. The theorem
for plane triangles was stated as follows:

If a straight line crosses the three sides of a triangle (one of the sides
is extended beyond the vertices of the triangle), then the product of
three of the nonadjacent line segments thus formed is equal to the
product of the three remaining line segments of the triangle.

In more modern times the concept of directed distance is used to give better
understanding of what the theorem implies. For clarity we make the following
definition of a menelaus point.

Definition 2.3.1. An ordinary or ideal point lying on a side line of an ordi-
nary triangle, but not coinciding with a vertex of the triangle will be called a
menelaus point of the triangle for this side.

We can now examine the modern version of Menelaus’ theorem.

Theorem 2.3.1. [Menelaus’ Theorem] A necessary and sufficient condition
for three menelaus points D, E, F for the sides BC, CA, AB of an ordinary
triangle ABC to be collinear is that

BD

DC
· CE
EA
· AF
FB

= −1.

Proof. Necessity. In Figure 2.3.1 we let ` be the line containing the three
menelaus points D, E, F and we draw the line CG from C parallel to the side
BA of the triangle ABC.

Figure 2.3.1
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In the resulting figure 4BFD ∼ 4CGD and 4AFE ∼ 4CGE. In the first
case we have, disregarding signs, BD

CD = BF
CG , which can be written

BD

CD ·BF
=

1

CG
. (2.1)

In the second case we have AF
CG = AE

CE , which can be written

AF · CE
AE

= CG. (2.2)

Multiplying (2.1) and (2.2) together and rearranging terms, we get

BD

DC
· CE
EA
· AF
FB

=
CG

CG
= 1.

Now, assigning direction and observing that ` must cut either one or all three
of the sides externally, we have

BD

DC
· CE
EA
· AF
FB

= −1.

If ` is the line at infinity, then each of the ratios would be −1 and the result
follows.

Sufficiency. Suppose

BD

DC
· CE
EA
· AF
FB

= −1. (2.3)

Let us further suppose that EF cuts BC in a point D∗. Then D∗ is a menelaus
point and by the necessity part of the theorem it follows that

BD∗

D∗C
· CE
EA
· AF
FB

= −1. (2.4)

Now from equations (2.3) and (2.4) it follows that

BD∗

D∗C
=
BD

DC

and D∗ = D. That is, D, E, F are collinear.

We now turn to a similar theorem for concurrent lines discovered by Gio-
vanni Ceva.

Giovanni Ceva (1647-1734) was born in Milan. He later studied at the univer-
sity of Pisa. He taught at Pisa before being appointed Professor of mathematics
at the University of Mantua in 1686, where he remained for the rest of his life.
Most of Ceva’s work was in the field of geometry. In addition to rediscovering
and publishing Menelaus’ Theorem, he discovered what many consider to be one
of the most important results on the synthetic geometry of the triangle between
Greek times and the 19th Century. The theorem states that
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... lines from the vertices of a triangle to the opposite sides are con-
current precisely when the product of the ratio the sides are divided
is 1.

Definition 2.3.2. A line passing through a vertex of an ordinary triangle, but
not coinciding with a side of the triangle, will be called a cevian line.

Theorem 2.3.2. [Ceva’s Theorem] A necessary and sufficient condition for
three cevian lines AD, BE, CF of an ordinary triangle ABC to be concurrent is
that

BD

DC
· CE
EA
· AF
FB

= 1.

Proof. Necessity. In Figure 2.3.2, suppose AD, BE, CF are concurrent in
P . It may be assumed, without loss of generality, that P does not lie on the
line through A, parallel to BC.

Figure 2.3.2

Consider triangle ABD with transversal FPC. Applying Menelaus’ theorem
we get

AF

FB
· BC
CD
· DP
PA

= −1 (2.5)

Next, using triangle ADC and transversal BPE we get

DB

BC
· CE
EA
· AP
PD

= −1 (2.6)

Multiplying equations (2.5) and (2.6) together, we obtain

AF

FB
· BC
CD
· DP
PA
· DB
BC
· CE
EA
· AP
PD

= 1 (2.7)

Noting that DB = −BD, CD = −DC, PA = −AP and DP = −PD, we can
cancel like factors and rearrange to get

BD

DC
· CE
EA
· AF
FB

= 1.
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Sufficiency. Suppose
BD

DC
· CE
EA
· AF
FB

= 1 (2.8)

and let BE, CF intersect in P . Draw AP to cut BC in D∗. Then AD∗ is a
cevian line. Hence, by the necessity part of this theorem, we have

BD∗

D∗C
· CE
EA
· AF
FB

= 1. (2.9)

Now from equations (2.8) and (2.9) it follows that

BD∗

D∗C
=
BD

DC

and D∗ = D. That is, AD, BE, CF are concurrent.

Both Menelaus’ and Ceva’s theorems have trigonometric forms. They de-
pend on Theorem 2.2.5.

Theorem 2.3.3. (Trigonometric Form of Menelaus’ Theorem) A neces-
sary and sufficient condition for three menelaus points D, E, F for the sides
BC, CA, AB of an ordinary triangle ABC to be collinear is that

sinBAD

sinDAC
· sinCBE

sinEBA
· sinACF

sinFCB
= −1.

Proof. We use the figure below where dashed lines are added to better see
the angles referred to in the theorem and proof.

Figure 2.3.3

From Theorem 2.2.5 we have the following on the three sides of the triangle.

BD

DC
=

AB sinBAD

AC sinDAC

CE

EA
=

BC sinCBE

BA sinEBA

AF

FB
=

CA sinACF

CB sinFCB
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Therefore,

BD

DC
· CE
EA
· AF
FB

=
AB sinBAD

AC sinDAC

BC sinCBE

BA sinEBA

CA sinACF

CB sinFCB

=
AB ·BC · CA · sinBAD sinCBE sinACF

AC ·BA · CB · sinDAC sinEBA sinFCB

=
sinBAD sinCBE sinACF

sinDAC sinEBA sinFCB

Therefore it follows that

BD

DC
· CE
EA
· AF
FB

= −1 if and only if
sinBAD sinCBE sinACF

sinDAC sinEBA sinFCB
= −1.

Theorem 2.3.4. (Trigonometric Form of Ceva’s Theorem) A necessary
and sufficient condition for three cevian lines AD, BE, CF of an ordinary
triangle ABC to be concurrent is that

sinBAD

sinDAC
· sinCBE

sinEBA
· sinACF

sinFCB
= 1.

Proof. Exercise

We now introduce two nice applications of the theorems of Menelaus and
Ceva.

Theorem 2.3.5. If AD, BE, CF are any three concurrent cevian lines of an
ordinary triangle ABC, and if D′ denotes the point of intersection of BC and
FE, then D and D′ divide BC, one (D) internally and the other (D′) externally
in the same numerical ratio.

Proof. Consider the figure below. We are given that AD, BE, CF are any

Figure 2.3.4

three concurrent cevian lines, so we have by Ceva’s theorem

BD

DC
· CE
EA
· AF
FB

= 1.
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Furthermore, we have that D′, E, F are three collinear menelaus points. Hence,
by Menelaus’ theorem

BD′

D′C
· CE
EA
· AF
FB

= −1.

Equating these, we get

BD

DC
· CE
EA
· AF
FB

= −BD
′

D′C
· CE
EA
· AF
FB

which reduces to
BD

DC
= −BD

′

D′C
.

Therefore, D and D′ divide BC, one internally and one externally, in the same
numerical ratio.

From the above theorem we have the following interesting result.

Given a segment BC and a point D (or D′) that divides the segment
BC internally (externally) in some numerical ratio, we can construct
the other division point.

What is very interesting is that this construction can be done with straightedge
only!

Construction 2.3.1. Given a line segment BC and a point D, which divides

BC internally in the ratio BD
DC . Construct D′ so that BD′

D′C
= −BD

DC
.

Figure 2.3.5

Solution. In Figure 2.3.5, pick any point A not on line BC. Join A with
each of the points B, C, D.

Figure 2.3.6

Next draw any line from B cutting AC in a point E and AD in point P .
Draw CP extended cutting AB in the point F . Draw FE extended to cut the
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Figure 2.3.7

extension of BC in the desired point D′

NOTE. The position of A is not important. Furthermore, it should be noted
that if D is close to the midpoint of segment BC, D′ will approach an ideal
point.

Construction 2.3.2. Given a segment BC and a point D on BC extended

which divides BC externally in the ratio BD′

D′C
. Construct a point D such that

BD
DC

= −BD′

D′C

Figure 2.3.8

Solution. Pick any point A, not on line BC and connect A with B and C.
Then draw a line from D meeting AC at E and AB at F .

Figure 2.3.9

Draw BE and CF meeting in P . Draw AP intersecting BC at D′ the de-
sired point. See Figure 2.3.10

NOTE. Theorem 2.3.5 establishes the validity of these two constructions.

The next theorem is a very important result in projective geometry.

Definition 2.3.3. Two triangles ABC and A′B′C ′ are said to be copolar if
AA′, BB′, CC ′ are concurrent.
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Figure 2.3.10

In Figure 2.3.11 below ABC and A′B′C ′ are copolar from the point O.

Figure 2.3.11: Copolar Triangles

Definition 2.3.4. Two triangles ABC and A′B′C ′ are said to be coaxial if
the points of intersection of BC and B′C ′, CA and C ′A′, AB and A′B′ are
collinear.

In Figure 2.3.12 below ABC and A′B′C ′ are coaxial from the line containing
the points P, Q, R.

NOTE. Copolar triangles are also said to be perspective from a point and
coaxial triangles are said to be perspective from a line.

Theorem 2.3.6. (Desargues’ Theorem) Copolar triangles are coaxial, and
conversely.

Proof. Let the two triangles be ABC and A′B′C ′ in Figure 2.3.13 below.
Suppose AA′, BB′ CC ′ are concurrent at point O. Let P, Q, R be the points
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Figure 2.3.12: Coaxial Triangles

of intersection of BC and B′C ′, AC and A′C ′, AB and A′B′, respectively.

Figure 2.3.13: Desargues’ Theorem

Using triangle BCO with transversal (a line cutting all three sides) B′C ′P , we
have by Menelaus’ theorem,

BP

PC
· CC

′

C ′O
· OB

′

B′B
= −1 (2.10)

Now with triangle CAO with transversal C ′A′Q we have by Menelaus’ theorem,

CQ

QA
· AA

′

A′O
· OC

′

C ′C
= −1 (2.11)

And, finally, using triangle ABO with transversal A′B′R we have by Menelaus’
theorem,

AR

RB
· BB

′

B′O
· OA

′

A′A
= −1 (2.12)
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Multiplying (2.10), (2.11) and (2.12) we have

BP

PC
· CC

′

C ′O
· OB

′

B′B
· CQ
QA
· AA

′

A′O
· OC

′

C ′C
· AR
RB
· BB

′

B′O
· OA

′

A′A
= −1

Now, in the above equation, we find six factors in each numerator and denom-
inator that match up except for being oppositely directed. Therefore they will
cancel out as (−1)6 = 1. Therefore, we have after the reduction,

BP

PC
· CQ
QA
· AR
RB

= −1

and, by Menelaus’ theorem, P, Q, R are collinear. Thus copolar triangles are
coaxial.

Conversely, suppose the triangles are coaxial; that is, suppose P, Q, R are
collinear and let O be the point of intersection of BB′ and CC ′. Now triangles
CQC ′ and BRB′ are copolar from P and therefore, by the first part of Desar-
gues’ theorem, coaxial from O, A, A′. That is, O, A, A′ are collinear and AA′

meets BB′ and CC ′ in O. Thus coaxial triangles are copolar.

Exercises

2.3.1. Prove that the medians of a triangle are concurrent. (This point is called
the centroid of the triangle.)

2.3.2. Prove that the altitudes of a triangle are concurrent. (This point is called
the orthocenter of the triangle.)

2.3.3. Prove that if two triangles share a common base and a common cevian
line joining the nonshared vertices, then the ratio of the lengths of the common
cevian line is equal to the ratio of the areas of the two triangles.

2.3.4. If D, E, F are the points of contact of the inscribed circle of triangle
ABC with sides BC, CA, AB respectively, show that the lines AD, BE, CF
are concurrent. This point is called the Gergonne point of the triangle.

2.3.5. Let D, E, F be the points on the sides BC, CA, AB of triangle ABC
such that D is half way around the perimeter from A, E is half way around the
perimeter from B, and F is half way around the perimeter from C. Show that
AD, BE, CF are concurrent. This point is called the Nagel point of the
triangle.

2.3.6. Prove the trigonometric form of Ceva’s Theorem.

Definition 2.3.5. Let X and X ′ be points on a line segment PQ which are
symmetric with respect to the midpoint of PQ. Then X and X ′ are called a pair
of isotomic points for the segment PQ. See Figure 2.3.14.
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Figure 2.3.14

2.3.7. Show that if D and D′, E and E′, F and F ′, are isotomic points
for the sides of triangle ABC, and if AD, BE, CF are concurrent, then
AD′, BE′, CF ′ are also concurrent. (Two such related points of concurrency
are called a pair of isotomic conjugate points for a triangle.)

2.3.8. Let A,B,C,D,M be collinear with M the midpoint of AB and C between
A and M and D between M and B. Show that if AD = CB, then CM = MD.

2.3.9. Show that the Gergonne and Nagel points of a triangle are a pair of
isotomic conjugate points of the triangle.

2.3.10. Show that the tangents to the circumcircle of a triangle at the vertices of
the triangle intersect the opposite sides of the triangle in three collinear points.

2.3.11. If AD,BE,CF are three cevian lines of an ordinary triangle ABC,
concurrent at a point P , and if EF,DF and ED intersect the sides BC,CA and
AB of triangle ABC in the points D′, E′, F ′, show that D′, E′, F ′ are collinear.

2.3.12. If equilateral triangles BCA′, CAB′, ABC ′ are described externally
upon the sides BC, CA, AB of triangle ABC, show that AA′, BB′, CC ′ are
concurrent in a point.

2.3.13. Prove that the external bisectors of the angles of a triangle intersect the
opposite sides in three collinear points.

2.3.14. Given a triangle ABC, as in Figure 2.3.15, with EF parallel to BC.
Let P be the intersection of BE and CF and let AP meet BC in D and EF
in G. Prove that BD = DC and FG = GE. (Hint. Use Ceva’s theorem and
Theorem 1.3.5.)

Figure 2.3.15

2.3.15. Place 10 points and 10 lines in a plane such that each line contains
exactly three of the points and exactly three lines concur at each of the points.



78 CHAPTER 2. EUCLID A MODERN PERSPECTIVE

2.3.16. Let Ic be the center of an excircle for triangle ABC. Let D, E, F
be the points of tangency to this circle with sides BC, CA, AB, respectively.
Prove that AD, BE, CF are concurrent.

Figure 2.3.16
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2.4 A Projection Problem

This material is from an article of mine that appeared in the American Mathe-
matical Monthly, Vol. 73, No. 6, June-July, 1966.

As an undergraduate student in a projective geometry course, I was assigned
the following problem:

Show that any quadrangle may be projected into a parallelogram.

The solution of this problem usually went as follows: Let PQRS be the given
quadrangle with exterior diagonal points T and U . Let O be any point not in the
plane of PQRS and join the points P,Q,R, S, T, U with O. See Figure 2.4.1.
Now if the set of lines OP,OQ,OR,OS are cut by a plane α parallel to the
plane OTU we get points P ′ on OP , Q′ on OQ, R′ on OR and S′ on OS, which
when joined form a parallelogram. The fact that P ′Q′R′S′ is a parallelogram
is established as follows: T is on the line of intersection of the planes of OUT
and PQRS, therefore its image T ′ on α must be an ideal point since α and the
plane OUT are parallel. Now T ′ would be the intersection of P ′Q′ and R′S′, so
it follows that P ′Q′ and R′S′ are parallel. A similar argument establishes that
P ′S′ and Q′R′ are parallel.

Figure 2.4.1: O not in the plane of PQRS

What intrigued me about this problem was the fact that although we were
dealing with a three dimensional solution to the problem, the two dimensional
drawing in Figure 2.4.1 made the problem appear solvable in the plane. This led
to the investigation of the case in which the point O is in the plane of PQRS.
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More precisely, given a quadrangle PQRS and a point O in its plane, construct
a line X1X2 such that there is a parallelogram P ′Q′R′S′ which is copolar with
PQRS from the point O and coaxial from the line X1X2. See Figure 2.4.3.

Figure 2.4.2: Alternate View of O not in the plane of PQRS

Figure 2.4.3: O in the plane of PQRS

If O is in the plane of PQRS, the construction is as follows. Join O with
the vertices P,Q,R, S and the exterior diagonal points T and U . On the line
OP pick a point P ′ and construct lines P ′X1 and P ′X2 parallel to OT and OU ,
respectively. P ′X1 meets OQ in a point Q′ and P ′X2 meets OS in a point S′.
Join the points X1 and X2. The line X1X2 meets ST at X3 and QU at X4.
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Join the points X3 and S′ which meet OR at R′. Join Q′ and X4. This line
intersects OR at R′ and the figure P ′Q′R′S′ is the required parallelogram.

Proof. Triangles OP ′Q′ and UX2X4 are coaxial from the line PQ since
OP ′ meets UX2 in P , OQ′ meets UX4 in Q and P ′Q′ meets X2X4 in X1.
By Desargues’ Theorem, these triangles are copolar. By construction, P ′X2 is
parallel to OU . Therefore, the pole is an ideal point, and thus Q′X4 is parallel
to P ′X2. Since triangles OP ′S′ and TX1X3 are coaxial from line PS, we see,
by a similar argument, that S′X3 is parallel to P ′X1. All that remains to prove
is that Q′X4, S

′X3 and OR are concurrent at R′.
Suppose S′X3 meets OR at R′. Triangles OR′S′ and UX4X2 are coaxial

from the line RS, and therefore they must be copolar. Line S′X2 was con-
structed parallel to OU ; therefore R′X4 is parallel to OU . On the other hand,
it has already been established that Q′X4 is parallel to OU . Since one and only
one line can be drawn parallel to a given line through a given point, R′ is on
line Q′X4. Therefore, lines OR,Q′X4, S

′X3 are concurrent on R′.

It is worth noting that if O is chosen to be on the circle with diameter TU ,
the parallelogram P ′Q′R′S′ will be a rectangle.

Figure 2.4.4: O on circle with diameter TU

Note. As O moves along the semicircle from T to U , the rectangles go from
ones for which P ′Q′ < P ′S′ to ones for which P ′Q′ > P ′S′. Therefore, it would
appear that somewhere along the semicircle there is a locus for O such that
P ′Q′ = P ′S′ and P ′Q′R′S′ is a square.



82 CHAPTER 2. EUCLID A MODERN PERSPECTIVE

2.5 Cross Ratio

The cross ratio is also referred to as an anharmonic ratio or as a double ratio.
The history of the cross ratio dates back to the ancient Greeks; however, the
more modern idea of sensed magnitudes has allowed for a nice notation and con-
venience of manipulation. The modern treatment of cross ratios dates back to
the early 19th century and the work of Möbius. It was Möbius who introduced
the notation we will be using.

Definition 2.5.1. If A,B,C,D are four distinct points on an ordinary line, we
use the symbol (AB,CD) to represent the ratio of ratios (AC/CB)/(AD/DB)
and call it the cross ratio of the range of points A,B,C,D taken in this order.

Note. Regardless of the order of the points on the line, the cross ratio (AB,CD)
is computed as (AC/CB)/(AD/DB).

Example 2.5.1. Let the points A, B, C, D be points on the number line given
by

Figure 2.5.1

To compute (AB,CD) we find AC = −7, CB = 10, AD = −2 and DB = 5.
Therefore, (AB,CD) = (AC/CB)/(AD/DB) = (−7/10)/(−2/5) = 7/4

If we want to compute (CB,AD), we need to compute it as (CB,AD) =
(CA/AB))/(CD/DB) = (7/3)/(5/5) = 7/3.

The order of the points within the cross ratio is critical in how the cross ratio is
computed. Since there are twenty-four permutations of four points, it appears
we may have a problem. However, it is not as bad as it seems. As it turns out,
there are only six distinct values for the twenty-four rearrangements. That is,
we can partition the twenty-four arrangements of the four points into six classes,
with every element in each class having the same value. We begin by looking
at three basic methods of rearrangement.

Theorem 2.5.1. If we let (AB,CD) = r and in the symbol (AB,CD) we

1. interchange any two of the points and at the same time interchange the
other two points, the cross ratio’s value is unaltered,



2.5. CROSS RATIO 83

2. we interchange only the first pair of points, the resulting cross ratio has

value
1

r

3. we interchange only the middle pair of points, the resulting cross ratio has
value 1− r.

Before we prove this theorem, let us examine its implications. For example,
Part (1) gives

(AB,CD) = (BA,DC) = (CD,AB) = (DC,BA) = r.

To get (BA,DC) we interchanged A and B and at the same time C and D. To
get (CD,AB) we switched A and C and at the same time B and D. To get
(DC,BA) we switched A and D and at the same time B and C.

For Part (2) we interchange only the first pair obtaining (BA,CD) = 1
r . But

then we can apply the rearrangements given in Part (1) to get

(BA,CD) = (AB,DC) = (DC,AB) = (CD,BA) =
1

r
.

Part (3) says that (AC,BD) = 1 − r. Again, applying the rearrangements of
Part (1) to this cross ratio gives

(AC,BD) = (BD,AC) = (CA,DB) = (DB,CA) = 1− r.

The proof for Theorem 2.5.1 is rather straightforward. From (AB,CD) = r, we
can get the results of Part (1) by expanding and using the properties of ratios.

(BA,DC) = (BD/DA)/(BC/CA) =
BD · CA
DA ·BC

=
AC ·DB
CB ·AD

= (AB,CD).

The remaining two are left as an exercise.

For Part (2), we get by expansion

(BA,CD) =
BC

CA

/
BD

DA
=
BC ·DA
CA ·BD

=
1

AC·DB
CB·AD

=
1

r
.

The others in Part (2) follow from Part (1).

Part (3) requires a little more effort. We wish to show that (AC,BD) = 1− r.
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Expanding the left side gives,

(AC,BD) =

(
AB

BC

) / (
AD

DC

)
=

(
AC + CB

BC

) / (
AD

DB +BC

)
=

(AC + CB)(DB +BC)

BC ·AD

=
AC ·DB + CB ·DB +AC ·BC + CB ·BC

BC ·AD

=
AC ·DB
BC ·AD

+
CB ·DB +AC ·BC + CB ·BC

BC ·AD

= −AC ·DB
CB ·AD

+
BC(BD +AC + CB)

BC ·AD

= −r +
AD

AD
= −r + 1

= 1− r

Again, the remaining ones follow from Part (1).

Example 2.5.2. Use the arrangement of points in Figure 2.5.1 to verify the
results of Theorem 2.5.1.

We will look at one example for each part of the theorem. The rest are left
as an exercise.First recall that we found that (AB,CD) = 7/4, so that is our
value for r.

Interchange A and B and interchange C and D to get

(BA,DC) = (BD/DA)/(BC/CA) = (−5/2)/(−10/7) = 7/4 = r.

Interchange A and B gives

(BA,CD) = (BC/CA)/(BD/DA) = (−10/7)/(−5/2) = 4/7 = 1/r.

Interchange B and C to obtain

(AC,BD) = (AB/BC)/(AD/DC) = (3/−10)/(−2/−5) = −3/4 = 1−7/4 = 1−r.

From Theorem 2.5.1 we can then partition the twenty-four rearrangements
of (AB,CD) into six sets of four, as given in the following theorem.
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Theorem 2.5.2. If (AB,CD) = r, then

(1) (AB,CD) = (BA,DC) = (CD,AB) = (DC,BA) = r

(2) (BA,CD) = (AB,DC) = (DC,AB) = (CD,BA) =
1

r

(3) (AC,BD) = (BD,AC) = (CA,DB) = (DB,CA) = 1− r

(4) (CA,BD) = (DB,AC) = (AC,DB) = (BD,CA) =
1

1− r

(5) (BC,AD) = (AD,BC) = (DA,CB) = (CB,DA) = 1− 1

r
=
r − 1

r

(6) (CB,AD) = (DA,BC) = (AD,CB) = (BC,DA) =
r

r − 1

We see that the first three are merely restatements of the results of Theorem
2.5.1. The cross ratios in (4) are obtained by applying Part (2) of Theorem 2.5.1
to (3) in Theorem 2.5.2. The results in (5) are obtained by applying Part (3) of
Theorem 2.5.1 to (2) in Theorem 2.5.2. And the results in (6) are obtained by
applying Part (2) of Theorem 2.5.1 to (5) of Theorem 2.5.2.

The idea of cross ratio is not restricted to a range of points. We can also
define the cross ratio of a pencil of lines.

Definition 2.5.2. The cross ratio of a pencil of four distinct coplanar lines
V A, V B, V C, V D concurrent at an ordinary point V is given by

V (AB,CD) =

(
sinAV C

sinCV B

) / (
sinAVD

sinDV B

)
.

The following theorem follows immediately from the properties of parallel
lines.

Theorem 2.5.3. If four distinct parallel lines a, b, c, d are cut by two transver-
sals in the points A,B,C,D and A′, B′, C ′, D′ respectively, then (AB,CD) =
(A′B′, C ′D′).

Definition 2.5.3. The cross ratio of a pencil of four distinct parallel lines,
a, b, c, d is defined to be the cross ratio of the range of points A,B,C,D deter-
mined by cutting the parallel lines with any transversal.

Theorem 2.5.4. The cross ratio of any pencil of four distinct lines is equal to
the cross ratio of the corresponding four points in which any ordinary transversal
cuts the pencil.

Proof. If the vertex V is an ideal point, then the result follows from the
fact that the four lines would be parallel.
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Figure 2.5.2: Cross Ratio of Four Lines

Suppose then that V is an ordinary point, and let A,B,C,D be the points in
which the pencil is cut by an ordinary transversal, as in the figure above. Then
we have

AC

CB
=

V A sinAV C

V B sinCV B

AD

DB
=

V A sinAVD

V B sinDV B

Thus, (
AC

CB

) / (
AD

DB

)
=

(
sinAV C

sinCV B

) / (
sinAVD

sinDV B

)
and hence it follows that

(AB,CD) = V (AB,CD).

The following are useful corollaries to Theorem 2.5.4.

Corollary 2.5.1. If A,B,C,D and A′, B′, C ′, D′ are two coplanar ranges on
distinct bases such that (AB,CD) = (A′B′, C ′D′) and if AA′, BB′, CC ′ are
concurrent, then DD′ passes through the point of concurrence.

Proof. (See the figure below) Let AA′, BB′, CC ′ meet at V . Draw V D and
suppose it cuts A′B′ at X. Now by Theorem 2.5.4, (AB,CD) = (A′B′, C ′X),
but we know (AB,CD) = (A′B′, C ′D′). Hence (A′B′, C ′X) = (A′B′, C ′D′)
and thus

A′C ′

C ′B′
D′B′

A′D′
=
A′C ′

C ′B′
XB′

A′X

which implies
D′B′

A′D′
=
XB′

A′X
.

Therefore D′ = X and DD′ passes through V .
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Figure 2.5.3: Corollary 1

Corollary 2.5.2. If A,B,C,D and A′, B′, C ′, D′ are two coplanar ranges on
distinct bases such that (AB,CD) = (A′B′, C ′D′) and if A and A′ coincide,
then BB′, CC ′, DD′are concurrent.

Proof. (See Figure 2.5.4) Let BB′, CC ′ meet in V . Now since A and A′

coincide, AA′ also meets in V . Therefore, by Corollary 2.5.1, DD′ must meet
AA′, BB′, CC ′ in V .

Corollary 2.5.3. If V A, V B, V C, V D and V ′A, V ′B, V ′C, V ′D are two copla-
nar pencils on distinct vertices such that V (AB,CD) = V ′(AB,CD) and if
A,B,C are collinear, then D lies on the line of collinearity.

Figure 2.5.4: Corollaries 2.5.2 and 2.5.3

Proof. (See Figure 2.5.4) Suppose V D crosses AC at X and V ′D crosses
AC at Y , as in the figure below. Now V (AB,CD) = V ′(AB,CD). How-
ever, V (AB,CD) = (AB,CX) by Theorem 2.5.4. Furthermore, V ′(AB,CD) =
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(AB,CY ). Hence (AB,CX) = (AB,CY ) and therefore X ≡ Y which means
that D is collinear with A,B and C.

Corollary 2.5.4. If V A, V B, V C, V D and V ′A, V ′B, V ′C, V ′D are two copla-
nar pencils on distinct vertices such that V (AB,CD) = V ′(AB,CD) and if A
lies on V V ′, then B,C,D are collinear.

Proof. In the figure below, the position of A on V V ′ is not important as
long as A does not coincide with V or V ′. Now let BC meet V V ′ at A′. Then
V (A′B,CD) = V ′(A′B,CD) and A′, B,C are collinear. Thus, by Corollary
2.5.3, D lies on the line of collinearity.

Figure 2.5.5: Corollary 2.5.4

Theorem 2.5.5. If A, B, C, D are any four distinct points on a circle, and
if V and V ′ are any two points on the circle, then V (AB,CD) = V ′(AB,CD).
If V should coincide with one of the points, say A, then V A is taken as the
tangent to the circle at A,

The proof of this theorem is left as an exercise. The proof follows from
elementary angle relations that were discussed in Chapter 1.

Some Observations

If A,B,C,D are four distinct collinear points, we can show that the pairs A,B
and C,D do or do not separate each other according as (AB,CD) is negative
or positive. Note that a similar statement holds for lines as well. Theorem 2.5.4
allows us to prove one and the other follows immediately. We saw earlier that
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there are twenty-four arrangements of the four points A,B,C,D. All twenty-
four possibilities can be reduced to three cases. For separation, there is one case
that covers eight of the twenty-four possibilities.
Case 1. Separation would look like this

Note that we could have put any one of the 4 points in the first position, once
that is done, the second position can be one of the 2 points from the second
pair. There is just 1 choice for the third position, it has to be the one that
pairs with the one chosen in the first position. There is only 1 choice for the
fourth. Thus we take care of 4 · 2 · 1 · 1 = 8 of the twenty-four arrangements.

Since (AB,CD) = AC
CB
· DB
AD

, we see that according to the arrangement of the

line, we have AC,CB and AD are all positive and DB is negative and hence
(AB,CD) < 0.

For non separation, all possibilities can be reduced to the following two cases:
Case 2 represents eight of the twenty-four arrangements and Case 3 represents
the final eight arrangements. In Case 2, AC,AD are positive and CB,DB are
both negative and the result is (AB,CD) > 0. In Case 3, AC,CB,AD,DB are
all positive and (AB,CD) > 0.
Case 2.

Case 3.

Exercises

2.5.1. Use Euler’s Theorem: AD ·BC +BD ·CA+CD ·AB = 0 to show that
(AC,BD) = 1− r, where r = (AB,CD).

2.5.2. Prove Theorem 2.5.5.

2.5.3. If A,B,C,D,E are collinear points, show that

(a) (AB,CE)(AB,ED) = (AB,CD).

(b) (AE,CD)(EB,CD) = (AB,CD).

2.5.4. If (AB,CD) = m and (AB,CE) = n, show that (AC,DE) =
n− 1

m− 1
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2.5.5. If O,A,B,C,A′, B′, C ′ are collinear points and if

OA ·OA′ = OB ·OB′ = OC ·OC ′,

show that (AB′, BC) = (A′B,B′C ′).

2.5.6. Let a, b, c, d be four distinct fixed tangents to a given circle and let p be a
variable fifth tangent. If p cuts a, b, c, d in A,B,C,D, show that the cross ratio
(AB,CD) is a constant independent of the position of p.

2.5.7. Use Theorem 2.5.4 to prove Desargues Theorem.

Historical Note.

Girard Desargues (1591-1661) was a French engineer and mathematician who
is credited with inventing “projective geometry.” His original work was not
well know outside a small circle of French mathematicians consisting of Marin
Mersenne, Rene Descartes, Étienne Pascal and Blaise Pascal, mainly because
the geometric topic of the time was the newly proposed “analytic geometry.”
Also to its detriment was Desargues’ style of writing which was not only rigorous
and original but also “dense,” as some have described it. It wasn’t until pupils of
Gaspard Monge (1746-1818) reinvented projective geometry out of “descriptive
geometry” that Desargues’ contribution was fully recognized.
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2.6 Harmonic Division

A special case of the cross ratio arises when the pairs A,B and C,D sepa-
rate each other and when the value of the cross ratio is −1. That is, when
(AB,CD) = −1, and C and D divide AB internally and externally in the same
numerical ratio.

Definition 2.6.1. If A,B,C,D are four collinear points such that (AB,CD) =
−1, the segment AB is said to be divided harmonically by C and D. The
points C and D are called harmonic conjugates of each other with respect
to A and B, and the four points A,B,C,D are said to be a harmonic range.
Similarly, if V (AB,CD) = −1 we say that V A, V B, V C, V D constitute a har-
monic pencil.

The following are some elementary theorems for harmonic division.

Theorem 2.6.1. If C and D divide AB harmonically, then A and B divide CD
harmonically.

Proof. By Theorem 2.5.1, if (AB,CD) = −1, then (CD,AB) = −1

Theorem 2.6.2. The harmonic conjugate with respect to A and B of the mid-
point of AB is the ideal point (point at infinity) on AB.

Theorem 2.6.3. (AB,CD) = −1 if and only if
2

AB
=

1

AC
+

1

AD
.

Proof. Let A,B,C,D be four collinear points with (AB,CD) = −1. Then(
AC

CB

) / (
AD

DB

)
= −1 or

AC

CB
= −AD

DB
.

Since we need denominators of AB,AC,AD, we invert and divide by AB to
get

CB

AB ·AC
= − DB

AB ·AD
.

Using A as an origin for the numerators and writing −DB as BD, we have

AB −AC
AB ·AC

=
AD −AB
AB ·AD

1

AC
− 1

AB
=

1

AB
− 1

AD
.

Thus,
2

AB
=

1

AC
+

1

AD
.

All the above steps are reversible, so the converse follows.
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Theorem 2.6.4. (AB,CD) = −1 if and only if OB
2

= OC · OD, where O is
the midpoint of AB.

Proof. If (AB,CD) = −1 then
AC

CB
= −AD

DB
. If we use O as an origin and

expand, we get
OC −OA
OB −OC

= −OD −OA
OB −OD

,

but OA = −OB, so

OC +OB

OB −OC
= −OD +OB

OB −OD
=
OD +OB

OD −OB

Multiplying both sides by (OB −OC)(OD −OB) gives

(OC +OB)(OD −OB) = (OD +OB)(OB −OC)

which simplifies to, upon multiplication,

OB
2

= OC ·OD.

Since all of the above steps are reversible, the converse follows.

Theorem 2.6.2 gives a convenient method for relating harmonic division and
harmonic progression, which we now define.

Definition 2.6.2. The sequence of numbers {a1, a2, a3, . . . , an}is a harmonic

progression if the sequence of numbers

{
1

a1
,

1

a2
,

1

a3
, . . . ,

1

an

}
, is an arithmetic

progression.

Theorem 2.6.5. The sequence of numbers {a1, a2, a3} is a harmonic progres-

sion if and only if
2

a2
=

1

a1
+

1

a3
.

Proof. Suppose {a1, a2, a3} is a harmonic progression. Then by the above

definition,

{
1

a1
,

1

a2
,

1

a3

}
is an arithmetic progression and for some d,

1

a2
=

1

a1
+ d,

1

a3
=

1

a2
+ d =

1

a1
+ d+ d =

1

a1
+ 2d.

Thus,
1

a1
+

1

a3
=

1

a1
+

1

a1
+ 2d = 2

(
1

a1
+ d

)
=

2

a2
.

On the other hand, if
2

a2
=

1

a1
+

1

a3
, then

1

a2
− 1

a3
=

1

a1
− 1

a2
and the

difference of consecutive terms is constant and the sequence

{
1

a1
,

1

a2
,

1

a3

}
is an

arithmetic progression and {a1, a2, a3} is a harmonic progression.
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Theorem 2.6.6. If (AB,CD) = −1, then {AC,AB,AD} is a harmonic pro-
gression.

Let us digress a little. In calculus, when we discussed infinite series, we

investigated the series

∞∑
k=1

1

k
and even though it was a divergent series it had

its own name. We called it the harmonic series. Is it related to our current
discussion? If we take any three consecutive terms of the harmonic series, say{

1

n
,

1

n+ 1
,

1

n+ 2

}
, their reciprocals form the arithmetic progression {n, n +

1, n+ 2} and thus, by definition,

{
1

n
,

1

n+ 1
,

1

n+ 2

}
is a harmonic progression.

We can also verify that
2
1

n+1

=
1
1
n

+
1
1

n+2

.

We are used to using the terms quadrangle and quadrilateral interchange-
ably; however, a complete quadrangle and a complete quadrilateral are quite
different in their construction. There are also some very interesting harmonic
properties in both of them.

Definition 2.6.3. A complete quadrangle (See Figure below) is the figure
formed by four coplanar points, no three of which are collinear. The four points
are called the vertices of the complete quadrangle, and the six lines determined
by pairs of vertices are called the sides of the complete quadrangle. Pairs of
sides not passing through any common vertex are called opposite sides of the
complete quadrangle. The points of intersection of the three pairs of opposite
sides are called the diagonal points of the complete quadrangle, and the trian-
gle determined by the three diagonal points is called the diagonal 3-point of
the complete quadrangle.

Figure 2.6.1: Complete Quadrangle

In Figure 2.6.4, the four points A,B,C,D are the vertices. The sides are the
six lines AB,BC,CD,DA,AC,BD. Furthermore AB,CD are opposite sides in
they don’t share a vertex. AD,BC have no vertex in common and are opposite
sides as are AC,BD. These opposite sides intersect in the three diagonal points
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F,G,E. (Note. The line EH is not part of the quadrangle, but a line that will
be used later.)

Definition 2.6.4. A complete quadrilateral (See Figure below) is the figure
formed by four coplanar lines, no three of which are concurrent. The four lines
are called the sides of the complete quadrilateral, and the six points determined
by pairs of sides are called the vertices of the complete quadrilateral. Pairs
of vertices not lying on any common side are called opposite vertices of the
complete quadrilateral. The lines through the three pairs of opposite vertices
are called the diagonal lines of the complete quadrilateral, and the triangle
determined by the three diagonal lines is called the diagonal 3-line of the
complete quadrilateral.

Figure 2.6.2: Complete Quadrilateral

Note. The line EW is not part of the complete quadrilateral in the figure
above. It is added for later use. The reader should carefully identify each part
of the complete quadrilateral given in the above figure.

We now give two theorems which identify harmonic ranges and harmonic
pencils on the complete quadrilateral and complete quadrangle.

Theorem 2.6.7. On each diagonal line of a complete quadrilateral there is a
harmonic range consisting of the two vertices of the complete quadrilateral and
the two vertices of the diagonal 3-line lying on it.

Proof. In Figure 2.6.3 we need to show that (EF, Y Z) = −1. Applying
Theorem 2.5.4 and then Theorem 2.5.2 from the Cross Ratio section, we have

(EF, Y Z) = X(EF, Y Z) = X(WF,AB) = (WF,AB) = (AB,WF ).

If we look at the figure for the quadrilateral with some of the lines removed
(see the figure below), we see the figure we had for Theorem 2.3.5, the theorem
about dividing a segment internally and externally in the same ratio.
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Figure 2.6.3: Harmonic Range on Diagonal lines

Thus it follows that (AB,WF ) = −1 and hence (EF, Y Z) = −1. Similarly,
we can also show that (DB,XZ) = (AC,XY ) = −1 in the quadrilateral.

It seems that, because of the close relationship between the quadrilateral and
the quadrangle, we should have a similar result for the quadrangle involving a
pencil of lines. In fact, we do have a dual statement for Theorem 2.6.7.

Theorem 2.6.8. At each diagonal point of a complete quadrangle there is a
harmonic pencil consisting of the two sides of the complete quadrangle and the
two sides of the diagonal 3-point passing through it.

Figure 2.6.4: Harmonic Pencil on Diagonal Points

Adding the points H, K and L for reference in Figure 2.6.4 we have the
harmonic pencils: E(BC,HG), F (BD,EL), G(FK,AB), as well as all the other
possibilities.
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Exercises

2.6.1. Justify the following methods of constructing the harmonic conjugate D
of a given point C with respect to given points A and B:

(a) Take a point P , not on line AB and connect P to A,B,C. Through B
draw the parallel to AP cutting the line PC in M and on this line mark
off BN = MB. Then PN cuts line AB in the sought point D.

(b) Draw a circle on AB as diameter. If C lies between A and B, draw the
perpendicular from C to AB to cut the circle in T . Then the tangent to
the circle at T cuts the line AB in the sought point D. If C is not between
AB, draw one of the tangents from C to the circle with T being the point of
contact of the tangent. The sought point D is the foot of the perpendicular
dropped from T to AB.

(c) Connect any point P not on line AB with A,B,C. Through A draw any
line (other than AB or AP ) to cut PC and PB in M and N respectively.
Draw BM to cut PA in G. Now draw GN to cut AB in the sought point
D.

2.6.2. Given a line segment AB and its midpoint M . Let P be any point not
collinear with A and B. Use part (c) of the above exercise to construct a line
through P that is parallel to AB.

2.6.3. If (AB,CD) = −1 and O and O′ are the midpoints of AB and CD
respectively, show that (OB)2 + (O′C)2 = (OO′)2.

2.6.4. Establish the following.

(a) Show that the lines joining any point on a circle to the vertices of an
inscribed square form a harmonic pencil.

(b) Show more generally, that the lines joining any point on a circle to the
extremities of a given diameter and to the extremities of a given chord
perpendicular to the diameter form a harmonic pencil.

(c) Triangle ABC is inscribed in a circle of which DE is the diameter per-
pendicular to side AC. If lines DB and EB intersect AC in L and M ,
show that (AC,LM) = −1.

(d) Show that the diameter of a circle perpendicular to one of the sides of an
inscribed triangle is divided harmonically by the other two sides.

2.6.5. In triangle ABC we have (BC,PP ′) = (CA,QQ′) = (AB,RR′) = −1.
Show that AP ′, BQ′, CR′ are concurrent if and only if P,Q,R are collinear.

2.6.6. If P, P ′ divide one diameter of a circle harmonically and Q,Q′ divide
another harmonically, prove that P,Q, P ′, Q′ are concyclic (lie on a circle).
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2.6.7. Let BC be a diameter of a given circle, let A be a point on BC produced,
and let P and Q be the points of contact of the tangents to the circle from point
A. Show that P (AQ,CB) = −1.

2.6.8. Two circles intersect in points A and B. A common tangent touches the
circles at P and Q and cuts a third circle through A and B in L and M . Prove
that (PQ,LM) = −1.

2.6.9. Prove that the line through the points of contact of the incircle with two
sides of a triangle cuts the third side in a point which, with the point of contact
and the other two vertices on this side, forms a harmonic range.

2.6.10. Let AD,BE,CF be three cevian concurrent lines for triangle ABC. Let
D′, E′, F ′ be the harmonic conjugates of D,E, F with respect to BC,CA,AB
respectively. Show that D′, E′, F ′ are collinear.

2.6.11. Let A,B,C be collinear points with C between A and B. Draw the circle
on AB as diameter. Let M be the midpoint of arc AB. Draw CM meeting the
circle at P . Show that

(a) PM bisects angle APB.

(b) the perpendicular to PM at P meets AB in D, the harmonic conjugate of
C with respect to A and B.

2.6.12. If P (AB,CD) = −1 and if PC is perpendicular to PD, show that PC
and PD are bisectors of angle APB.

2.6.13. Given a non-square rectangle. With straightedge alone, construct an
isosceles triangle with area equal to one-half that of the given rectangle.

2.6.14. Given a segment AB and its midpoint M . With a straightedge alone,
divide the segment AB into four equal parts.

2.6.15. Given two parallel lines. With a straightedge alone, divide one of the
lines into eight equal parts.



98 CHAPTER 2. EUCLID A MODERN PERSPECTIVE

2.7 Orthogonal Circles

We now turn our attention to the topic of orthogonal circles. Orthogonal cir-
cles arise in a variety of topics in geometry and here we will discuss the basic
concepts we may need. Since we will be working in the extended plane, it is
possible to have circles that differ from an ordinary circle (that is, a circle whose
center is an ordinary point and whose radius is finite). We could possibly have
a circle whose center is an ideal point. If this circle has any part in the ordinary
plane, it would appear as a line. To allow for this possibility we will introduce
the term “circle” (with quotation marks). Thus a “circle” will either be an or-
dinary circle or a straight line (a “circle” whose center is an ideal point). (Some
geometers use the term stircle instead of “circle”.)

Definition 2.7.1. The angles of intersection of two coplanar curves are the
angles between the two tangent lines at the points of intersection. If the angles
of intersection are right angles, the curves are said to be orthogonal.

We can summarize several basic facts about circles in the following theorem.

Theorem 2.7.1. (1) The angles of intersection at one of the common points
of two intersecting circles are equal to those at the other common point.
(2) If two circles are orthogonal, a radius of either, drawn to a point of intersec-
tion, is tangent to the other; conversely, if the radius of one of two intersecting
circles, drawn to a point of intersection, is tangent to the other, the circles are
orthogonal.
(3) Two circles are orthogonal if and only if the square of the distance between
their centers is equal to the sum of the squares of their radii.
(4) If two circles are orthogonal, the center of each is outside the other.

Proof. For Part (1), consider the following figure where CA and CB are
the tangents to the circle centered at O′ and DA and DB are the tangents to
the circle centered at O.

Figure 2.7.1
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Triangle ACB is isosceles since CA and CB are tangents to circle O′. Therefore
∠CAB = ∠CBA. Likewise, triangle ADB is isosceles since DA and DB are
tangents to circle O. Therefore ∠DAB = ∠DBA. The angle of intersection at
A is ∠CAB +∠DAB which is equal to ∠CBA+∠DBA, the angle of intersec-
tion at B.

Part (2) is evident since the radius of a circle drawn to a point of tangency
is perpendicular to the tangent and there is only one tangent at a given point,
the tangent and the radius of the other circle must be the same since the circles
are orthogonal; and conversely.

For Part (3), if circles O and O′ are orthogonal then by Part (2) we have
that triangle OTO′ is a right triangle and by the Pythagorean theorem (OT )2 +
(O′T )2 = (OO′)2.

Figure 2.7.2

Part (4) is immediate, since a tangent line to a circle cannot be drawn from
a point inside the circle, if two circles are orthogonal the center of each lies
outside the other.

The following theorem relates orthogonal circles with harmonic ranges.

Theorem 2.7.2. If two circles are orthogonal, then any diameter of one which
intersects the other is cut harmonically by the other; conversely, if a diameter
of one circle is cut harmonically by a second circle, then the two circles are
orthogonal.

Proof. Let the circles Σ and Σ′ be two orthogonal circles. Let the diameter
AOB of circle Σ cut the other circle, Σ′, in the points C and D. Let T be one of
the points of intersection of the two circles. By Theorem 2.7.1(2), OT is tangent
to circle Σ′ and hence (OT )2 = OC ·OD. However, since OT and OB are radii
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of circle Σ and hence equal, we have (OB)2 = OC · OD. It now follows, from
Theorem 2.6.4, that (AB,CD) = −1.

Figure 2.7.3

On the other hand, if (AB,CD) = −1, then by Theorem 2.6.4, (OT )2 =

(OB)2 = OC ·OD and hence OT must be a tangent to circle Σ′. Therefore, by
Theorem 2.7.1(2), the circles are orthogonal.

We will now look at some results that use the concept of a “circle.” In order
for some of our statements to make sense, we must agree that two straight lines
(which might represent “circles”) are tangent if they either coincide or they
are parallel. Furthermore, an ordinary circle and a straight line (“circle”) are
orthogonal if and only if the line passes through the center of the circle; that is,
coincides with a diameter.

Theorem 2.7.3. There is one and only one “circle” orthogonal to a given circle
Σ and passing through two given interior points A and B of Σ.

Let Σ be a circle with center O and let A and B be two points interior to Σ.
If A,O,B are collinear, then the “circle” is the straight line through A and B.
If A,O,B are not collinear, then let A′ be the harmonic conjugate of A with re-
spect to the diameter of Σ passing through A. (See Figure 2.7.4.) Now A,B,A′

are not collinear and hence determine a unique circle Σ′ and by Theorem 2.7.2
it is orthogonal to Σ. Hence we have at least one “circle” through the points A
and B orthogonal to Σ.

To show that there is only one such “circle,” let Σ′ represent any “circle”
through A and B orthogonal to Σ. If Σ′ is a straight line, then it must be a
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Figure 2.7.4

diameter of Σ and coincide with the diameter through A,O,B we found earlier.
If Σ′ is a circle, then by Theorem 2.7.2 it must also pass through A′ and it is the
circle we found earlier passing through A,B,A′. Therefore the circle is unique,
since three noncollinear points uniquely determine a circle.

Theorem 2.7.4. There is a unique “circle” orthogonal to a given circle, Σ,
and tangent to a given line ` at an ordinary point A of ` not on Σ.

Proof. If O lies on `, then ` is the unique “circle” satisfying the stated con-
ditions. If O does not lie on `, then draw the diameter through A (see Figure
2.7.5 below). Find B, the harmonic conjugate of A with respect to C and D,
the endpoints of the diameter. Draw the perpendicular to ` at A to determine a
radius line from the point of tangency A. Construct the perpendicular bisector
of AB at M meeting the perpendicular drawn from A at O′. Recall the per-
pendicular bisector of a chord of a circle passes through the center of the circle.
This locates the center of the circle withO′A as the radius. This circle is unique.

The concept of orthogonal circles was introduced in the nineteenth century
along with other concepts we will be discussing in this chapter. In particular,
was the concept of the power of a point with respect to a circle. The basic idea
was conveyed in the following theorem.

Theorem 2.7.5. If P is a fixed point in the plane of a given circle Σ, and if
a variable line ` through P intersects Σ in points A and B, then the product
PA · PB is independent of the position of `.

Definition 2.7.2. The power of a point with respect to a circle is the prod-
uct of the directed distances of the point from any two points on the circle and
collinear with it.
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Figure 2.7.5

Figure 2.7.6

In Figure A, on the next page, the power of the point P with respect to the
circle centered at O is PQ · PR > 0. In Figure B, P and Q coincide, so that
PQ · PR = 0 since PQ = 0. In Figure C, we see that PQ · PR < 0, since PQ
and PR are directed in opposite directions.

In Figure 2.7.6, we see that if the point P lies outside the circle, its power
with respect to the circle is also equal to the square of the tangent from the
point P to the circle. As an exercise, one might show that if P is inside the
circle, then its power with respect to the circle is the negative of the square of
half the chord perpendicular to the diameter passing through P . These obser-
vations lead to the following theorem.

Theorem 2.7.6. Let P be a point in the plane of a circle Σ of center O and
radius r. Then the power of P with respect to Σ is equal to (OP )2 − r2.

Proof. For the case where P is outside the circle, we see from Figure 2.7.8,
below left, that, using (PT )2 as the power of the point P , (PT )2 + r2 = (OP )2.
Hence we have (PT )2 = (OP )2 − r2.
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Figure 2.7.7: Powers of a Point

Figure 2.7.8

For the case where P is inside Σ, consider Figure 2.7.8, above right. Recall that
if P is inside the circle, then its power with respect to the circle is the negative
of the square of half the chord perpendicular to the diameter passing through
P . Hence the power of P is given by −(PS)2 and since r2 = (OP )2 + (PS)2, it
follows that −(PS)2 = (OP )2 − r2.

(Note: We can also show this without using the above argument. Since
the power is independent of the line used, we use a diameter. Then OQ = r =
OP+PQ and PR = PO+OR = PO−r. Thus, PQ = −OP+r, PR = −OP−r
and PQ · PR = (OP )2 − r2.)

Finally, using the concept of the power of a point with respect to a circle,
we can get an equivalent statement for Theorem 2.7.1(3).

Theorem 2.7.7. Two circles are orthogonal if and only if the power of the cen-
ter of either with respect to the other be equal to the square of the corresponding
radius.

Proof. Let Σ and Σ′ be the two circles with centers O and O′ and radii r
and r′. The power of O with respect to Σ′ is, by Theorem 2.7.6, (O′O)2 − r′2.
If (O′O)2− r′2 = r2 then (O′O)2 = r′2 + r2 and by Theorem 2.7.1(3) the circles
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are orthogonal.
On the other hand, suppose the circles are orthogonal. Then by Theorem

2.7.1(3), (O′O)2 = r′2+r2 and r2 = (O′O)2−r′2. By Theorem 2.7.6, (O′O)2−r′2
is the power of O with respect to Σ′, and the power of O with respect to Σ′ is r′2.

Exercises

2.7.1. Show that if d is the distance between the centers of two intersecting
circles, c the length of their common chord, r and r′ their radii, then the circles
are orthogonal if and only if cd = 2rr′.

2.7.2. If a line drawn through a point of intersection of two circles meets the
circles again in P and Q respectively, show that the circles with centers P and
Q, each orthogonal to the other circle, are orthogonal to each other.

2.7.3. Let H be the orthocenter of a triangle ABC. Show that the circles on
AH and BC as diameters are orthogonal.

2.7.4. If AB is a diameter and M any point of a circle of center O, show that
the two circles AMO and BMO are orthogonal.

2.7.5. If the quadrilateral whose vertices are the centers and the points of in-
tersection of two circles is cyclic, prove that the circles are orthogonal.

Definition 2.7.3. Four points are said to be an orthocentric group of points if
each is the orthocenter of the triangle formed by the remaining three.

2.7.6. Show that the vertices and the orthocenter of a triangle form an ortho-
centric group of points.

2.7.7. Let two orthogonal circles be given. If a diameter AB of the first is
perpendicular to the diameter CD of the second, show that the points A,B,C,D
form an orthocentric group of points.
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2.8 The Radical Axis of a Pair of Circles

In this material we will revisit powers of points and orthogonal circles. One
might wonder if it is possible for a point to have the same power with respect
to two distinct circles. If so, can the locus for all such points be found? One
might also wonder how can a circle be constructed that is orthogonal to two
given circles, if possible.

Definition 2.8.1. The locus of a point whose powers with respect to two circles
are equal is called the radical axis of the two given circles.

We saw that the power of a point with respect to a circle Σ is positive if the
point is exterior to Σ, negative if the point is inside Σ and 0 if the point is on
Σ. This would lead one to speculate that the radical axis for two intersecting
circles would be the line through the points of intersection.

Figure 2.8.1

In the above figure, all points on the line through A and B have the same power
with respect to each circle, since by definition:

The power of a point with respect to a circle is the product of the
directed distances of the point from any two points on the circle and
collinear with it.

For any point on the line through A and B, A and B are the only two points on
the circles and collinear with it. Now the line through A and B is perpendicular
to the line of centers OO′ and this suggests the following.

Theorem 2.8.1. The radical axis of two nonconcentric circles is a straight line
perpendicular to the line of centers of the two circles.
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Proof. Let O and O′ be the centers and r and r′ be the radii of two noncon-
centric circles Σ and Σ′. Let P be a point on the radical axis of Σ and Σ′ and
let Q be the foot of the perpendicular from P to OO′, as in the figure below.

Figure 2.8.2

We know, by Theorem 2.7.6, that the power of P with respect to Σ is (OP )2−r2
and the power of P with respect to Σ′ is (O′P )2−r′2. Because P is on the radical
axis, we have that

(OP )2 − r2 = (O′P )2 − r′2. (2.13)

Triangles PQO and PQO′ are right triangles, so, by the Pythagorean theo-
rem, we have that (OP )2 = (PQ)2 + (OQ)2 and (O′P )2 = (PQ)2 + (O′Q)2.
Substituting into (2.13) we get

(PQ)2 + (OQ)2 − r2 = (PQ)2 + (O′Q)2 − r′2

and subtracting (PQ)2 from both sides gives

(OQ)2 − r2 = (O′Q)2 − r′2. (2.14)

Thus, Q is on the radical axis. Rewriting (2.14) gives

(OQ)2 − (O′Q)2 = r2 − r′2,

or

(OQ+O′Q)(OQ−O′Q) = r2 − r′2

(OQ+O′Q)(OQ+QO′) = r2 − r′2

(OQ+O′Q)OO′ = r2 − r′2
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And we have

OQ+O′Q =
r2 − r′2

OO′
. (2.15)

Now there is only one point Q on OO′ satisfying (2.15). For if there were another
such point R we would have

OQ+O′Q = OR+O′R,

or

(OR+RQ) +O′Q = OR+ (O′Q+QR),

or

OR+RQ+O′Q = OR+O′Q+QR

RQ = QR

and RQ = QR implies RQ = 0, which means that R coincides with Q. It then
follows that if a point is on the radical axis of Σ and Σ′, it lies on the perpen-
dicular to the line of centers at the point Q. Conversely, by reversing the above
steps, we can show that any point on the perpendicular to OO′ at Q lies on the
radical axis of the two circles. Therefore the radical axis of the two circles is
the perpendicular to OO′ at the point Q.

Theorem 2.8.1 excluded concentric circles. What should the radical axis of
two concentric circles of unequal radius be? If we look at equation (2.15) in
the proof of Theorem 2.8.1, we see that as O′ approaches O it forces Q to ap-
proach an ideal point and thus the radical axis would be the line at infinity. If
the concentric circles have the same radius, we consider their radical axis to be
undefined and we rule out this case in any discussion of radical axes.

Construction. Construct the radical axis for two given, nonconcentric circles.

Solution. We have already seen the case for intersecting circles. There are
two remaining and the same technique works for both.

Case 1. Circles that are nonintersecting and are exterior to each
other. Let Σ and Σ′ be the two given circles. Draw any circle Σ′′

that intersects both given circles, as in Figure 2.8.3. Let A,B be
the points of intersection of Σ′′ and Σ and let C,D be the points of
intersection of Σ′′ and Σ′. Draw the lines on A,B and C,D. Where
these intersect, say P , Draw the perpendicular to OO′.

Case 2. One circle lies within the other, but the circles are not con-
centric. The construction is the same as above, as given in Figure
2.8.4.
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Figure 2.8.3: Non-Intersecting Circles

Figure 2.8.4: Circle Within Circle

Theorem 2.8.2. The radical axes of three circles with noncollinear centers,
taken in pairs, are concurrent.

Proof. Let Σ, Σ′, Σ′′ be the three circles. If P is the point of intersection
of the radical axis of Σ and Σ′ with the radical axis of Σ′ and Σ′′, then the
power of P with respect to Σ, Σ′, Σ′′ is the same. Therefore P is on the radical
axis of Σ and Σ′′. See Figure 2.8.5

Note. The circles of Theorem 2.8.2 can be intersecting or nonintersecting. The
only requirement is that their centers are not collinear.

Definition 2.8.2. The point of concurrence of the radical axes of three circles
with noncollinear centers, taken in pairs, is called the radical center of the three
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Figure 2.8.5: Radical Center

circles.

Theorem 2.8.3. (1) The center of a circle that cuts each of two circles orthog-
onally lies on the radical axis of the two circles. (2) If a circle whose center
lies on the radical axis of two circles is orthogonal to one of them, it is also
orthogonal to the other.

Proof. In Figure 2.8.6 suppose Σ′′ is orthogonal to both circles, Σ and Σ′.
By Theorem 2.7.7, the power of P with respect to both Σ and Σ′ is r′′2. Thus,
since the power of P with respect to both circles is the same, P must be on the
radical axis for Σ and Σ′.

Figure 2.8.6

Next, suppose the center of Σ′′ is on the radical axis for Σ and Σ′ and is
orthogonal to Σ. Since PT is tangent to Σ and PT = r′′, the power of P with
respect to Σ is PT 2 = r′′2. However, siince P is on the radical axis for Σ and
Σ′, its power with respect to Σ′ must also be r′′2, which by Theorem 2.7.7, says
Σ′′ and Σ′ are orthogonal.
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Note. Part (1) of Theorem 2.8.3 tells us that the locus of the centers of
circles that are orthogonal to two given circles is the radical axis of the two
circles. Thus, if we are asked to construct a circle that is orthogonal to two
given circles, the first thing we do is construct the radical axis. We can then
choose any point on the radical axis and construct a circle with that point as
center that is orthogonal to either of the two given circles. The Part (2) of
Theorem 2.8.3 guarantees it is orthogonal to the other given circle.

Theorem 2.8.4. All the circles that cut each of two nonintersecting circles
orthogonally intersect the line of centers of the two given circles in the same
two points.

Proof. Let Σ and Σ′ be the two given nonintersecting circles in Figure 2.8.7,
with centers O and O′

Figure 2.8.7: Non-Intersecting Circles

Let a circle with center P cut the two given circles orthogonally. Then, by
Theorem 2.8.3, P lies on the radical axis of Σ and Σ′. Using Figure 2.8.7 as a
reference, we have that OQ > OT , since the radical axis is outside both circles.
Now in right triangles POQ and POT , we have that

(PO)2 = (PT )2 + (OT )2 = (PQ)2 + (OQ)2

and, thus,

(PT )2 = (PQ)2 + (OQ)2 − (OT )2

and we know (OQ)2−(OT )2 > 0, so (PT )2 > (PQ)2 and PT > PQ. Therefore,
the orthogonal circle must cut OO′ in two distinct points, say L and L′. Now

(PL)2 = (LQ)2 + (QP )2 (2.16)
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and also, since PL and PT are radii of the orthogonal circle,

(PL)2 = (PT )2 = (PO)2 − (OT )2 = (OQ)2 + (QP )2 − (OT )2. (2.17)

Next, substituting results from (2.17) into (2.16), gives

(OQ)2 + (QP )2 − (OT )2 = (LQ)2 + (QP )2

or
(LQ)2 = (OQ)2 − (OT )2. (2.18)

Equation (2.18) shows that the position of L with respect to Q is independent
of the position of P . Hence every circle orthogonal to Σ and Σ′ passes through
L and, by symmetry, L′.

NOTE: L and L′ are harmonic conjugates with respect to the diameter points
of the circle Σ as well as for the circle Σ′.

Theorem 2.8.5. A circle that cuts each of two intersecting circles orthogonally
does not intersect the line of centers of the two given circles.

Proof. Let Σ and Σ′ be the two given intersecting circles, with centers O
and O′.

Figure 2.8.8: Intersecting Circles

Here we have OQ < OT and using the argument in the proof of Theorem 2.8.4,
we have

(OP )2 = (PT )2 + (OT )2 = (PQ)2 + (OQ)2

and
(PQ)2 = (PT )2 + (OT )2 − (OQ)2

so PQ > PT . Since PT is the radius of the common orthogonal circle, it fails
to intersect OO′
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Definition 2.8.3. A set of circles is said to form a coaxial pencil of circles
if the same straight line is the radical axis of any two circles of the set. The
straight line is called the radical axis of the coaxial pencil of circles.

Theorem 2.8.6. (1) The centers of the circles of a coaxial pencil are collinear.
(2) If two circles of a coaxial pencil intersect, every circle of the coaxial pencil
passes through the same two points of intersection; if two circles of a coaxial
pencil are tangent, all circles of the coaxial pencil are tangent to one another at
the same point; if two circles of a coaxial pencil do not intersect, no two circles
of the coaxial pencil intersect. (3) The radical axis of a coaxial pencil of circles
is the locus of a point whose powers with respect to all the circles of the pencil
are equal.

Proof. (1) Suppose ` is the radical axis for the coaxial pencil. If Σ1 and Σ2,
with centers O1 and O2 are two circles in the coaxial pencil, then, by Theorem
2.8.1, O1O2 is perpendicular to `. Now suppose Σ3, with center O3, is another
circle of the pencil. Then O1O3 is perpendicular to `. Since through point O1

there can be only one perpendicular to `, O3 must be collinear with O1 and O2.
This is true of any other circle in the coaxial pencil and, hence, the centers of
all circles of the pencil are collinear.

(2) If two circles of the coaxial pencil intersect, then the common chord is
the radical axis for the two circles and also for the entire coaxial pencil. Thus,
for any other circle to share that radical axis, the circle must go through the
common points of intersection. If two of the circles are tangent, their radical
axis, and the radical axis for the pencil, must be the line through the point of
tangency and perpendicular to the line of centers. Thus, any other circle in the
pencil must have the same radical axis with the two tangent circles. In order
for this to happen, the circle must be tangent to the two original circles at the
original point of tangency. If two of the circles in the pencil do not intersect,
the radical axis is a line ` perpendicular to the line of centers and outside both
circles. If any two circle of the pencil intersect, then by the first part of (2), the
radical axis would be the common chord and there would be powers of point
that are negative, which cannot happen.

(3) This follows immediately from the definition of a radical axis.

From Theorem 2.8.6 we see that there are three possible types of coaxial
pencils of circles: an intersecting coaxial pencil of circles; a tangent coaxial pen-
cil of circles; and a nonintersecting coaxial pencil of circles.

Illustrations for Theorem 2.8.6 can be found in Appendix C.

We close with the following theorem about coaxial pencils of circles.

Theorem 2.8.7. (1)All the circles orthogonal to two given nonintersecting cir-
cles belong to an intersecting coaxial pencil whose line of centers is the radical
axis of the two given circles. (2) All the circles orthogonal to two given tangent
circles belong to a tangent coaxial pencil whose line of centers is the common
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tangent to the two given circles. (3) All the circles orthogonal to two given in-
tersecting circles belong to a nonintersecting coaxial pencil whose line of centers
is the line of the common chord of the two given circles.

Theorem 2.8.7 is also illustrated in Appendix C. The circles
with centers O1 and O2 are the given circles.

Exercises

2.8.1. Show that if the radical center of three circles with noncollinear centers
is exterior to each of the circles, it is the center of a circle orthogonal to all
three circles. (This circle is called the radical circle of the three circles.

2.8.2. Prove that the radical axis of two circles having a common tangent bisects
the segment on the common tangent determined by the points of contact of the
tangent.

2.8.3. Prove that the radical center of three circles constructed on the sides of
a triangle as diameters is the orthocenter of the triangle.

2.8.4. Let AD,BE, CF be three cevian lines of triangle ABC. Prove that the
radical center of the circles constructed on AD,BE, CF as diameters is the
orthocenter of the triangle.

2.8.5. If a point is considered to be a circle of radius zero, find the radical axis
of a point-circle and a circle.

2.8.6. Through a given point draw a circle that is orthogonal to two given circles.

2.8.7. Through a given point draw a circle that is coaxial with two given circles.

2.8.8. Prove that if each of a pair of circles cut each of a second pair orthogo-
nally, then the radical axis of either pair is the line of centers of the other.

2.8.9. Construct a non-intersecting coaxial pencil of circles. Explain the process
you used. See Figure C-3 in Appendix C.
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Chapter 3

Transformations of the
Plane

3.1 Fundamental Transformations of the Plane

Definition 3.1.1. A transformation is a one-to-one mapping of a set X onto
a set Y .

Note. A mapping of X onto Y is one-to-one if distinct elements of
X have distinct images in Y .

Definition 3.1.2. If X and Y are the same set, then the mapping is a transfor-
mation of X onto itself. Any point that maps to itself under a transformation is
called a fixed point or an invariant point. If every element of the transformation
is invariant, then the transformation is said to be the identity transformation
and is denoted by I.

We now look at some special transformations of the plane.

Definition 3.1.3. Let AB be a directed line segment (vector) in the plane.
A translation, T (AB) is a transformation of the plane onto itself which carries
each point P of the plane onto a point P ′ of the plane such that PP ′ is equal and
parallel to AB. The directed segment AB is called the vector of the translation.

Example 3.1.1. Figure 3.1.1, below, shows a point P being translated to its
image P ′.

Often it is easier to see the effects of a transformation by observing its effect
on a region. From this point on we will use a triangle as the object of our
transformations. In Figure 3.1.2 we see the results of translating a triangle
PQR by the translation T (AB).

115



116 CHAPTER 3. TRANSFORMATIONS OF THE PLANE

Figure 3.1.1: Translation of a point

Figure 3.1.2: Translation of a triangle

Definition 3.1.4. Let O be a fixed point in the plane and θ a given directed
angle. A rotation, R(O, θ), is a transformation of the plane onto itself which
carries each point P of the plane onto the point P ′ of the plane such that OP ′ =
OP and ∠POP ′ = θ. Point O is called the center of the rotation and θ is called
the angle of the rotation.

[NOTE: ∠POP ′ means the angle with vertex O and P on the initial side of
the angle and P ′ on the terminal side of the angle.]

Example 3.1.2. Figure 3.1.3 shows a triangle PQR rotated about the point O
through an angle of +60◦. That is, R(O,+60◦), where +60◦ means an angle
of 60◦ measured in the usual positive direction (counterclockwise and, from now
on, if no sign appears with the angle, it is assumed to be positive). ∠POP ′ =
60◦,∠QOQ′ = 60◦ and ∠ROR′ = 60◦. The angle ∠POP ′ = 60◦ is identified
on the drawing.

Definition 3.1.5. Let O be a fixed point of the plane. The transformation of
the plane onto itself which carries each point P of the plane to a point P ′ such
that O is the midpoint of PP ′ is called a reflection in the point O and is denoted
by R(O). This transformation is also called a half-turn about the point O. The
point O is called the center of the reflection.

Example 3.1.3. Figure 3.1.4 illustrates the transformation R(O) which reflects
the triangle ABC through O to get triangle A′B′C ′.
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Figure 3.1.3: Rotation of a triangle

Figure 3.1.4: Reflection of a triangle through a point O

Definition 3.1.6. Let ` be a fixed line of the plane. A reflection in a line R(`),
is the transformation of the plane onto itself which carries each point P of the
plane onto the point P ′ of the plane such that ` is the perpendicular bisector of
the line PP ′. The line ` is called the axis (or mirror) of the reflection.

Example 3.1.4. In Figure 3.1.5, triangle ABC is reflected through the line `
to triangle A′B′C ′. Note that ` is the perpendicular bisector of AA′, BB′ and
CC ′.

The above transformations are what we call isometries. They all preserve dis-
tance and angle measure. That is, under these transformations, figures are
mapped onto congruent figures.

Definition 3.1.7. Let O be a fixed point of the plane and k be a given nonzero
real number. The homothety (or dilation, or expansion, or contraction) H(O, k)
is defined to be the transformation of the plane onto itself which carries each
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Figure 3.1.5: Reflection of a triangle through a line `

point P of the plane onto a point P ′ (collinear with P and O) of the plane such
that OP ′ = kOP . The point O is called the center of the homothety and k is
called the ratio of the homothety.

Example 3.1.5. H(O, 12 ). In Figure 3.1.6, the points A,B,C are mapped onto
the points A′, B′, C ′, each of which is halfway between the original point and the
center of the homothety, O. That is, OA′ = 1

2OA, OB
′ = 1

2OB, and OC ′ =
1
2OC. In fact, under H(O, 12 ), every point P of the plane is mapped onto a point
P ′ that is halfway between O and P .

Figure 3.1.6: Transforming a triangle by H(O, 12 )

Note. If k > 0 then the image of a point P will be on the same side of O as P
and if k < 0, then the image will be on the opposite side of O; that is, O will
be between P and P ′.

Example 3.1.6. H(O,−2). In Figure 3.1.7, the points A,B,C are mapped
onto the points A′, B′, C ′, each of which is on the opposite side of the center
of the homothety, O, and twice as far from O as A,B,C. That is, OA′ =
−2 ·OA, OB′ = −2 ·OB, and OC ′ = −2 ·OC.

Example 3.1.7. H(O, 2.25). In Figure 3.1.8, the points A,B,C are mapped
onto the points A′, B′, C ′, each of which is 2.25 times as far from the center of
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Figure 3.1.7: Transforming a triangle by H(O,−2)

the homothety, O, as the original points and on the same side of O. That is,
OA′ = 2.25 ·OA, OB′ = 2.25 ·OB, and OC ′ = 2.25 ·OC.

Figure 3.1.8: Transforming a triangle by H(O, 2.25)

Definition 3.1.8. Let T1 be a transformation of a set X onto a set Z and T2
a transformation from the set Z onto a set Y . (The sets X,Y, Z may all be the
same set.) The product transformation T = T2T1 of set X onto the set Y is
the result of performing the transformation T1 followed by the transformation
T2. If such a transformation exists, we say that T2 is compatible with T1.

NOTE: The product transformation is analogous to composite functions we
encountered in algebra and calculus. We could call them composite mappings
here, but in geometry they are more often referred to as product transforma-
tions.

Theorem 3.1.1. If a transformation T2 is compatible with a transformation
T1, then (T2T1)−1 = T−11 T−12 .

Example 3.1.8. In Figure 3.1.9, triangle ABC is transformed, by the rotation
R(O,−100◦), to triangle A′B′C ′. Then triangle A′B′C ′ is mapped onto triangle
A′′B′′C ′′ by the reflection R(`). Thus, we would say that triangle A′′B′′C ′′ is
the image of triangle ABC under the product transformation R(`)R(O,−100◦).
In the figure ∠COC ′ = −100◦ is marked.
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Figure 3.1.9: Transforming a triangle by R(`)R(O,−100◦)

Definition 3.1.9. Let ` be a fixed line of the plane and AB a given directed
segment on the line `. The product R(`)T (AB) defines a transformation called
the glide-reflection, G(`, AB). The line ` is called the axis of the glide-reflection
and the directed segment AB on ` is called the vector of the glide-reflection.

Example 3.1.9. In Figure 3.1.10, triangle PQR is mapped onto triangle P ′Q′R′

by the translation T (AB), then triangle P ′Q′R′ is mapped onto triangle P ′′Q′′R′′

by the reflection R(`). The end result is that the glide-reflection G(`, AB) maps
triangle PQR onto triangle P ′′Q′′R′′.

Figure 3.1.10: Transforming a triangle by G(`, AB)
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Definition 3.1.10. Let ` be a fixed line of the plane, let O be a fixed point on
line ` and let k be a given nonzero number. The product R(`)H(O, k) defines a
transformation called the dilation-reflection, S(O, k, `). The line ` is called the
axis, O is called the center and k is called the ratio of the dilation-reflection.

Example 3.1.10. In Figure 3.1.11, triangle ABC is mapped onto triangle
A′B′C ′ by the dilation H(O, 12 ) and then triangle A′B′C ′ is mapped onto tri-
angle A′′B′′C ′′ by the reflection R(`). The end result is that triangle ABC is
mapped onto triangle A′′B′′C ′′ by the dilation-reflection S(O, 12 , `).

Figure 3.1.11: Transforming a triangle by S(O, 12 , `)

Example 3.1.11. A dilation could be a stretch and a negative value of k puts the
image on the opposite side of the center O. In Figure 3.1.12, triangle A′′B′′C ′′

is the image of triangle ABC under the dilation-reflection S(O,−2, `).

Definition 3.1.11. Let O be a fixed point of the plane, k a given nonzero num-
ber and θ a given sensed angle. A dilation-rotation, H(O, k, θ), is the product
R(O, θ)H(O, k). Point O is called the center, k the ratio and θ the angle of the
dilation-rotation. (Some call this transformation a homology, but this term is
used in other ways in mathematics and may cause some confusion if used here.)

Example 3.1.12. In Figure 3.1.13, triangle ABC is mapped onto triangle
A′B′C ′ by the dilation H(O,− 3

2 ). Then triangle A′B′C ′ is mapped onto tri-
angle A′′B′′C ′′ by the rotation R(O, 90◦). The end result of the mapping of
triangle ABC onto triangle A′′B′′C ′′ by the dilation-rotation, H(O,− 3

2 , 90◦).
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Figure 3.1.12: Transforming a triangle by S(O,−2, `)

Figure 3.1.13: Transforming a triangle by H(O,− 3
2 , 90◦)

The following theorems give some relationships among the transformations we
have discussed.

Theorem 3.1.2. If n is an integer, then R(O, (2n+1)180◦) = R(O) = H(O,−1).

Theorem 3.1.3. If n is an integer, then

(i) H(O, k, n · 360◦) = H(O, k).

(ii) H(O, k, (2n+ 1)180◦) = H(O,−k).

Theorem 3.1.4. T (BC)T (AB) = T (AB)T (BC) = T (AC).

Theorem 3.1.5. R(O, θ2)R(O, θ1) = R(O, θ1)R(O, θ2) = R(O, θ1 + θ2).

Theorem 3.1.6. R(O, θ)H(O, k) = H(O, k)R(O, θ) = H(O, k, θ).

Theorem 3.1.7. If AB is on `, then R(`)T (AB) = T (AB)R(`) = G(`, AB).
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Theorem 3.1.8. If O is on `, then R(`)H(O, k) = H(O, k)R(`) = S(O, k, `).

Since our transformations are one-to-one, onto mappings, they all have inverses.
The following theorem will summarize these results.

Theorem 3.1.9. The following all hold:

(i) [T (AB)]−1 = T (BA)

(ii) [R(O, θ)]−1 = R(O,−θ)

(iii) [R(`)]−1 = R(`)

(iv) [R(O)]−1 = R(O)

(v) [H(O, k)]−1 = H(O, 1k )

(vi) [G(`, AB)]−1 = G(`, BA)

(vii) [H(O, k, θ)]−1 = H(O, 1k ,−θ)

(viii) [S(O, k, `)]−1 = S(O, 1k , `).

We close with a final definition and comment.

Definition 3.1.12. A transformation that is its own inverse is called involu-
toric.

From the above theorem we see that R(`) and R(O) are the only two involutoric
transformations in our collection.

Transformations of the plane should not be new. In algebra, trigonometry,
precalculus and often calculus, transformations of the plane were used to sim-
plify problems. Translations of axes was used to simplify graphing of the conic
sections. Rotation and translation of axes was also used to help identify and
graph general quadratics of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.
Brief discussions of these can be found in Appendix A for those who wish to
refresh their memory.

Exercises

3.1.1. The xy−plane is mapped onto itself by the translation T (AB) where
A = (1, 1) and B = (3,−1). What are the coordinates of the images of the
following points under this transformation?
(a) (2, 0) (b) (0, 5) (c) (3, 7) (d) (−5, 4) (e) (−3,−2).

3.1.2. The xy−plane is mapped onto itself by the rotation R(O, 60◦) where O is
the origin (0, 0). What are the coordinates of the images of the following points
under this transformation?
(a) (1, 1) (b) (−2, 1) (c) (4, 0) (d) (0, 3) (e) (4,−5).
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3.1.3. The xy−plane is mapped onto itself by the reflection R(O) where O is
the point (1,−2). What are the coordinates of the images of the following points
under this transformation?
(a) (1, 1) (b) (−2, 0) (c) (0, 0) (d) (0, 5) (e) (−3, 1).

3.1.4. The xy−plane is mapped onto itself by the homothety (dilation) H(O, 12 )
where O is the point (−2, 1). What are the coordinates of the images of the
following points under this transformation?
(a) (0, 0) (b) (1, 3) (c) (4, 3) (d) (1,−1) (e) (−6,−5).

3.1.5. The xy−plane is mapped onto itself by the reflection R(`) where ` is the
line with equation x − 2y = 4. What are the coordinates of the images of the
following points under this transformation?
(a) (0, 0) (b) (1, 1) (c) (−3,−2) (d) (4, 0) (e) (6,−1).

3.1.6. Let P ′(x1, y1) be the image of the point P (x0, y0) under a reflection
through the line given by ax + by + c = 0. Derive the algebraic expressions for
x1 and y1 in terms of a, b, c, x0, y0.

3.1.7. If AB is carried into A′B′ by a rotation, locate the center of the rotation.
Be sure to consider all possible cases.

3.1.8. Let ABCD be a square with center O. Show that

R(B, 90◦)R(C, 90◦) = R(O).

3.1.9. Show that R(O2)R(O1) = T (2O1O2).

3.1.10. In part (b), the O′ is the one from part (a).

(a) Show that T (AB)R(O) is a reflection in point O′ such that OO′ is equal

and parallel to
AB

2
.

(b) Show that T (OO′)R(O) = R(M), where M is the midpoint of OO′.

3.1.11. Show that R(O3)R(O2)R(O1) is a reflection in point O such that OO3

is equal and parallel to O1O2.

3.1.12. A review. Let O,P,M,N , in a rectangular cartesian coordinate sys-
tem, be the points (0, 0), (1, 1), (1, 0), (2, 0) respectively, and let ` denote the
x−axis. Find the coordinates of the point P ′ obtained from the point P by the
following transformations: (a) T (OM), (b) R(O, 90◦), (c) R(`), (d) R(M), (e)
R(O), (f) H(O, 2), (g) H(N,−2), (h) H(M, 12 ), (i) G(`,MN), (j) S(O, 2, `),
(k) H(O, 2, 90◦), (l) H(N, 2, 45◦)
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3.2 Homothety Applications

Notation. By the symbol O(r) we will mean the circle with center O and
radius r.

Definition 3.2.1. Let A(a) and B(b) be two nonconcentric circles and let I
and E divide AB internally and externally in the ratio a

b . Then I and E are
called the internal and external centers of similitude of the two circles.

Figure 3.2.1, below, shows the internal and external centers of similitude of two
nonintersecting circles and two intersecting circles.

Figure 3.2.1: Internal and External Centers of Similitude

Theorem 3.2.1. Any two nonconcentric circles A(a) and B(b) with internal
and external centers of similitude I and E are homothetic to each other with
the homotheties H(I,−b/a) and H(E, b/a).

Proof. Figure 3.2.2, shows two of the possibilities for the circles. The proof
is the same for all cases.

Let P be any point on A(a) not collinear with A and B. Let P ′BP ′′ be the
diameter of B(b) parallel to AP , where BP ′ has the same direction as AP . Let
PP ′ cut AB in E′ and P ′′P cut AB in I ′. Now 4E′PA ∼ 4E′P ′B, since
AP ‖ BP ′. Thus, E′B/E′A = BP ′/AP = b/a. Hence E′ = E, the exter-
nal center of similitude, and B(b) is the image of A(a) under the homothety
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Figure 3.2.2

H(E, b/a). Similarly, 4I ′PA ∼ 4I ′P ′′B and I ′B/I ′A = BP ′′/AP = −b/a.
Hence I ′ = I, the internal center of similitude. Therefore, B(b) is the image of
A(a) under the homothety H(I,−b/a).

Before we proceed, we need to prove a result about the medians of a triangle
and the centroid. We have previously established that the medians of a triangle
are concurrent. We now would like to prove the following result that some may
be familiar with.

Theorem 3.2.2. In triangle A1A2A3 let M1,M2,M3 be the midpoints of sides
A2A3, A3A1, A1A2 and let G be the centroid. Then AiG/GMi = 2, for i =
1, 2, 3.

Proof. In Figure 3.2.3 below, let M1,M2,M3 be the midpoints of sides
A2A3, A3A1, A1A2 of triangle A1A2A3. Furthermore, letN1,N2,N3 be the mid-
points of A1G,A2G,A3G. Join the points N1, N2,M1,M2 to form the quadrilat-
eral N1N2M1M2. Since N1 and N2 are midpoints of sides A1G and A2G of tri-
angle A1GA2, N1N2 is parallel to and equal to one-half A1A2. Similarly, M1M2

is parallel to and equal to one-half A1A2. Now since, if two nonconsecutive sides
of a quadrilateral are equal and parallel, the quadrilateral is a parallelogram,
N1N2M1M2 is a parallelogram. The diagonals of a parallelogram bisect each
other, so N1G = GM1 and N2G = GM2. Thus A1N1 = N1G = GM1 and
A2N2 = N2G = GM2 which implies A1G = 2GM1 and A2G = 2GM2. Using
quadrilateral N2N3M2M3, by a similar argument we can show A3G = 2GM3.
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Figure 3.2.3

Theorem 3.2.3. The orthocenter H, the circumcenter O, and the centroid G
of a triangle A1A2A3 are collinear and HG = 2GO.

Proof.

Figure 3.2.4

In Figure 3.2.4 above, let M1,M2,M3 be the midpoints of sides A2A3, A3A1,
A1A2 of triangleA1A2A3. SinceAiG/GMi = 2, for i = 1, 2, 3, triangleM1M2M3

is carried into triangle A1A2A3 by the homothety H(G,−2). Therefore, O which
is the orthocenter of triangle M1M2M3, maps into the orthocenter H of triangle
A1A2A3. It the follows that H,G,O are collinear and that HG = 2GO.
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Definition 3.2.2. The line of collinearity of the orthocenter, circumcenter and
centroid of a triangle is called the Euler line of the triangle.

Theorem 3.2.4. In triangle A1A2A3 let M1,M2,M3 be the midpoints of the
sides A2A3, A3A1, A1A2, let H1, H2, H3 be the feet of the altitudes on these
three sides, let N1, N2, N3 be the midpoints of the segments A1H,A2H,A3H,
where H is the orthocenter of the triangle. Then the nine points M1, M2, M3,
H1, H2, H3, N1, N2, N3 lie on a circle whose center N is the midpoint of the
segment joining the orthocenter H to the circumcenter O of the triangle, and
whose radius is half the circumradius of the triangle.

Figure 3.2.5

Proof. In Figure 3.2.5 above, we extend A1H1 to a point S1, A2H2 to a
point S2, and A3H3 to a point S3 on the circumcircle, as shown in Figure 3.2.6
below.
∠A2A3H3 = ∠A2A1S1 since they have corresponding sides that are perpendic-
ular. Furthermore, ∠A2A1S1 = ∠A2A3S1 since they subtend the same arc on
the circumcircle. Draw S1A3. Thus, 4HH1A3

∼= 4S1H1A3 (both are also right
triangles) and hence H1 is the midpoint of HS1, since HH1

∼= H1S1. Similarly,
H2 is the midpoint of HS2 and H3 is the midpoint of HS3. Draw circum-
diameters A1T1, A2T2, A3T3. Then ∠A1A2T1 = 90◦, since it is inscribed in a
semicircle. Thus, T1A2 is parallel to A3H3 since both lines are perpendicular
to A1A2. Similarly, ∠A1A3T1 = 90◦ and T1A3 is parallel to A2H2. Therefore,
HA3T1A2 is a parallelogram and since the diagonals of a parallelogram bisect
each other, HT1 and A2A3 bisect each other. That is, M1 is the midpoint of
HT1. By a similar argument, M2 is the midpoint of HT2 and M3 is the midpoint
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Figure 3.2.6

of HT3.

It now follows that the homothetyH(H, 12 ) carriesA1, A2, A3, S1, S2, S3, T1, T2, T3
into the points N1, N2, N3, H1, H2, H3,M1,M2,M3. These last nine points lie
on a circle of radius one-half that of the circumcircle and with center N , the
midpoint of HO. This circle is called the nine-point circle for triangle A1A2A3.

Definition 3.2.3. Let I and E be the internal and external centers of similitude
of two given nonconcentric circles A(a), B(b) having unequal radii. Then the
circle on IE as diameter is called the circle of similitude of the two given circles.

Theorem 3.2.5. Let P be any point on a circle of similitude of two noncon-
centric circles A(a), B(b) having unequal radii. Then B(b) is the image of A(a)
under the dilation-rotation (homology) H(P, ba ,∠APB).

Proof. In Figure 3.2.7 below, let I and E be the internal and external centers
of similitude of the two given circles. If P coincides with I or E, the theorem fol-
lows from the fact that H(I, ba , 180◦) = H(I,− b

a ) or H(E, ba , 0
◦). If P is distinct

from I and E, as in Figure 3.2.7, then PI is perpendicular to PE since ∠IPE
is inscribed in a semicircle. Draw PA′ so that PI bisects ∠A′PB internally.
Then PE is the external bisector of the same angle and it follows, from Exer-

cise 2.6.12, that (A′B, IE) = −1. But (AB, IE) = AI
IB
· EB
AE

=
(
a
b

) (
− b
a

)
= −1.

Thus, A′ = A. Now, since PI and PE are the internal and external bisectors of

∠APB we have that PB
PA = IB

AI
= b

a (by Theorem 2.2.5) and the theorem follows.
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Figure 3.2.7

Corollary. The locus of a point P moving in a plane such that the ratio of
its distance from point A to its distance from point B of the plane is a positive
constant k 6= 1 is the circle on IE as diameter, where I and E divide the seg-
ment AB internally and externally in the same ratio k. (This circle is called
the circle of Apollonius of points A and B for the ratio k.)

Exercises

3.2.1. Prove that if two circles have common external tangents, these tangents
pass through the external center of similitude of the two circles, and if they have
common internal tangents, these pass through the internal center of similitude.

3.2.2. Show that the external centers of similitude of three circles with distinct
centers taken in pairs are collinear.

3.2.3. Show that the external center of similitude of one pair of circles and the
internal centers of similitude of the other two pair are collinear.

3.2.4. Show that any circle through the centers of two given nonconcentric cir-
cles of unequal radii is orthogonal to the circle of similitude of the two given
circles.

3.2.5. Given two parallel lines. Using a straightedge only, divide a segment on
one of the lines into six equal parts.
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3.3 Isometries

Definition 3.3.1. An isometry of the plane is a map from the plane to itself
which preserves distances. That is, f is an isometry if for any P and Q in the
plane, we have

f(P )f(Q) = PQ.

We see from our previous work that an isometry is either a translation,
reflection, rotation or a glide-reflection.

Definition 3.3.2. Two sets of points (defining a triangle, angle, or some other
figure) are congruent if there exists an isometry which maps one set to the
other.

Definition 3.3.3. An isometry is said to be direct or proper if it preserves the
orientation of the figure. If the orientation is reversed, the isometry is said to
be opposite or improper.

Theorem 3.3.1. There is a unique isometry that carries a given triangle ABC
into a given congruent triangle A′B′C ′.

Proof. We can superimpose the plane (by sliding, or turning it over and
then sliding) upon itself so that 4ABC coincides with 4A′B′C ′ to induce
an isometry of the plane onto itself in which the three points A, B, C are
carried into the points A′, B′, C ′. There is only one isometry, for if P is
any point in the plane, there is a unique point P ′ in the plane such that
P ′A′ = PA, P ′B′ = PB, P ′C ′ = PC.

The next theorem is a rather remarkable result in that it shows that if we have
two congruent triangles located anywhere in the plane, we can map one onto
the other with at most three reflections in lines.

Theorem 3.3.2. An isometry can be expressed as the product of at most three
reflections in lines.

Note. The following is an excellent example of solving a problem by reducing
it to one that is already known to be solvable.

Proof. It is sufficient to consider a noncollinear triad of points (a trian-
gle). Let an isometry carry the triad of points A,B,C into the congruent triad
A′, B′, C ′. We need only consider four cases (Figures for these cases are given
at the end of the proof):

(1) If the two triads coincide, as in Figure 3.3.1 the isometry would be the iden-
tity map, which can be represented as the result of two reflections through the
same line `, where ` is any line in the plane.(See Figure 3.3.2) Here 4ABC is
reflected through ` to 4A′B′C ′ then 4A′B′C ′ is reflected through ` to 4PQR.
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(2) If A coincides with P and B with Q, but C and R are distinct, then the
isometry is the reflection through `, where ` is the line containing the line seg-
ment AB.

This will map C onto R and we are through.

(3) If A coincides with P , but B and Q and C and R are distinct, the reflection
where ` is the perpendicular bisector of BQ, reduces this case to one of the
two previous cases. In the Figure 3.3.4 below A coincides with P and when the
reflection with ` as the perpendicular bisector of BQ is made, we reduce to case
(1), so we need only one reflection to complete the isometry.

In the Figure 3.3.5 below A coincides with P and when the reflection with
`1 as the perpendicular bisector of CR is made, we reduce to case (2), which
requires one more reflection, with `2 as the axis of reflection–for a total of two
reflections.

(4) The last possibility is that P,Q,R are distinct from A,B,C, and the reflec-
tion where `1 is the perpendicular bisector of BQ, reduces this case to one of the
three previous cases. Figure 3.3.6 illustrates one possibility with two reflections
and Figure 3.3.7 illustrates one possibility with three reflections.

Figure 3.3.1: Triads Coincide Figure 3.3.2: A Reflection

Figure 3.3.3: Side Coincides Figure 3.3.4: One Fixed Point
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Figure 3.3.5: Fixed Point Variation Figure 3.3.6: No Fixed Points

Figure 3.3.7: Three Reflections

In each of the cases illustrated in Figures 3.3.1 through 3.3.7, the isometry is
expressible as a product of no more than three reflections in lines. Notice that in
all of the cases our objective was to reduce the problem at hand to a previously
solved problem.

We note from the above cases that if there are zero or two reflections in lines
required, the isometry is a direct isometry. But if one or three reflections are
required, the isometry is an opposite isometry.

Theorem 3.3.3. An isometry with an invariant (fixed) point can be represented
as a product of at most two reflections in lines.

This is almost a corollary to Theorem 3.3.2, for suppose A is the invariant
point of the isometry. Let B and C be any two points not collinear with A.
Then the triangle ABC is mapped to the triangle A′B′C ′ where A′ coincides
with A. The theorem now follows from the first three cases of Theorem 3.3.2.
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Theorem 3.3.4. Let `1 and `2 be any two lines of the plane intersecting in
a point O, and let θ be the directed angle from `1 to `2, then R(`2)R(`1) =
R(O, 2θ). Conversely, a rotation R(O, 2θ) can be factored into the product
R(`2)R(`1) of reflections in two lines `1 and `2 through O, where either line
may be arbitrarily chosen through O and then the other such that the directed
angle from `1 to `2 is equal to θ.

Figure 3.3.8: Theorem 3.3.4

Theorem 3.3.5. Let `1 and `2 be any two parallel (or coincident) lines of
the plane, and let A1A2 be the directed distance from line `1 to line `2, then
R(`2)R(`1) = T (2A1A2). Conversely, a translation T (2A1A2) can be factored
into the product R(`2)R(`1) of reflections in two lines `1 and `2 perpendicular
to A1A2, where either line may be arbitrarily chosen perpendicular to A1A2 and
then the other such that the directed distance from `1 to `2 is equal to A1A2.

Figure 3.3.9: Theorem 3.3.5

Proof. In Figure 3.3.9, let L1 and L2 be the points where PP ′ crosses `1
and `2, let Q be the image of P reflected through `1 and let P ′ be the image of
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the reflection of Q through `2. We see that

PP ′ = PQ+QP ′ = 2L1Q+ 2QL2 = 2(L1Q+QL2) = 2A1A2.

Since PP ′ and A1A2 are both perpendicular to `1, they are parallel and the
result follows. The second part follows immediately from Figure 3.3.9.

Theorem 3.3.6. Any direct isometry is either a translation or a rotation.

Theorem 3.3.7. R(O)R(`) = G(m, 2MO), where m is the line through O
perpendicular to ` and cutting ` in M .

Theorem 3.3.8. An opposite isometry T is either a reflection in a line or a
glide-reflection.

Theorem 3.3.9. A product of three reflections in lines is either a reflection in
a line or a glide-reflection.

Exercises

3.3.1. Prove Theorem 3.3.4.

3.3.2. Prove Theorem 3.3.6.

3.3.3. Prove Theorem 3.3.8.

3.3.4. Show that R(`)T (AB) is a glide-reflection whose axis is a line m parallel
to ` at a distance equal to one-half the projection of BA on a line perpendicular
to `, and whose vector is the projection of AB on `.

3.3.5. Show that T (BA)R(O, θ)T (AB) = R(O′, θ), where O′O is equal and
parallel to AB. (Draw the figure illustrating this transformation performed on
a point P .)

3.3.6. In the library basement among some old books you find a document show-
ing a treasure was buried on a deserted island that contained a pyramidal rock
P and three easily identifiable trees A,B, and C. The map for locating the trea-
sure showed the relative positions of the rock and trees and gave the following
directions: Start at P and go to the point P1, which is the image of P under the
half-turn R(A). Continue to P2, which is the image of P1 under R(B). Then
go to P3, which is the image of P2 under R(C). Continue finding the images
under R(A), R(B), and R(C) until you reach P6, where the treasure is buried.

You immediately get a group of friends to go search for the treasure. How-
ever, when you arrive on the island you find that a hurricane wiped the island
clean except for the rock. While you and others were bemoaning the fact that
the only possible way to find the treasure would be to dig up the whole island,
which was quite large, the mathematician in the group was scratching on the
sandy beach with a stick. She soon declared, “We can find the treasure. All we
have to do is pick any three points on the island to represent the missing trees.”

Was she correct? Illustrate her solution.
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3.4 Inversion

The inversion transformation has a murky history. It is not clear when, or by
whom, the inversion transformation was first studied. We do know that one of
the basic ideas of inversion was known to Apollonius (ca. 262 - ca. 190 BCE).
This is that the inverse of a straight line or circle is a straight line or circle.

Definition 3.4.1. If point P is not the center O of circle O(r), the inverse of
P in, or with respect to, circle O(r) is the point P ′ lying on the line OP such
that (OP )(OP ′) = r2. Circle O(r) is called the circle of inversion, point O the
center of inversion, r the radius of inversion, and r2 the power of inversion. The
symbol I(O, k) will be used to denote the inversion with center O and power
k > 0.

It is clear from the definition that if P is inside the circle, then P ′ must
be outside the circle, and conversely. Also the boundary points of the circle of
inversion are all fixed (or invariant) points of the transformation. These state-
ments follow from the product in the definition, (OP )(OP ′) = r2.

Figure 3.4.1: The Inverse of a Point

In Figure 3.4.1, P ′ is the inverse of P , and conversely. Also Q is its own inverse;
that is, Q is a fixed point for the inversion in O(r).

We can see then that the inversion transformation maps all points (other
than O) inside the circle of inversion to points outside the circle, and all points
outside the circle are mapped to points inside the circle. And, as mentioned
before, all points on the circle are invariant. In order to not have to constantly
mention that O cannot be considered as a point to be mapped, we make the
following convention: for the inversion transformation we consider the plane to
be the ordinary Euclidean plane with one ideal point added. The ideal point will
be considered to be the image (inverse) of O under the inversion transformation.
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Z will be used to designate the ideal point. We call this plane the inversive plane.

We summarize the comments made before Figure 3.4.1 as a theorem.

Theorem 3.4.1. Inversion is an involutoric transformation of the inversive
plane onto itself which maps the interior of the circle of inversion onto the
exterior of the circle of inversion, the exterior of the circle of inversion onto the
interior of the circle of inversion, and each point on the circle of inversion onto
itself.

Since an involutoric transformation is a transformation that is its own in-
verse, it is clear then that the inversion transformation maps the exterior of the
circle onto the interior of the circle.

Theorem 3.4.2. A point D outside the circle of inversion and the point C
where the points of contact of the tangents from D to the circle of inversion
cuts the diametral line OD are inverse points

Proof. Consider Figure 3.4.2. Since 4OCT ∼ 4OTD, we have that

Figure 3.4.2

(OC)(OD) = (OT )2 = r2, C and D are, by definition, inverses. �

The above theorem not only gives us a method of constructing the inverse of
a given point, it also shows that C and D are harmonic conjugates with respect
to A and B. That is, (AB,CD) = −1. Note that the method of constructing
inverse points is one of the methods of construction we had for harmonic con-
jugates. This observation can be formalized in the following theorem.

Theorem 3.4.3. If C,D are inverse points with respect to circle O(r), then
(AB,CD) = −1, where AB is the diameter of O(r) through C and D; con-
versely, if (AB,CD) = −1, where AB is the diameter of O(r), then C and D
are inverse points with respect to circle O(r).
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Proof. In Figure 3.4.2 above, we have that (OC)(OD) = r2 = (OB)2 if and
only if (AB,CD) = −1. �

Note that (AB,OZ) = −1. That is, the ideal point Z is the image of O un-
der an inversion O(r) and the harmonic conjugate of the midpoint of a segment
is the ideal point on that line.

Recall that we introduced the term “circle” to represent a circle or a straight
line. We make use of this term again.

Theorem 3.4.4. A “circle” orthogonal to the circle of inversion inverts into
itself.

Proof. The result is obvious if the “circle” is a straight line, and the proof
of the theorem from the section on orthogonal circles that states

Theorem 2.7.2 If two circles are orthogonal, then any diameter
of one which intersects the other is cut harmonically by the other;
conversely, if a diameter of one circle is cut harmonically by a second
circle, then the two circles are orthogonal.

takes care of the case where the “circle” is a circle. �

An alternative statement for Theorem 2.7.2 is given below.

Theorem 3.4.5. If C,D are inverse points with respect to circle O(r), then any
circle through C and D cuts circle O(r) orthogonally; conversely, if a diameter
of circle O(r) cuts a circle orthogonal to O(r) in C and D, then C and D are
inverse points with respect to O(r)

Theorem 3.4.6. If two intersecting circles are each orthogonal to a third circle,
then the points of intersection of the two circles are inverse points with respect
to the third circle.

Proof. Consider Figure 3.4.3.
Let the two circles with centers O′ and O′′ intersect in points C and D and let
O be the third circle, as in Figure 3.4.3. Draw OC to cut the two circles again
in D′ and D′′. Then by Theorem 3.4.5, D′ and D′′ are each the inverse of C
with respect to the third circle, O. Thus, it follows that D′ = D′′ = D and C
and D are inverse points with respect to the third circle. �

Theorem 3.4.7. I(O, k2)I(O, k1) = H(O, k2/k1).

Proof. Let P be any point other than O. The inversion I(O, k1) will carry
P into some point P ′, which is collinear with O and P . Then I(O, k2) will carry
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Figure 3.4.3

P ′ into some point P ′′ which is collinear with O and P ′. Thus, P, P ′, P ′′, and
O are all collinear. Furthermore we have that

(OP )(OP ′) = k1 and (OP ′)(OP ′′) = k2.

Hence
OP ′′

OP
=
k2
k1

and thus, OP ′′ =
k2
k1
OP.

But this is the homothetic transformation H(O, k2/k1). On the other hand, if
P = O, then P ′ = Z,P ′′ = O and the result still holds. �

We will now examine the images of lines and circles under inversions. We
begin with a special case of Theorem 3.4.4, since a diameter line for a circle is
considered a “circle” orthogonal to the given circle.

Theorem 3.4.8. The inverse of a straight line ` passing through the center O
of inversion is the line ` itself.

Theorem 3.4.9. The inverse of a straight line ` not passing through the center
O of inversion is a circle C passing through O and having its diameter through
O perpendicular to `.

Proof. Let point A(see Figure 3.4.4) be the foot of the perpendicular
dropped from O on `. Let P be any other ordinary point on ` and let A′

and P ′ be the inverses of A and P . Then (OA)(OA′) = (OP )(OP ′) whence
OP ′

OA′ = OA
OP

and 4OP ′A′ ∼ 4OAP . Therefore ∠OP ′A′ = ∠OAP = 90◦. It

then follows that P ′ lies on the circle C having OA′ as diameter. Conversely, if
P ′ is any point on circle C other than O or A′ let OP ′ cut line ` at P . Then
P ′ must be the inverse of P . Note that point O on circle C corresponds to the
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Figure 3.4.4: Inverse of a Line

point Z at infinity on `. �

Theorem 3.4.10. The inverse of a circle C passing through the center O of
inversion is a straight line ` not passing through O and perpendicular to the
diameter of C through O.

Proof. Let A (see Figure 3.4.5) be the point on C diametrically oppo-
site O, and let P be any point on circle C other than O or A. Let A′, P ′

be inverses of A,P . Then (OA)(OA′) = (OP )(OP ′) whence OP ′

OA′ = OA
OP

and

4OP ′A′ ∼ 4OAP . Therefore ∠OA′P ′ = ∠OPA = 90◦. It follows then that
P ′ lies on the line through A′ and perpendicular to OA. Conversely, if P ′ is
an ordinary point on line ` other than A′, let OP ′ cut circle C in P . Then, by
the above, P ′ must be the inverse of P . Note that the point at infinity on `
corresponds to the point O on circle C. �

Theorem 3.4.11. The inverse of a circle C not passing through the center O
of inversion is a circle C ′ not passing through O and homothetic to circle C
with O as the center of the homothety.

Proof. Let P (see Figure 3.4.6) be any point on circle C. Let P ′ be the
inverse of P and let OP meet circle C again in Q (Q and P will coincide if OP
is tangent to C). Let r2 be the power of inversion and let p be the power of the
point O with respect to circle C. Then (OP )(OP ′) = r2 and (OP )(OQ) = p,

whence OP ′

OQ
= r2

p , which is a constant. Therefore it follows that P ′ describes the

map of the locus of Q under the homothety H(O, r2/p). That is, P describes a
circle C ′ homothetic to circle C and having O as center of homothety. Since C
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Figure 3.4.5: Inverse of a Circle Through Center of Inversion

does not pass through O, circle C ′ does not pass through O. �

Figure 3.4.6: Homothetic Circles

Note: In the above figure, the centers of the two circles C and C ′ are rep-
resented. It should be noted that they are not images of each other
under the inversion.

We state the following properties of inversion without proof.

Lemma 3.4.1. Let C ′ be the inverse of “circle” C, and let P and P ′ be a pair
of corresponding points (which may be coincident), under an inversion of center
O, on C and C ′ respectively, then the tangents to C and C ′ at P and P ′ are
reflections of one another in the perpendicular to OP through the midpoint of
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PP ′.

NOTE. Recall that if a “circle” is a straight line, then it is its own tangent at
all points.

There are two configurations for Lemma 3.4.1 that we must consider (see
Figure 3.4.7).

The proof involves showing that (in Figure 3.4.7 a) ∠APP ′ = ∠AP ′P , so that
triangle APP ′ is isosceles. Likewise in Figure 3.4.7 b, show that triangle BPP ′

is isosceles.

Figure 3.4.7: Reflections of Tangents

Theorem 3.4.12. A directed angle of intersection of two “circles” is unaltered
in magnitude but reversed in sense by inversion.

Corollary 3.4.1. (1) If two “circles” are tangent, their inverses are tangent.
(2) If two “circles” are orthogonal, their inverses are orthogonal.

Theorem 3.4.13. If P, P ′ and Q,Q′ are pairs of inverse points with respect to

circle O(r), then P ′Q′ =
(PQ)r2

(OP )(OQ)
.

Proof. We must consider two cases. First, suppose O,P,Q are collinear.

(OP )(OP ′) = (OQ)(OQ′)

(OQ+QP )OP ′ = OQ(OP ′ + P ′Q′)

OQOP ′ +QPOP ′ = OQOP ′ +OQP ′Q′

(QP )(OP ′) = (OQ)(P ′Q′)

P ′Q′ =
(QP )(OP ′)

OQ



3.4. INVERSION 143

Figure 3.4.8

If we now multiply the right hand side of the above by
OP

OP
we have

P ′Q′ =
(QP )(OP ′)(OP )

(OP )(OQ)
=

(QP )r2

(OP )(OQ)
.

Since direction is not critical here, we can write this last equation as

P ′Q′ =
(PQ)r2

(OP )(OQ)
.

Now suppose O,P,Q are not collinear. See Figure 3.4.9 below.

Figure 3.4.9

Since r2 = (OP )(OP ′) = (OQ)(OQ′), triangle OPQ is similar to triangle

OQ′P ′, and therefore,
P ′Q′

PQ
=
OQ′

OP
. If we now multiply the right side of this
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equation by
OQ

OQ
, we have

P ′Q′

PQ
=

(OQ′)(OQ)

(OP )(OQ)
. Hence,

P ′Q′ =
(PQ)r2

(OP )(OQ)
.

Exercises

3.4.1. If a point P is 4 units from the center of inversion and the radius of the
circle of inversion is 5 units, how far is the image point P ′ from the center of
inversion?

3.4.2. If a point P is 3 units from the center of inversion and its image P ′ is
4

3
units from the center of inversion, what is the radius of the circle of inversion?

3.4.3. Describe the location of the inverse of any point inside the circle of in-
version.

3.4.4. If I(O, k)P = P ′, what is the result of the following product

I(O, k)I(O, k)I(O, k)I(O, k)P?

Explain your answer.

3.4.5. If I(O, k)P = P ′, what is the result of the following product

I(O, k)I(O, k)I(O, k)P?

Explain your answer.

3.4.6. Construct the image of a line not cutting the circle of inversion.

3.4.7. Construct the image of a line intersecting the circle of inversion.

3.4.8. Construct the image of a square and its diagonals under the following
conditions

(a) with the center of inversion the center of the square and the circle of
inversion inside the square.

(b) with the center of inversion the center of the square and the circle of
inversion outside the square.

(c) with the center of inversion the center of the square and the square is
inscribed in the circle of inversion.

3.4.9. Construct the image of a square and its diagonals with the center of
inversion a vertex of the square.
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3.5 Applications of Inversion

In this section we will give three examples of how we can use the inversion trans-
formation to solve some interesting problems. Without the inversion transfor-
mation these proofs can be rather difficult. The key factor is the property of
inversion that maps “circles” into lines. We begin with the following problem.

Problem 3.5.1. Let two circles Σ1 and Σ2 intersect in the points A and B,
and let the diameters of Σ1 and Σ2 through B cut Σ1 and Σ2 in C and D. Show
that the line AB passes through the center of circle BCD.

Figure 3.5.1

In Figure 3.5.1 we see that if we choose B to be the center of inversion,
then all three circles will map into lines. Furthermore, lines BC and BD will
map onto themselves, since lines through the center of inversion are diameters
of the circle of inversion. These diameters are “circles” orthogonal to the circle
of inversion and hence map onto themselves. Since BC lies on diameter of
Σ1, the “circles” BC and Σ1 are orthogonal and orthogonal “circles” map onto
orthogonal “circles”. Hence the image of Σ1 will be a line perpendicular to BC.
Likewise,the image of Σ2 will be a line perpendicular to BD.

Thus, in Figure 3.5.2 we see that the circles BCD, ABD(Σ1) and ABC(Σ2)
have mapped to the straight lines D′C ′, A′D′, A′C ′, respectively, forming tri-
angle A′D′C ′ and the lines AB,CB,DB have mapped to the straight lines
A′B,C ′B,D′B, respectively. Since C ′B and A′D′ are images of orthogonal
“circles”, we see that line C ′B is perpendicular to side A′D′ of triangle A′D′C ′
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and therefore lies on an altitude for triangle A′D′C ′. Similarly, D′B is orthogo-
nal to A′C ′ as is also on an altitude for triangle A′D′C ′. These two altitudes are
concurrent at B which is then the orthocenter for triangle A′D′C ′. Since A′B
passes through vertex A′ and orthocenter B of triangle A′D′C ′, it also must be
on an altitude for the triangle. Hence A′B must be perpendicular (orthogonal)
to D′C ′. Now if we invert the original transformation we must have that the

Figure 3.5.2

image AB of A′B′ must be orthogonal to the image circle BDC of D′C ′. Hence
AB is a diametral line of circle BDC and therefore passes through the center
of circle BDC.

Our next example is a theorem due to Claudius Ptolemy, the great Alexan-
drian astronomer, who worked in the second century.

Theorem 3.5.1. In a cyclic convex quadrilateral the product of the diagonals
is equal to the sum of the products of the two pairs of opposite sides.

There are several ways to prove Ptolemy’s theorem. The ones I am familiar
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with require that a person can come up with a clever way to look at the prob-
lem. We will look at one of these before we show how simple inversion makes
the proof. In the figure below, let ABCD be the given cyclic quadrilateral with
diagonals AC and BD.

Choose a point X on the diagonal BD so that angle BAX is equal to angle

Figure 3.5.3

DAC. This is the clever part. Once this is done, the proof (which is left as an
exercise) requires only knowledge of angle measure in circles and similar trian-
gles.

On the other hand, if we know the properties of the inversion transforma-
tion, we know that the cyclic quadrilateral can be mapped from points on a
circle to points on a line.

Proof. In Figure 3.5.4 ABCD is a convex cyclic quadrilateral. We invert
the quadrilateral and its circumcircle through an inversion I(A, k), where k is
greater than the diameter of the circumcircle of the quadrilateral. We let S
represent the circle of inversion.

The vertices B,C,D map into the points B′, C ′, D′ lying on a straight line.
Since B′, C ′, D′ are collinear, it follows that B′D′ = B′C ′ + C ′D′. Now by
Theorem 3.4.13, we have that

r2BD

AB ·AD
=

r2BC

AB ·AC
+

r2CD

AC ·AD
.

Multiplying the above equation by
AB ·AC ·AD

r2
gives

BD ·AC = BC ·AD + CD ·AB.
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Figure 3.5.4

Note that for this inversion we could use any values for r. A convenient one
would have been r = 1 so that r2 = 1 in the above proof.

This next theorem is due to the Greek geometer Pappus (ca. 290-350) who
lived and worked in Alexandria. He included this theorem in Book IV of his
Mathematical Collection (ca. 300) and here he refers to this theorem as being
already ancient.

Theorem 3.5.2. Let X, Y, Z be three collinear points with Y between X and Z,
and let C, C1, K0 denote semicircles, all lying on the same side of XZ, on XZ,
XY, YZ as diameters. Let K1, K2, K3, . . . denote circles touching C and C1,
with K1 also touching K0, K2 also touching K1, K3 also touching K2, and so
on. Denote the radius of Kn by rn, and the distance of the center of Kn from
XZ by hn. Then hn = 2nrn.

Figure 3.5.5 illustrates the semicircles on XZ and the circles Ki.

Now if we let tn represent the length of the tangent from X to the circle Kn,
then we can invert the figure with the inversion I(X, t2n). In Figure 3.5.6, we let
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Figure 3.5.5

S represent the circle of inversion.

Figure 3.5.6

Since the tangent line to Kn from X is perpendicular to the radius of Kn, the
two circles are orthogonal and, hence, under the inversion Kn maps onto itself.
Furthermore, since C and C1 are tangent to Kn, they will map into the two par-
allel vertical tangents perpendicular to XZ. Now the circles K1,K2, . . . ,Kn−1
must map into circles that are tangent to the two vertical lines and hence they
must all have the same radius and they must also be tangent to the circles above
and below them. Finally the semicircle K0 must map into a semicircle. It is
then clear that hn = 2nrn.
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Theorem 3.5.3. Two non-intersecting circles can always be mapped into two
concentric circles.

Proof. Let the given circles be C1 and C2. If C1 and C2 are already
concentric, the proof is trivial. Hence we assume C1 and C2 are not concentric.

In Figure 3.5.7, C1 and C2 are the given circles. We begin by constructing
the radical axis for C1 and C2. We then choose two points on the radical axis
and construct circle D1 and D2 orthogonal to the two given circles C1 and C2.
Since C1 and C2 are non-intersecting, the orthogonal circles will intersect the
line of centers of C1 and C2 in two points P1 and P2. (Recall that all circles
orthogonal to C1 and C2 will pass through the two points P1 and P2.) We now
choose one of the points P1 or P2 as a center of inversion and invert circles C1,
C2, D1 and D2. For purposes of illustration, P1 is chosen as the center of a
circle of inversion C. Through the circle C the four circles are inverted. Since
D1 and D2 pass through the center of inversion, by Theorem 3.4.10, they will
map into straight lines, D′1, D

′
2, whereas, by Theorem 3.4.11, circles C1 and

C2 will map into circles, C ′1, C
′
2. Now, by Corollary 3.4.1(2), since D1 and D2

are orthogonal to C1 and C2, their images under inversion are orthogonal. In
order for this to occur, the centers of both circles C1 and C2 must be the point
of intersection of D′1 and D′2. Recall that for a line to be orthogonal to a circle,
the line must be a diagonal for the circle. Hence, C ′1 and C ′2 are concentric.

�
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Figure 3.5.7: Theorem 3.5.3



3.5. APPLICATIONS OF INVERSION 151

Exercises

3.5.1. Complete the first proof for Ptolemy’s Theorem.

3.5.2. By construction, show that the inversion proof for Ptolemy’s Theorem is
still valid if r is chosen to be less than the diameter of the circumcircle of the
quadrilateral.

3.5.3. Construct Figure 3.5.5. Explain the method of construction.

3.5.4. Construct Figure 3.5.6. Explain the method of construction.

3.5.5. Prove the Extension of Ptolemy’s Theorem: In a convex quadrilateral
ABCD

BC ·AD + CD ·AB ≥ BD ·AC,

with equality if and only if the quadrilateral is cyclic.

3.5.6. Given two non-intersecting circles. Perform a construction that map
them into concentric circles.
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Chapter 4

Other Geometries

4.1 Introduction

There are several geometries that fall under the classification of non-Euclidean.
We will briefly examine three of them. The first two involve changing the paral-
lel postulate in Euclidean geometry and the third is a coordinate geometry that
involves changing the way distance in measured.

Euclid’s fifth postulate, in essence, states that given a point P not on a
line `, there exists exactly one line through P parallel to `. New consistent
geometries can be obtained by replacing this postulate. We will briefly look
at the history of challenging this postulate and the resulting geometry know
as hyperbolic geometry. There are several models used to illustrate this geom-
etry and we will look at one model that is closely related to our previous studies.

Because parallel lines exist in Euclidean geometry, it was assumed that they
must exist in all geometries. However, in the mid nineteenth century Bernhard
Riemann declared that one could reasonably assume that every pair of lines
would intersect. This lead to the assumption of no parallel lines and resulted in
the development of elliptic geometry. Here we will use the surface of a sphere
to model elliptic geometry. We have to use artificial models for hyperbolic and
elliptic geometry, since both of these geometries look like Euclidean geometry
on a local level.

Our final example is a coordinate geometry called Taxicab geometry. In
this geometry we change the definition of how we measure distance. Unlike
the two previously mention geometries, this geometry can be studied at a very
elementary level as well as at a very advanced level.

153
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4.2 A Brief History of Hyperbolic Geometry

Since the history of the development of hyperbolic geometry is so intriguing, we
will examine it briefly.

We begin with Euclid’s fifth postulate:

If a straight line falling on two straight lines makes the interior an-
gles on the same side less than two right angles, then the two straight
lines, if produced indefinitely meet on that side on which are angles
less than two right angles.

The Greeks, Euclid included, were very skeptical of this postulate. It did not
fit the mold of a postulate. The geometers who were disturbed by this postulate
did not question its mathematical validity. They questioned only that it was
not brief, simple, and self-evident, as postulates were supposed to be. It was
felt by most that its complexity suggested that it should be a theorem instead
of an assumption. This bothered Euclid as well. He postponed the use of the
fifth postulate until Proposition 29 of Book I.

As a result the efforts prior to the nineteenth century were directed toward
proving the fifth postulate as a theorem which depended on the remaining pos-
tulates. One of the earliest efforts to prove the parallel postulate was made by
Proclus (410-485) in his Commentaries on the First Book of Euclid’s Elements.
In this book Proclus pointed out a fallacy contained in a proof by the astronomer
Ptolemy. Proclus then gave his own proof in which he actually derived what we
now call Playfair’s axiom. The flaw in Proclus’s reasoning was that he assumed
that two parallel lines are everywhere the same distance apart. It can be shown
that this assumption implies the parallel postulate. Thus Proclus was guilty of
assuming what he was trying to prove.

In his book Elements of Geometry, John Playfair (1748-1819) stated an
alternate form for the fifth postulate. This was not original with Playfair, but
because of the popularity of his book, which went through ten editions between
1795 and 1846, the axiom bears his name. The popularity of the book probably
influenced modern geometers to replace Euclid’s fifth postulate with it.

Playfair’s Axiom: Through a given point not on a given line, only
one parallel can be drawn to the given line.

It has been proved that Playfair’s axiom is indeed equivalent to Euclid’s fifth
postulate.

Through the centuries, from the Greek period onward, many equivalent
statements were discovered for the parallel postulate. Some were inadvertently
assumed in trying to prove the fifth postulate and some were given in hopes of es-
tablishing an equivalent statement for the fifth postulate. Burton1(pp 524-525)

1Burton, David M., The History of Mathematics: An Introduction, 5th ed., McGraw-Hill,
2003
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lists some of these statements which have since been proven to be equivalent to
the fifth postulate.

• A line that intersects one of two parallel lines intersects the other as well.

• There exist lines that are everywhere equidistant from one another.

• The sum of the angles of a triangle is equal to two right angles.

• For any triangle there exists a similar noncongruent triangle.

• Any two parallel lines have a common perpendicular.

• There exists a circle passing through any three noncollinear points.

• Two lines parallel to the same line are parallel to each other.

Many respected and honored mathematicians had to try their hand at prov-
ing the fifth postulate. In every instance these numerous and varied attempts
failed. Invariably, proofs which seemed to succeed were found to be flawed. Like
Proclus, many failed because their arguments were found flawed because of the
use, open or hidden, conscious or unconscious of some assumption equivalent to
the fifth postulate.

Some of the alleged proof, such as the one presented by John Wallis (1616-
1703) in 1663 had a look of success. He proposed replacing Euclid’s fifth pos-
tulate by the following:

To each triangle, there exists a similar triangle of arbitrary magni-
tude.

This certainly fit the brief, simple, self-evident form that was desired for a
postulate. Using this result and the other postulates of Euclid, Wallis was able to
demonstrate that Playfair’s axiom held, which was known to be the equivalent of
the fifth postulate. Although Wallis’ proof seemed perfectly reasonable, it rested
on the assumption of the existence of two similar but noncongruent triangles.
But this can be proved to be equivalent to the parallel postulate of Euclid.
Thus, like others before him, he was assuming what he was to prove.

Girolamo Saccheri (1667-1733) made the first serious study of the logical
consequence of an actual denial of the fifth postulate. His aim was to assume
the postulate false and then derive it as a logical consequence. Saccheri began
by considering a quadrilateral ABCD (See Figure 4.2.1.) with sides AD and
BC equal and perpendicular to the base AB. Saccheri then demonstrated that
the summit angles at C and D were equal. From this he then declared three
hypotheses: (1) ∠C = ∠D > 90◦ (obtuse case); (2) ∠C = ∠D < 90◦ (acute
case); and (3) ∠C = ∠D = 90◦(right angle case). He then proceeded to prove
that if one of these hypotheses were true for one of his quadrilaterals, then it
would be true for every such quadrilateral. He then showed that if the obtuse
case held then the sum of the angles of a triangle would be greater than two right
angles. He had little difficulty in convincing himself that this was impossible.
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Figure 4.2.1: A Saccheri Quadrilateral

He next attacked the acute case. Here he had great difficulty in convincing
himself of the fact that this case was impossible. In fact, he came very close to
discovering the first non-Euclidean geometry; however, his faith in Euclid was
so strong that he denied this possibility. He eventually declared that the acute
hypothesis was false leaving only the right angle hypothesis which was equivalent
to the fifth postulate. Saccheri’s goal was to vindicate Euclid. However Burton
(page 529) makes an interesting observation:-

Indeed had Saccheri actually accomplished his purpose and proved
the parallel postulate from the remaining axioms of Euclidean geom-
etry, he would not have vindicated Euclid. Quite to the contrary, he
would have dealt a terrible blow to Euclid. Euclid was vindicated by
the discovery of non-Euclidean geometry, for its existence demon-
strated that the parallel postulate is independent of Euclid’s other
axioms, so that it truly widens the axiomatic base on which Euclid’s
geometry stands. We must admire the Great Geometer all the more;
the introduction of the fifth postulate, so undecidedly unaxiomatic in
appearance, yet an independent postulate, was a stroke of genius.

Johann Lambert (1728 - 1777) was a German mathematician who tried to
fix the arguments of Saccheri by proposing a quadrilateral in which three of the
angles are right angles with the fourth angle being obtuse, acute or right.

Figure 4.2.2: A Lambert Quadrilateral

Like Saccheri he was able to dispose of the obtuse case rather quickly; however,
like Saccheri he had trouble with the acute case. But, unlike Saccheri, he real-
ized he could not reach a contradiction for the acute case. In his investigation
of this case he showed that in this new geometry the angle sum of a triangle
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increases when the area decreases. Lambert recorded his work in 1766 in an un-
published work titled Theorie der Parallellinen (Theory of Parallels). However
he gave up his study of parallels when he realized that he could not successfully
refute the hypothesis of the acute angle. Lambert is probably most famous for
giving the first rigorous proof that π is irrational.

Another famous mathematician who tried to prove the fifth postulate was
the French mathematician, Adrien-Marie Legendre (1752 - 1833). Legendre
wrote Eléments de géométrie (Elements of Geometry) in 1795. This was a very
popular book and went through 20 editions in France. It was also translated
into English in 1819 by John Farrar, a professor of mathematics at Harvard,
and went through ten American editions. It should be noted that in 1780 when
the American Academy of Arts and Science was formed, John Adams made
the suggestion (which was adopted by the Academy) that American educators
follow those of France rather than England.

Legendre gave two theorems directed toward establishing the fifth postulate.

Theorem. If the sum of the angles in a triangle is equal to two
right angles, then Euclid’s parallel postulate holds.

Theorem. The angle sum of a triangle is always less than or equal
to 180◦.

He then proved that the sum could not be less than 180◦. Therefore it must
be equal to 180◦. Legendre concluded that because the sum of the angles of
a triangle could neither be greater nor less than 180◦, it would have to be
equal to 180◦. If this equality held, then the parallel postulate would follow.
Unfortunately, there is a defect in Legendre’s argument that the angle sum
cannot be less than 180◦. To construct the sequence of triangles he used in
the proof, he assumed that through any point in the interior of an angle it is
always possible to draw a line that meets both sides of the angle. Although it
is not immediately apparent, this assumption turns out to be equivalent to the
parallel postulate!

By the 19th century mathematicians began to realize that, since great effort
by great mathematicians failed to show the parallel postulate was dependent
on the other postulates, it might be possible to replace the parallel postulate
with another, which is contrary, and still develop a valid companion to Euclid’s
geometry.

When this idea finally hit, it came not to one but to three mathematicians.
Carl Friedrich Gauss (1777 - 1855) in Germany, Nicolai Ivanovich Lobachevsky
(1793 - 1856) in Russian and Jáos (John) Bolyai (1802 - 1860) in Hungary. All
three seem to have based their work on that of Saccheri, who did not realize
what he had since he was intent on proving the fifth postulate rather than
challenging it.

Gauss appears to be the first to reach any substantial conclusions about a
non-Euclidean geometry. However, Gauss was reluctant to publish his findings.
Gauss, like Newton, disliked any kind of controversy so he was reluctant to let
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his discoveries be known. His feelings are best described in his own words in an
1824 letter to a colleague, Franz Taurunus:

The assumption that the sum of the three angles of a triangle is less
than 180◦ leads to a curious geometry, quite different from our own
[the Euclidean geometry], but thoroughly consistent, which I have
developed to my satisfaction . . .The theorems of this geometry appear
to be paradoxical and, to the uninitiated, absurd; but calm, steady
reflection reveals that they contain nothing impossible . . .In any case,
consider this a private communication, of which no public use or
use leading to publicity is made. Perhaps I shall myself, if I have
at some future time more leisure than in my present circumstances,
make public my investigation.2

Lobachevsky was the first of the three to publish a work on non-Euclidean
geometry. His first publication was in 1829-1830 in the University of Kazan’s
monthly journal Messenger although he had orally communicated his ideas in
1826. It is worth noting here that prior to Lobachevsky’s revelations in On the
Foundations of Geometry, Johann Bartles, a former tutor and life-long friend of
Gauss’, was visiting Kazan and may well have had discussions with Lobachevsky
about what Gauss had been doing with this new geometry of his. If such
discussions took place, it should not detract from the work that Lobachevsky
did.

In 1831 Bolyai, at his father’s insistence published his work in an appendix
to his father’s work, Tentamen. It was first printed separately under the title
Appendix Scientiam Spatii Absolute Veram Exhibens (Appendix Explaining the
Absolute True Science of Space). The remarkable thing about this publication
was that the body of the work contained only 24 pages. Again there is suspicion
that Bolyai’s ideas came from Gauss, since his father, Wolfgang Bolyai, was a
friend of Gauss. Wolfgang Bolyai sent an advanced copy of his son’s work to
Gauss and receive the following reply from Gauss:-

If I begin by saying that I dare not praise this work, you will of course
be surprised for a moment; but I cannot do otherwise. To praise it
would amount to praising myself. For the entire content of the work,
the approach which your son has taken, and the results to which he
is led, coincide almost exactly with my own meditations which have
occupied my mind for the past thirty or thirty-five years. . . .It was
my plan to put it all down on paper eventually, so that at least it
would not perish with me. So I am greatly surprised to be spared
the effort, and am overjoyed that it happens to be the son of my old
friend who outstrips me in such a remarkable way.3

Whatever the circumstances, these three remarkable mathematicians gave
us a new and thoroughly consistent geometry. This new geometry bears the

2ibid. page 545
3ibid. pp 549-550
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name Lobachevskian geometry, or hyperbolic geometry. Henri Poincaré(1854 -
1912) developed what is referred to as the Poincaré model for Lobachevskian
plane geometry. With this model it can be shown that Lobachevskian plane
geometry is consistent if Euclidean plane geometry is consistent. We choose to
investigate this model because it uses geometric properties and constructions
we have examined. In particular, the properties of orthogonal “circles.”
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4.3 The Poincaré Model

The purpose of this section is to introduce the Poincaré model. It is not intended
to be a complete discussion of the model or of the consistency of Lobachevskian
(hyperbolic) plane geometry. A set of axioms is said to be consistent if they
and the resulting theorems, taken as a whole, produce no logical contradiction.

If we replace the parallel postulate (Postulate IV-1) in Hilbert’s postulates by

(IV-1)′ Through a given point A not on a given line m there pass at
least two lines that do not intersect line m.

we will get a set of postulates for Lobachevskian plane geometry (also called hy-
perbolic geometry). To model this geometry, we will use the Poincaré model. In
this model we use a circle Σ in the Euclidean plane to represent the Lobachevskian
plane. A point in this plane will be any point in the interior of Σ. A line will
be that part of the interior of Σ which lies on a “circle” (circle or straight line)
orthogonal to Σ. In Figure 4.3.1 below, the circle Σ is a representation of the
Lobachevskian plane. Points A,B,C are points on a line in Σ (part of a circle
orthogonal to Σ) and point C is said to be between the points A and B. In the
figure below, the entire circle representing the line containing points A and B is
shown only for the purpose of showing the orthogonal circle. The only part of
that circle that is really represented in the Poincaré model is the segment from
S to T .

Figure 4.3.1: A line in the Poincaré Model

Definition. The length of segment AB = log(AB, TS) = log
[
AT
BT ·

BS
AS

]
where S and T are the points in which the “circle” containing the segment AB
cuts Σ, S and T being labeled so that A is between S and B.
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NOTE: (AB, TS) is the usual cross-ratio of the four points. The condition
that S and T being labeled so that A is between S and B allows us to not have
to deal with directed segments. It should also be noted that (AB, TS) > 1 and
hence log(AB, TS) > 0.

In Figure 4.3.2, m is a given line in Σ and P is any point in Σ not on m.
There are two lines through P that do not intersect m. The line TPS′ and the
line T ′PS. Recall that the points S, T, S′ and T ′ are not in the interior of Σ
and therefore cannot be points of intersection. They would be like ideal points
for the extended Euclidean plane.

Figure 4.3.2: Parallel lines in the Poincaré Model

With this model we can actually construct examples of the Saccheri and Lam-
bert quadrilaterals. In the Saccheri quadrilateral in Figure 4.3.3, the summit
angles, ∠C and ∠D, are acute. In the Lambert quadrilateral there are three
right angles and one acute summit angle. Note that a line containing a diameter
of Σ is a “circle” orthogonal to Σ. The complete line containing points A and
B is drawn for the purpose of showing it is a diameter line for Σ.

Figure 4.3.3: Quadrilaterals in the Poincaré Model



162 CHAPTER 4. OTHER GEOMETRIES

In Figure 4.3.4, we have a line in Σ containing the points A,B,C with C sepa-
rating A and B. We will show that length AB = length AC+ length CB, us-
ing the definition of the length of a segment. Now length AB = log(AB, TS) =
log
[
AT
BT ·

BS
AS

]
. If we multiply inside by something that is equal to 1, we will not

alter the equality. Let us multiply by CS
CT ·

CT
CS . Then

length AB = log(AB, TS)

= log

[
AT

BT
· BS
AS

]
= log

[
AT

BT
· BS
AS
· CS
CT
· CT
CS

]
= log

(
AT

CT
· CS
AS

)(
CT

BT
· BS
CS

)
= log

(
AT

CT
· CS
AS

)
+ log

(
CT

BT
· BS
CS

)
= length AC + length CB.

Figure 4.3.4: Distance in the Poincaré Model

Our final demonstration will be the construction of a triangle in the Poincaré
model and to see how the angles are measured. First it should be noted that
the measure of an angle of a triangle is the measure of the angle of intersection
of the two “circles” forming a vertex for the triangle. This angle is measured in
radians. In Figure 4.3.5, we have drawn three circles with centers P,Q and R
which are orthogonal to Σ and meet in pairs in the three points A,B,C forming
triangle ABC. All three circles are drawn in their entirety for clarity of con-
struction. The angles are measured by constructing the tangents at the points
of intersections (vertices) and measuring the angles of intersection. As drawn,
∠ABC = 0.548 radians (about 31.39◦), ∠BAC = 0.718 radians (about 41.13◦)
and ∠ACB = 1.520 radians (about 87.12◦). The sum of the three angles is
2.786 radians (or 159.64◦).
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Figure 4.3.5: A Triangle in the Poincaré Model

Exercises

4.3.1. Construct a triangle in the Poincaré Model. Explain how it is done.

4.3.2. Construct a rectangle in the Poincaré Model. Explain how it is done.

4.3.3. Construct a triangle and one of its altitudes in the Poincaré Model.
Explain how it is done.

4.3.4. A circle in the Poincaré Model looks like a circle in the Euclidean plane
except the centers do not coincide. Why is this so?

4.3.5. Explain, in terms of the Poincaré Model, why lines near the center of the
Poincaré Model look straighter than lines closer to the boundary of the model.

4.3.6. Show that Euclid’s first postulate holds in the Poicaré model: Between
any two distinct points a segment can be constructed.

Note.
There is a very interesting interactive Java applet for doing constructions in

the Poicaré model. It can be found at the URL:

http://cs.unm.edu/∼joel/NonEuclid/NonEuclid.html

This applet can be run in any Java enabled browser. It is worth having for
anyone who is interested in geometry - especially if one plans to teach.
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4.4 Elliptic (Riemannian) Geometry

Merely for the purpose of completeness, we give a very brief discussion of elliptic
geometry. Mainly, to show that there is a geometry with no parallel lines.

Hyperbolic geometry came about by assuming that there could be more than
one parallel to a given line through a point not on the given line. Since Euclid
allowed only one parallel and hyperbolic geometry allows more than one, the
question then arises as to what happens if no parallels are allowed.

In 1854 Bernhard Riemann addressed this idea. His talk Über die Hypothesen
welche der Geometrie zu Grundee liegen (On the Hypotheses that Underlie
the Foundation of Geometry) is often cited as one of the highlights of modern
mathematical history. In this talk he declared that one could reasonably assume
that every pair of lines would meet at some finitely distant point. That is, the
parallel postulate could be replaced by the following statement.

Given a line ` and a point P not on `, there exists no line parallel
to ` passing through P .

A model for such a geometry could be the surface of a sphere with “lines”
defined to be great circles on the surface of the sphere. Such lines are finite
in length, since one of these lines would eventually return to is starting point.
However, these lines are also unbounded since one could trace the line endlessly.

In Euclidean geometry the sum of the angles of a triangle sum to 180◦ and in
hyperbolic geometry the sum is less than 180◦. It is easily seen that in elliptic
geometry, the sum is greater than 180◦. For if we choose two points on the
equator of the sphere to be two of the vertices of a triangle and the third vertex
at the north pole, we clearly have a triangle whose angles sum to more than 180◦.

It should be emphasized that locally, Euclidean, hyperbolic and elliptic ge-
ometry all look the same. We cannot tell if our chalkboard is in an Euclidean
plane, hyperbolic plane or an elliptic plane. All triangles would appear to have
angle measure of 180◦. To get any variation from this, the triangle would have
to be monstrously huge.
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4.5 Taxicab Geometry

The geometry we refer to as Taxicab geometry is a coordinate geometry that was
first considered by Hermann Minkowski (1864-1909) in the 19th century. Taxicab
geometry can be of any dimension; however, we will restrict our attention to the
Taxicab plane. For certain applications Taxicab geometry gives more realistic
answers than Euclidean geometry. For example consider the problem facing Jane
as she gets ready to walk to school. In the figure below, we see that if we let
a city block represent a unit measure, then we see that the Euclidean distance
from Jane’s house to her school is 4

√
2 ≈ 5.66 blocks. However, unless Jane

has wings or a helicopter, she cannot follow the straight line path. Her actual
distance from school is 8 blocks. We can see that there are many paths Jane
can take from home to school which have a minimum distance of 8 blocks. The
direct line from Jane’s house to the school exists in both geometries; however,
the difference is in the way we measure the length of the line.

Figure 4.5.1: A Trip to School

In our everyday lives we use both Euclidean and Taxicab geometries. If we
are interested in determining the length of a support to a building that is at a
45◦ angle to the building, we certainly need to use the Euclidean metric. On
the other hand, if we are telling our new neighbor how far it is to Wal-Mart, we
do it in terms of traveling city streets not as the crow flies.

We see that Taxicab geometry differs from coordinate Euclidean geometry
in terms of the metric used. To determine the distance between two points in
Taxicab geometry, we take the sum of the absolute differences of their coordi-
nates. That is, in Taxicab plane, the distance between the points P (x0, y0) and
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Q(x1, y1) is given by

dT (P,Q) = |x0 − x1|+ |y0 − y1|,

rather than the Euclidean metric

dE(P,Q) =
√

(x0 − x1)2 + (y0 − y1)2.

In a sense, “Taxicab” geometry is a misnomer in that in this geometry we
allow coordinates to be any real numbers. To be a true “Taxicab” geometry
we would have to alter our definition of the metric to allow using the minimum
street distance between points not at intersections.

It should be noted that Taxicab geometry satisfies all but one of Hilbert’s
axioms for Euclidean geometry. Lines in Taxicab geometry are the same as
lines in Euclidean geometry. How their lengths are measured is what is different.
Angles in Taxicab geometry are the same and measured the same as in Euclidean
geometry. The Hilbert axiom that is not satisfied is the SAS congruence axiom.

Figure 4.5.2: Side-Angle-Side Failure

Triangle AOC is a right isosceles triangle with two legs having length 6 and
hypotenuse 12. Now triangle OBC is also a right isosceles triangle with legs
of length 6 but the hypotenuse is of length 6 as well. These two triangle sat-
isfy SAS but are clearly not congruent. We further note that triangle OBC is
equilateral but not equiangular! It is also easy to see that SSS, which is not a
Hilbert axiom, is not satisfied in Taxicab geometry.

From what we have discovered so far, it is clear that we must be careful
not to try to project our visual notions of Euclidean geometry onto the Taxicab
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plane. Although we could use the same algebraic description for a circle with
center O and radius r in both geometries, the resulting figure would not look
the same. In both planes, a circle could be described as the set of all points P
in the plane a distance r from the point O, which we would write as

{P | d(O,P ) = r }.

Consider the circle in the Taxicab plane given by {P | dT (O,P ) = 4}. We
cannot draw this with a compass, since the compass radius is using the Euclidean
metric. What we get instead is the following

Figure 4.5.3: A Circle of Radius 4

In the above figure it is clear that OA = OB = OC = OD = 4. We can
show that every point on the Taxicab circle is 4 units from O. We will show this
is true for all points on the line joining A and B, as an example. If we place O
at the origin, then A has coordinates (−4, 0) and B has coordinates (0, 4). The
line segment AB has equation y = x + 4 with −4 ≤ x ≤ 0. If P (x, y) is any
point on this line, then

dT (O,P ) = |x|+ |x+ 4| = −x+ x+ 4 = 4.

The reader should verify the result for the other three sides.

Another shock is when we find the locus of points equidistant from two given
points. There are two basic forms that we see. The first is not the line we would
expect as the locus of points equidistant from the points (−2,−2) and (2, 2).
We see that there are two regions of points all of which are equidistant from the
given points. See Figure 4.5.4
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Suppose we let P be the point with coordinates (−2,−2) and Q be the point
(2, 2). Now suppose we wish to find all points X(x, y) such that dT (P,X) =
dT (Q,X) with x ≤ −2 and y ≥ 2. We then have that dT (P,X) = |x+2|+ |y+2|
and dT (Q,X) = |x− 2|+ |y− 2|, so −x− 2 + y+ 2 = −x+ 2 + y− 2 which is an
identity for x ≤ −2 and y ≥ 2. Hence all points (x, y) with x ≤ −2 and y ≥ 2
are equidistant from the points (−2,−2) and (2, 2). The reader should verify
that the remainder of the given points are equidistant from (−2,−2) and (2, 2).

Figure 4.5.4: An Unexpected Locus

In the next figure, we see that the locus of points equidistant from (0, 0) and
(10, 4) is a broken line. The reader should verify the validity of Figure 4.5.5.

Figure 4.5.5: Another Unexpected Locus

In Euclidean geometry, we define an ellipse as the set of all points in the
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plane the sum of whose distance from two given points is constant. Using the
same definition for Taxicab geometry, if A and B are the two fixed points and
P any point on the ellipse, we would write

dT (A,P ) + dT (B,P ) = k.

If we let A be the point (−3, 0), B be the point (3, 3) and k = 15, we get the
figure below. It looks like a squared off ellipse; however, notice where the foci
are.

Figure 4.5.6: Ellipse: dT (A,P ) + dT (B,P ) = 15

On the other hand, if we put both foci on the x−axis, we get a more familiar
figure.

Figure 4.5.7: Ellipse: dT (A,P ) + dT (B,P ) = 9
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Example 4.5.1. Graph the ellipse dT (AP ) + dT (BP ) = 13 with A(−3, 2) and
B(4, 2).

Solution. We begin by partitioning the Taxicab plane into six regions using
the points A and B as the points for partitioning.

Figure 4.5.8: Partitioned Plane

The equation of the ellipse becomes

dT (AP )+dT (BP ) = |x+3|+|y−2|+|x−4|+|y−2| = |x+3|+|x−4|+2|y−2| = 13.

We must now evaluate the above equation for P (x, y) in each of the six regions.

For the region given by −3 ≤ x ≤ 4, y ≤ 2, we have

|x+ 3|+ |x− 4|+ 2|y − 2| = (x+ 3) + (−x+ 4) + 2(−y + 2)

= x+ 3− x+ 4− 2y + 4

= −2y + 11

From −2y + 11 = 13 we get y = −1. This region therefore contains the line
y = −1 for −3 ≤ x ≤ 5.
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For the region given by x ≥ 4, y ≤ 2, we have

|x+ 3|+ |x− 4|+ 2|y − 2| = (x+ 3) + (x− 4) + 2(−y + 2)

= 2x− 1− 2y + 4

= 2(x− y) + 3

From 2(x − y) + 3 = 13 we get x − y = 5. This region therefore contains the
line y = x− 5 for x ≥ 4, y ≤ 2.

For the region given by x ≥ 4, y ≥ 2, we have

|x+ 3|+ |x− 4|+ 2|y − 2| = (x+ 3) + (x− 4) + 2(y − 2)

= 2x− 1 + 2y − 4

= 2(x+ y)− 5

From 2(x + y) − 5 = 13 we get x + y = 9. This region therefore contains the
line y = −x+ 9 for x ≥ 4, y ≥ 2.

For the region given by −3 ≤ x ≤ 4, y ≥ 2, we have

|x+ 3|+ |x− 4|+ 2|y − 2| = (x+ 3)− (x− 4) + 2(y − 2)

= 2y + 3

From 2y + 3 = 13, we get the line y = 5 for −3 ≤ x ≤ 4

Using similar arguments for the remaining regions, we obtain the following.

For the region given by x ≤ −3, y ≥ 2, we have the line y = x + 8 for
x ≤ −3, y ≥ 2.

For the region given by x ≤ −3, y ≤ 2, we have the line y = −x − 4 for
x ≤ −3, y ≤ 2.

The graph of this ellipse appears below. First with the six regions identified
and then by itself.
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In Euclidean geometry, we define a hyperbola as the set of all points in the
plane the difference of whose distance from two given points is constant. Using
a minor variation of the same definition for Taxicab geometry, if A and B are
the two fixed points and P any point on the hyperbola, we would write

|dT (A,P )− dT (B,P )| = k.

Here we need to use the absolute value to obtain all possibilities. The hyperbola
in the Taxicab plane can take on a variety of shapes depending on the choice of
foci and k.

Figure 4.5.9: Hyperbola: | dT (A,P )− dT (B,P ) |= 3
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Figure 4.5.10: Hyperbola: |dT (A,P )− dT (B,P )| = 2

Figure 4.5.11: Hyperbola: |dT (A,P )− dT (B,P )| = 2

In the above examples, we see that the choice of the foci creates very differ-
ent looking figure even when the same value of k is used. These are only a few
of the possibilities.

Example 4.5.2. Graph the hyperbola |dT (AP )− dT (BP )| = 6 with A(−3,−1)
and B(5, 3).

Solution. We begin by partitioning the Taxicab plane into nine regions
using the points A and B as opposite corners of a rectangle. We then apply the
x and y values in each region to the definition of our hyperbola.
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Figure 4.5.12: Hyperbola: |dT (A,P )− dT (B,P )| = 2

The equation of the hyperbola becomes

|dT (AP )− dT (BP )| =
∣∣∣|x+ 3|+ |y + 1| − |x− 5| − |y − 3|

∣∣∣ = 6.

We must now evaluate the above equation for P (x, y) in each of the nine regions.
For the region given by −3 ≤ x ≤ 5, −1 ≤ y ≤ 3, we have∣∣∣|x+ 3|+ |y + 1| − |x− 5| − |y − 3|

∣∣∣ = |(x+ 3) + (y + 1)− (−x+ 5)− (−y + 3)|

= |x+ 3 + y + 1 + x− 5 + y − 3|
= |2x+ 2y − 4|
= 2|x+ y − 2|

From 2|x + y − 2| = 6 we get x + y − 2 = ±3 and this yields x + y = 5 or
x+ y = −1. This region therefore contains the lines y = −x+ 5 and y = −x− 1
for −3 ≤ x ≤ 5, −1 ≤ y ≤ 3.

For the region given by x ≥ 5, −1 ≤ y ≤ 3, we have

∣∣∣|x+ 3|+ |y + 1| − |x− 5| − |y − 3|
∣∣∣ = |(x+ 3) + (y + 1)− (x− 5)− (−y + 3)|

= |x+ 3 + y + 1− x+ 5 + y − 3|
= |2y + 6|
= 2|y + 3|

From 2|y + 3| = 6, we get |y + 3| = 3 and y = 0 or y = −6; however, y = −6 is
out of the range −1 ≤ y ≤ 3 and is rejected. This region therefore contains the
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Figure 4.5.13: Partitioned Plane

line y = 0 for x ≥ 5.

For the region given by x ≥ 5, y ≥ 3, we have∣∣∣|x+ 3|+ |y + 1| − |x− 5| − |y − 3|
∣∣∣ = |(x+ 3) + (y + 1)− (x− 5)− (y − 3)|

= |x+ 3 + y + 1− x+ 5− y + 3|
= |12|

Since |12| 6= 6, this region contains no points on the hyperbola.

For the region given by −3 ≤ x ≤ 5, y ≥ 3, we have∣∣∣|x+ 3|+ |y + 1| − |x− 5| − |y − 3|
∣∣∣ = |(x+ 3) + (y + 1)− (−x+ 5)− (y − 3)|

= |x+ 3 + y + 1 + x− 5− y + 3|
= |2x+ 2|
= 2|x+ 1|

From 2|x+ 1| = 6, we get |x+ 1| = 3 and this gives x = 2 or x = −4; however,
x = −4 is outside the range −2 ≤ x ≤ 5, so we have the line x = 2 for y ≥ 3 for
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this region.

Using similar arguments for the remaining regions, we obtain the following.

For region x ≤ −3, y ≥ 3 we find no points in this region satisfying the equa-
tion of the hyperbola.

For the region x ≤ −3, −1 ≤ y ≤ 3, we find the line y = 2 for x ≤ −3

For the region x ≤ −3, y ≤ −1 we again find no points in this region satisfying
the equation of the hyperbola.

For the region given by −3 ≤ x ≤ 5, y ≤ −1, we find the line x = 0 for y ≤ −1

For the region given by x ≥ 5, y ≤ −1 we again find no points in this region
satisfying the equation of the hyperbola.

The graph of this hyperbola appears below. First with the nine regions identi-
fied and then by itself.

Exercises

4.5.1. Construct the set of points equidistant from the points (−2,−3) and
(1, 0).

4.5.2. Construct the set of points equidistant from the points (1, 1) and (3, 3).

4.5.3. In Figure 4.5.3, show that all points on the line joining B and C are 4
units from O.

4.5.4. Construct the Taxi-circle with center (−2, 3) and radius 5.
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4.5.5. In Figure 4.5.4, show that all points in the lower, shaded area are equidis-
tant from the two given points.

4.5.6. Verify the validity of the result in Figure 4.5.5.

4.5.7. Given the points (−1, 7), (−3,−1), (3,−3). Find the point equidistant
from all three points.

4.5.8. Construct the Taxicab circumcircle for the triangle with vertices (−1, 7),
(−3,−1), and (3,−3).

4.5.9. In the figure below, the grid is partitioned so that all the points in the
region about A are closest to A, all the points in the region about B are closest
to B and all the [points in the region about C are closest to C. Explain how
these regions are constructed.

Figure 4.5.14: A Voronoi Diagram for Three Points

4.5.10. The regions in Figure 4.5.14 compose what is called a Voronoi diagram.
These diagrams were named after George Voronoi (1868 - 1908) even though
they had been considered as early as the 17th Century. Construct a Voronoi
diagram for closest points using the points A(−2,−3), B(0, 5) and C(2,−1).
What point is equidistant from the three given points?

4.5.11. A Taxicab parabola is the set of all points equidistant from a given
point F and a given line `; that is, the set of all points P for which dT (P, F ) =
dT (P, `). Construct the parabola using the point F (1, 2) and the line y = −2.

4.5.12. Construct an ellipse satisfying dT (a, P ) + dT (B,P ) = 10, with A being
the point (2, 4) and B the point (6, 6).

4.5.13. Construct the hyperbola satisfying |dT (A,P ) − dT (B,P )| = 2, with A
being the point (−2,−1) and B the point (2, 1).
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4.5.14. Construct the hyperbola satisfying |dT (A,P ) − dT (B,P )| = 3, with A
being the point (1, 1) and B the point (5, 4).
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Appendix A
Some Basic Constructions

Duplicating an Angle

In Figure 1, the object is to construct an angle at P equal to the angle at A.

Figure 1.

First we draw a line through P for the initial side of the angle. At A strike
an arc cutting the sides of the angle A in points B and C. Without changing
the radius of your compasss, strike an arc of the same radius at P cutting the
line through P at Q.

Figure 2.

With compass at point B, measure the distance BC. With this radius, mark
off QR. Draw a line through PR. Angle QPR is the desired angle.

Figure 3.

A–181
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Constructing a Perpendicular to a Given Line

We first construct a perpendicular from a point P not one the line to the line `.

Figure 4.

We set our compass with a radius that exceeds the distance from P to line
` and strike an arc cutting the line ` in the points A and B.

Figure 5.

With the same radius, strike arcs from A and B meeting in the point Q. The
line through P and Q is the desired perpendicular.

Figure 6.
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Note. The radius used when striking the arcs from A and B need not be
equal to PA. All that is required is that this radius be the same for both poi-
ints A and B and be greater than 1

2AB.

We now examine the case where the point P is on the line `.

Figure 7.

In this case, we choose any convenient radius and strike arcs from P inter-
secting the line ` in the points A and B.

Figure 8.

At A and B we strike equal arcs whose measure is bigger than PA to meet
in a point Q. The line PQ is the desired perpendicular.

Figure 9.

Constructing a Parallel to a Given Line

We wish to construct a line through a given point P to a given line `.

Figure 10.



A–184 Appendix A - Some Basic Constructions

We first review a little of our knowledge of parallel lines. We note that is a
transversal t cuts a pairs of parallel lines ` and m, the corresponding angles are
equal, as seen in Figure 11.

Figure 11.

If we draw a line through P cutting line ` in a point Q, we see that all we
need do is duplicate the angle at Q at the point P to get the desired parallel
line.

Figure 12.

Note. Since this construction works for any trnsversal, some prefer to drop
a perpendicular from P to ` and then construct the perpendicular at P to that
transversal.

Constructing an Angle Bisector

To bisect a given angle A

Figure 13.

Set compass point at A and strike an arc cutting the sides of the angle in
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the points B and C.

Figure 14.

At points B and C strike arcs of equal radii meeting in a point D. The line AD
is the bisector of the angle A.

Figure 15.



Appendix B
Concurrence of the Medians of a Triangle

We will prove a well-known theorem in geometry by using the old methods of
Euclidean geometry and then you can compare this proof with a proof using an-
alytic geometry. (Of course, Ceva’s Theorem, which came many centuries after
Euclid, gives the easiest proof of all.) The theorem in question is the median
concurrence theorem. That is, the medians of a triangle meet in a point.

Euclid’s Method

For the Euclidean proof we need the following theorems (listed in the order
they are usually presented in an elementary geometry course). We state these
theorems without proof and realize that these theorems, in turn, depend on
other theorems as well.

Theorem 1. In a plane, two lines parallel to a third are parallel to each other.

Theorem 2. The diagonals of a parallelogram bisect each other.

Theorem 3. If two nonconsecutive sides of a quadrilateral are both congruent
and parallel, then the quadrilateral is a parallelogram.

Theorem 4. The segment joining the midpoints of two sides of a triangle is
parallel to the third side and half as long as the third side.

Now for the target theorem.

Theorem 5. The medians of a triangle are concurrent and the point of con-
currence is two-thirds of the distance from any vertex to the midpoint of the
opposite side.

Figure B-1.

We are given triangle ABC with medians AD, BE, and CF .
We wish to prove that AD, BE, and CF are concurrent at P and that

AP =
2

3
AD; BP =

2

3
BE; and CP =

2

3
CF.

B–186
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Proof. In Figure 2, let AD and BE intersect at P and let M and N be the
midpoints of AP and BP , respectively. Draw DE, EM, MN, ND. Since DE
is the line joining the midpoints of sides BC and CA of triangle ABC, we have,
by Theorem 4, that DE ‖ AB and DE = 1

2AB. Since MN is the line joining
the midpoints of sides PA and PB of triangle APB, we have, by Theorem 4,
that MN ‖ AB and MN = 1

2AB.

Figure B-2.

Furthermore, by Theorem 1, DE ‖ NM since they are both parallel to AB.
It now follows from Theorem 3 that DEMN is a parallelogram. Hence, by
Theorem 2, the diagonals DM and EN bisect each other. That is, DP = PM
and EP = NP , so

AM = MP = PD and BN = NP = PE.

Therefore,

AP =
2

3
AD and BP =

2

3
BE.

Next we let AD and CF intersect at P ′ (see Figure 3). By the same argument,
using points R and S and parallelogram DFSR, we can establish that

CP ′ =
2

3
CF and AP ′ =

2

3
AD.

Figure B-3.

We now have that AP = 2
3AD and AP ′ = 2

3AD. The first says that P is
a point on AD such that P is two-thirds the distance to A from D and the
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second says that P ′ is a point on AD such that P ′ is two-thirds of the dis-
tance from A to D. Hence P and P ′ must be the same point. Thus P lies
on all three medians; that is, the medians are concurrent at P . Furthermore,
AP = 2

3AD; BP = 2
3BE; and CP = 2

3CF .

The proof is not long, but it does require a good understanding of several the-
orems of Euclidean geometry.

Analytic Geometry Method

We now turn our attention to proving the same theorem using the tools of
analytic geometry. The tools we need here are: knowledge of the Cartesian
plane; the midpoint formula for a line segment; the point-slope formula for an
equation of a line; solving two equations in two unknowns; and the distance
formula.

Theorem 6. The medians of a triangle are concurrent and the point of con-
currence is two-thirds of the distance from any vertex to the midpoint of the
opposite side.

Proof. Without loss of generality, we may align our triangle so that one ver-
tex is at the origin and one side lies on the x-axis. We give the vertices co-
ordinates A(0, 0), B(a, 0) and C(b, c). We next find the midpoints of sides
AB(a2 , 0), BC(a+b2 , c2 ) and CA( b2 ,

c
2 ).

Figure B-4.

We next find the equations for the lines containing the segment AD and the
segment BE. The slope of AD is mAD = c

a+b and the equation of the line is
y = c

a+bx. The slope of BE is mBE = c
b−2a and the equation of the line is

y = c
b−2a (x− a).

Solving these two equations will give us the coordinates of the point P . Set-
ting the y-values equal, we get, upon solving for x, x = a+b

3 . From the equation
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for line AD, if x = a+b
3 then y = c

3 . Therefore the coordinates of P are (a+b3 , c3 ).

Now we need to find an equation for the line containing the segment CF and
show that P (a+b3 , c3 ) is on that line. The slope of CF is mCF = 2c

2b−a and the

equation of the line is y = 2c
2b−a (x− a

2 ). Letting x = a+b
3 we get

y =
2c

2b− a

(
a+ b

3
− a

2

)
=
c

3

and P is on the line containing the segment CF . Therefore the medians are
concurrent.
We can show that the point of concurrence, P , is two-thirds of the distance from
any vertex to the midpoint of the opposite side by using the distance formula.

|AP | =

√
(a+ b)2

9
+
c2

9
=

√
a2 + b2 + c2 + 2ab

3

|AD| =

√
(a+ b)2

4
+
c2

4
=

√
a2 + b2 + c2 + 2ab

2

and we see that |AP | = 2
3 |AD|. The others may be shown in a similar manner.

The method of analytic geometry is very straight forward using the basic tools
of algebra. People seem to have a much better grasp of the tools of algebra than
they do of the theorems of Euclidean geometry. Thus, when Descartes gave the
mathematical world analytic geometry, he freed the mathematician from the
rigors of Euclidean geometry.
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Illustrations for Section 2.8

Figure C-1: An Intersecting Coaxial Pencil

Figure C-2: A Tangent Coaxial Pencil

Figure C-3: A Non-intersecting Coaxial Pencil

C–190



Appendix C - Illustrations C–191

Figure C-4: An Intersecting Coaxial Pencil Orthogonal to Two Given
Non-intersecting Circles
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Figure C-5: A Tangent Coaxial Pencil Orthogonal to Two Given Tangent
Circles
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Figure C-6: An Intersecting Coaxial Pencil Orthogonal to Two Given
Intersecting Circles



Appendix D
Rotation of Axes

The rotation of axes is a transformation of the plane that allows one to transform
a quadratic form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (1)

to an equation without the xy-term. That is, a rotation can be found that forces
the coefficient B to be 0.

In the figure above, suppose we rotate the axes through an angle θ to get a new
set of axes, the x′y′-axes. A point P in the plane can then be described with
coordinates from either set of axes. If P has coordinates (x, y) in the xy-plane,
we see that

x = r cos(α+ θ) (2)

y = r sin(α+ θ) (3)

where θ is the angle of rotation and α is the angle OP makes with the x′-axis.
From (2), we have that

x = r cosα cos θ − r sinα sin θ

= x′ cos θ − y′ sin θ

D–194
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and from (3), we have

y = r sinα cos θ + r cosα sin θ

= y′ cos θ + x′ sin θ

= x′ sin θ + y′ cos θ.

If in equation (1) we replace x with x′ cos θ−y′ sin θ and y with x′ sin θ+y′ cos θ,
we can determine a value of θ which will make the coefficient B′ of the x′y′-term
equal to zero.

A(x′ cos θ − y′ sin θ)2 +B(x′ cos θ − y′ sin θ)(x′ sin θ + y′ cos θ) + C(x′ sin θ+
+y′ cos θ)2 +D(x′ cos θ − y′ sin θ) + E(x′ sin θ + y′ cos θ) + F = 0.

Only the first three terms

A(x′ cos θ−y′ sin θ)2+B(x′ cos θ−y′ sin θ)(x′ sin θ+y′ cos θ)+C(x′ sin θ+y′ cos θ)2

contribute to an x′y′-term, so we will confine our attention to them. Multiply-
ing out these terms gives

A(x′ 2 cos2 θ − 2x′y′ cos θ sin θ + y′ 2 sin2 θ)+

+B(x′ 2 cos θ sin θ + x′y′ cos2 θ − x′y′ sin2 θ − y′ 2 sin θ cos θ)

+C(x′ 2 sin2 θ + 2x′y′ sin θ cos θ + y′ 2 cos2 θ).

We now determine the coefficient of the x′y′-term, which is

−2A cos θ sin θ +B(cos2 θ − sin2 θ) + 2C sin θ cos θ

which we could write as

−A sin 2θ +B cos 2θ + C sin 2θ.

If we set this equal to zero, we have

B cos 2θ = (A− C) sin 2θ.

Thus,

cot 2θ =
A− C
B

.

We choose the cotangent function rather than the tangent function since we
know B 6= 0, for if it were, we would have no reason to rotate the axes. Therefore
if we choose θ so that cot 2θ = A−C

B , then we will have an equation in our new
coordinate system of the form

A′x′ 2 + C ′y′ 2 +D′x′ + E′y′ + F ′ = 0.
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Example. Find the angle of rotation θ to remove the xy-term in the equation

11x2 + 10
√

3xy + y2 − 16 = 0.

Solution. For this equation A = 11, B = 10
√

3 and C = 1. Thus,

cos 2θ =
A− C
B

=
11− 1

10
√

3
=

1√
3
.

Hence, 2θ =
π

3
and θ =

π

6
. Therefore, we let

x =

√
3

2
x′ − 1

2
y′

y =
1

2
x′ +

√
3

2
y′

in our given equation.

11

(√
3

2
x′ − 1

2
y′

)2

+10
√

3

(√
3

2
x′ − 1

2
y′

)(
1

2
x′ +

√
3

2
y′

)
+

(
1

2
x′ +

√
3

2
y′

)2

−16 = 0.

Multiplying out and collecting terms we have(
33

4
+

30

4
+

1

4

)
x′ 2+

(
−11
√

3

2
+

10
√

3

2
+

√
3

2

)
x′y′+

(
11

4
− 30

4
+

3

4

)
y′ 2−16 = 0.

This reduces to
16x′ 2 − 4y′ 2 − 16 = 0

which we recognize as the hyperbola

x′ 2 − y′ 2

4
= 1.

Theorem. For the equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

the following hold:

(i) If B2−4AC < 0, then the equation represents an ellipse, a circle, a point,
or else has no graph.

(ii) If B2 − 4AC > 0, then the equation represents a hyperbola or a pair of
intersecting lines.

(iii) If B2 − 4AC = 0, then the equation represents a parabola, a line, a pair
of parallel lines, or else has no graph.
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Example. Use the above theorem to determine what the graph of the following
equation might represent then find the rotation that will eliminate the xy-term
in the following equation.

73x2 + 72xy + 52y2 + 30x− 40y − 75 = 0.

Solution Since A = 73, B = 72, C = 52, we have that B2 − 4AC < 0 and
we would expect to get an ellipse.

Now since A−C
B = 7

24 we see that cot 2θ = 7
24 . For 0 < θ < π

2 and cot 2θ = 7
24

we see that cos 2θ = 7
25 . Thus sin θ =

√
1− 7

25

2
=

3

5
and cos θ =

√
1 + 7

25

2
=

4

5
.

The rotation equations are then

x =
4

5
x′ − 3

5
y′

y =
3

5
x′ +

4

5
y′

Substituting into the given equation gives

73(
4

5
x′ − 3

5
y′)2 + 72(

4

5
x′ − 3

5
y′)(

3

5
x′ +

4

5
y′) + 52(

3

5
x′ +

4

5
y′)2

+ 30(
4

5
x′ − 3

5
y′)− 40(

3

5
x′ +

4

5
y′)− 75 = 0.

This simplifies to
4x′2 + y′2 − 2y′ = 3.

Completing the square gives

4x′2 + (y′ − 1)2 = 4 or x′2 +
(y′ − 1)2

4
= 1

which we recognize as an ellipse whose center is (0, 1) in the x′y′−coordinates.

Suppose a rotation of θ = π
4 produces the following equation

y′ 2 + 4y′ − 8x′ + 12 = 0. (4)

What was the original equation in the xy-plane?

This problem may be solved if the transformation given by

x = x′ cos θ − y′ sin θ (5)

y = x′ sin θ + y′ cos θ (6)

has an inverse. In other words, can we solve for x′ and y′ in terms of x and y?
To this end multiply equation (5) by cos θ and equation (6) by sin θ and add.
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The result is x cos θ + y sin θ = x′. Now if we multiply equation (5) by − sin θ
and equation (6) by cos θ and add, we get −x sin θ + y cos θ = y′. Hence the
transformation

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

is the inverse transformation and we should obtain the original equation if we
replace x′ and y′ by

x′ = x cos
π

4
+ y sin

π

4

y′ = −x sin
π

4
+ y cos

π

4

in equation (4). That is by,

x′ =

√
2

2
x+

√
2

2
y =

√
2

2
(x+ y)

y′ = −
√

2

2
x+

√
2

2
y =

√
2

2
(−x+ y)

This transformation should give the equation

x2 − 2xy + y2 − 12
√

2x− 4
√

2y + 24 = 0.

Notice that in this form the equation does not look like an equation for a
parabola, which we see from equation (4).
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Hints for Selected Exercises

This appendix contains hints to some selected exercises. These hints should
only be used after all other efforts have been exhausted. Since many problems
in mathematics have more that one method of solution, these hints lead to one
possible solution for the exercise noted. More hints will given be for early exer-
cises than for the later exercises. It is assumed that, as the course progresses,
one will become more adept at problem solving.

This appendix does not mean you cannot ask questions in class or my office
about the exercises.

Chapter 1

Exercise 1.1.3 The points of intersection can be determined if a circle with
center C∗ and radius C∗D∗ = CD can be found on the opposite side of the line
determined by AB.

Exercise 1.3.1 In Figure 1.3.9, one needs to show that ∠CBD = ∠CAB.
Note that extra lines are in Figure 1.3.9 that were not in Figure 1.3.8. Drawing
figures and including auxiliary lines are often very helpful in solving a problem
in mathematics. Are there other angles in the Figure 1.3.9 equal to angle CAB?

Exercise 1.3.2 Products can come from ratios. Draw auxiliary lines to create
similar triangles involving sides PA, PB, PC, and PD.

Exercise 1.3.5 By the Extended Law of Sines,
sinA

a
=

1

2R
and one of the area

formulas is |ABC| = 1

2
bc sinA.

Exercise 1.3.6 Find similar triangles and note that |ABC| = 1

2
c · CE.

Exercise 1.3.11 From the previous problems, there are two ways this result
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can be obtained.

Exercise 1.3.12 Identify cyclic quadrilaterals which can be used to prove that
∠PFE = ∠PFD

Exercise 1.4.6 There are actually four such circles. See the figure on the
next page. The centers of these circles are where angle bisectors meet. For
experience, the interior circle and at least one of the exterior circles should be
constructed.

Figure for Exercise 1.4.6 Hint

Exercise 1.8.2 The properties of tangents to circles are crucial here. For ex-
ample, note that AD = AE and CE = CF .

Exercise 2.2.3 In the figure below BL is the bisector of the exterior angle at
A. Note the relationship between the interior angle bisector and the exterior
angle bisector at A. Be aware of the direction of angles.

Figure for Exercise 2.2.3 Hint

Exercise 2.2.6 Use the results of Exercise 2.2.5.
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Exercise 2.2.7 If D and E are the trisection points, then it must be shown
that CD2 +CE2 = 5

9AB
2. It appears that Stewart’s Theorem might be useful.

Figure for Exercise 2.2.7 Hint

Exercise 2.3.3 AD and PD are the common cevian lines for triangles ABC
and PBC. See figure below. Drop perpendiculars from A and P to base BC.

Figure for Exercise 2.3.3 Hint

Exercise 2.3.5 There is not just one way to solve this problem. If all else fails,
use Exercise 1.8.2.

Exercise 2.3.9 In the figure below, show that BD = D′C and that this implies
that D′M1 = M1D.

Figure for Exercise 2.3.9 Hint

Exercise 2.5.6 In the figure below, let A′, B′, C ′, D′, P be the points of tan-
gency for the lines a, b, c, d, p. Use Theorem 2.5.5 and the properties of angles
and circles.
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Figure for Exercise 2.5.5 Hint

Exercise 2.6.5 Use Menelaus’s and Ceva’s theorems.

Exercise 2.6.8 Use the figure below.

Figure for Exercise 2.6.8 Hint

Exercise 2.7.4 Let P be the center of the circle on AMO and let Q be the
center of the circle on BMO. Show that ∠POQ = 90◦; that is, the radius of
the circle AMO is perpendicular to the radius of circle BMO at their point of
intersection M .

Exercise 2.8.5 The radical axis must be a line perpendicular to the line of
centers of the point and the circle. Find a point that has equal powers with
respect to the point-circle and the circle.

Exercise 2.8.6 Find the radical center of the point and the two given circles.

Exercise 3.1.2 Read Appendix D.
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Exercise 3.1.10 Draw a figure. Note similar triangles.

Exercise 3.2.2 Use Menelaus’s theorem.
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“circle”, 99, 136

altitude, 14, 29
American Academy of Arts and Sci-

ence, 155
angles of intersection of coplanar curves,

97
anharmonic ratio, 81

Bolyai, Jáos (John) , 155

centroid of a triangle, 76
Ceva, 68
Ceva’s Theorem, 69
cevian line, 69
circumcenter, 14, 29
circumcircle, 14, 29, 54
circumradius, 29
coaxial triangles, 74
collapsing compass, 36
collinear points, 13
complete quadrangle, 92

diagonal 3-point, 92
diagonal points, 92

complete quadrilateral, 93
diagonal 3-line, 93
diagonal lines, 93

concurrent lines, 13
congruent segments, 11
congruent triangles, 129
constructible numbers, 37
constructions, 24

a perpendicular, 26
circumcircle, 25
difference of two numbers, 37
dividing a segment in equal parts,

24

product of two numbers, 37
quotient of two numbers, 38
squareroot of a number, 39
sum of two numbers, 37
tangents to circles, 25
triangle from data, 30

copolar triangles, 73
cross ratio, 81
cross ratio of a pencil of lines, 84
cyclic convex quadrilateral, 144
cyclic quadrilateral, 18

Dedikind’s Postulate, 12
Desargues’ Theorem, 74
Desargues, Gérard, 61
dilation-reflection, 119
dilation-rotation(homology), 119

angle, 119
center, 119
ratio, 119

direct isometry, 131
directed area, 65
directed distance, 62
double ratio, 81

Euclid, 3, 9
common notions (axioms), 5
compass, 36
definitions, 3
postulates, 5
Proposition 1, 5
Proposition 2, 6
Proposition 20, 40
Proposition 3, 7
The Elements, 3

Euclidean egg, 27
Euler’s Theorem, 63
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excircles, 50
Extended Law of Sines, 55
extended plane, 61
exterior angle, 65
external angle bisector, 29

Four Coin Problem, 56

Gauss, Carl Friedrich , 155
Gergonne point, 76
glide-reflection, 118

harmonic conjugate, 90
harmonic division, 90
harmonic pencil, 90
harmonic progression, 91
harmonic range, 90
Heron’s Formula, 52
Hilbert

postulate of parallels, 12
postulates of congruence, 11
postulates of connections, 10
postulates of continuity, 12
postulates of order, 10
primitive terms, 10

Hilbert, David, 10
Historical Note

Compasses, 36
Desargues, 89
Euclid, 9
Heron of Alexandria, 59
Points at Infinity, 61

homology, 119
homothety(dilation), 116

center, 116
ratio, 116

hyperbolic geometry, 152

ideal line, 61
ideal points, 61
improper isometry, 129
incenter, 14, 29
incircle, 14, 29, 49
inradius, 29, 53
inscribed polygon, 14
inversion, 134

circle of inversion, 134
homothetic transformation, 137
invariant point, 134
inversive plane, 135
involutoric transformation, 135
power of inversion, 134
radius of inversion, 134

inversive plane, 135
involutoric, 121
isometry, 115, 129

direct isometry, 129
opposite isometry, 129
proper isometry, 129

isotomic points, 76

Java applet for the Poicaré model, 161

Lambert quadrilateral, 154
Lambert, Johann , 154
Law of Cosines, 51
Law of Sines, 54
Legendre, Adrien-Marie , 155
Lobachevsky, Nicolai Ivanovich , 155

Möbius, 81
median, 14, 29
Menelaus, 67
menelaus point, 67
Menelaus’ Theorem, 67
Minkowski, Hermann, 163
Monge, Gaspard, 61

Nagel point, 76
notation

altitude of a triangle, 29
angle bisectors of a triangle, 29
median of a triangle, 29
perimeter of a triangle, 29

one-to-one mapping, 113
opposite isometry, 131
ordinary lines, 61
ordinary points, 61
ordinary triangles, 61
orthic triangle, 14
orthocenter of a triangle, 76
orthocentric group of points, 103
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orthogonal circles, 97

Pappus, 146
parallel postulate for hyperbolic geom-

etry, 158
pencil of lines, 13
perimeter of a triangle, 29
perpendicular bisector of a chord of a

circle, 25
perspective from a line, 74
perspective from a point, 74
Playfair’s Axiom, 152
Playfair, John, 152
Poincaré Model for hyperbolic plane,

158
Poincaré, Henri, 157
power of a point with respect to a cir-

cle, 100
Proclus, 152
product transformation, 117

compatible, 117
projective geometry, 61
Ptolemy, 144, 149
Pythagorean Theorem, 15, 42

Bhaskara’s proof, 45
Da Vinci’s proof, 45
Euclid’s proof, 43
Garfield’s proof, 46
Pythagoras’ proof, 42
Thâbit ibn Qurra’s proof, 44

radical axis, 104
radical center, 107
radical circle, 112
range of points, 13
reflection

center of, 114
reflection in a line, 115

axis of, 115
mirror, 115

reflection in a point, 114
reflections in lines, 129
rhombus, 56
Riemann, Bernhard, 162
rotation, 114

angle of, 114

center of, 114

Saccheri quadrilateral, 153
Saccheri, Girolamo , 153
semiperimeter, 50
sensed magnitudes, 62
similar polygons, 14
similar triangles, 15
Simson line, 23
Star Trek Lemma, 16
Stewart’s Theorem, 63

Taxicab circle, 165
Taxicab ellipse, 167
Taxicab geometry, 163
Taxicab hyperbola, 168
Taxicab parabola, 170
transformation, 113

dilation-reflection, 119
dilation-rotation(homology), 119
fixed point, 113
glide-reflection, 118
homology, 119
homothety(dilation), 116
inversion, 134
involutoric, 121
isometry, 115
one-to-one mapping, 113
reflection in a line, 115
reflection in a point, 114
rotation, 114
translation, 113

translation, 113
transversal, 13
Trigonometric form of Ceva’s Theorem,

71
Trigonometric form of Menelaus’ The-

orem, 70

Voronoi diagram, 170
Voronoi, George, 170

Wallis, John , 153


