Math 555: Differential Equations I Midterm Exam # 1

Friday, 13 Sep2013

Name:_____

Instructions: Complete all 3 problems in part I, and 2 of the 3 problems in part II. Clearly mark the problem in part II that you would like to omit. Each completed problem is worth 20 points. Show all work, and follow the instructions carefully. Write your name on each page. You may *not* use a calculator, or any other electronic device. You may use only a 3×5 index card of your own notes, a pencil, and your brain.

Good Luck!

Part I: Complete all 3 problems.

1. Find the particular solution of the IVP.

$$y' = \frac{2xy}{1+x^2} ; \quad y(0) = 3$$

2. Find the general solution of the DE.

$$y' + 2ty = 4t^3$$

3. Find the general solution of the DE.

$$\left(6(x+y)^2 + y^2 e^{xy} + 12x^3\right) + \left(e^{xy} + xye^{xy} + \cos y + 6(x+y)^2\right)y' = 0$$

Name:

Part II: Complete 2 of the 3 problems. Clearly mark the one problem you wish to omit.

4. a.) Find all values of r such that $y = e^{rt}$ is a solution of the DE.

$$y'' + 12y' - 28y = 0$$

b.) Verify that $\varphi(t) = 3t + t^2$ is a solution of the DE.

 $ty' - y = t^2$

Name:_____

5. a.) Show that any separable equation

$$M(x) + N(y)y' = 0$$

is also exact.

b.) Solve the IVP.

$$(2x - y) + (2y - x)y' = 0; \quad y(1) = 3$$

Name:_____

6. Determine the maximum interval on which the solutions of the DE are guaranteed to exist without solving the DE. a.)

$$t(t-4)y' + y = 0$$
; $y(2) = 1$

b.)

$$y' + (\tan t)y = \sin t$$
; $y(\pi) = 0$