
Honors DE : Assignment III

Due by 13 December 2013

In this assignment we’ll take a closer look at some theory behind the numerical
methods for approximating solutions to first order DE that we have studied in
class.

Euler’s Method

We begin by showing that the approximate solutions found using Euler’s method actually
converge to the solution of the IVP as h tends to 0.

Consider the first order initial value problem{
y′ = f(t, y) ;

y(t0) = y0.
(1)

Suppose that f is Lipschitz continuous. (Look back at Assignment I if you need a refresher
on Lipschitz continuity.) Moreover, suppose that the exact solution y = φ(t) is C2 on
the domain which it is defined. This means that φ is continuous, and φ′, φ′′ exist and
are continuous on the domain of definition. Under these conditions on f and φ, it can be
shown that Euler’s method converges to the actual solution of the IVP (1) on the domain of
definition.

Requiring that f be Lipschitz ensures that the tangent lines used to piece together the
approximate solution do not become “too vertical”. Insisting that φ is C2 ensures that the
solution we are hoping to converge to is smooth enough that it can actually be approximated
by tangent lines. The proof of this theorem is a little beyond the scope of this course, but
the following exercise give an example for which Euler’s method converges.

Ex 1 Consider the initial value problem{
y′ = 1− t+ y ;

y(t0) = y0.
(2)
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1. Show that for any initial data (t0, y0), the domain of the solution y = φ(t) is R.

2. Show that the exact solution is y = φ(t) = (y0 − t0)e
t−t0 + t.

3. Using Euler’s formula yk+1 = yk + fk · h, show that

yk+1 = (1 + h)yk + h− htk, k = 0, 1, 2, . . .

4. Noting that y1 = (1 + h)(y0 − t0) + t1, show by induction that

yn = (1 + h)n(y0 − t0) + tn (3)

for all n = 1, 2, 3, . . ..

5. Consider a fixed point t∗ > t0 and for a given n choose h = 1
n
(t∗ − t0). Then tn = t∗

for every n. Note that h → 0 as n → ∞. By substituting for h in equation (3) and
letting n → ∞, show that yn → φ(t∗). [Hint: lim

n→∞
(1 + a

n
)n = ea.]

Since t∗ > t0 was arbitrary, you have shown that Euler’s method converges to φ(t) for all
t > t0. That is, we have only recovered the right-hand side of the exact solution. The other
“half” of the solution can be recovered by making appropriate changes to Euler’s formula.

Ex 2 Write down an analogue to Euler’s method that will approximate solutions to the left
of the initial data.

You could now repeat Ex 1 to show that Euler’s method converges on the entire domain of
definition of φ, and therefore recovers all of φ, but I won’t make you do that.

A Better Euler Method

Once again consider the IVP (1). If y = φ(t) is the exact solution, and {t0, . . . , tn} is a
partition of an interval [t0, tn] with tk+1 − tk = h for all k, then φ satisfies the integral
equation

φ(tk+1) = φ(tk) +

∫ tk+1

tk

f(t, φ(t)) dt. (4)

This formula should look familiar as it comes from the Picard method that we used to prove
the FEUT in assignment I.

The Euler formula
yk+1 = yk + h · f(tk, yk) (5)

is obtained from equation (4) by replacing f(t, φ(t)) by its value at the left endpoint, f(tk, yk).
Therefore, Euler’s method can be thought of as the left endpoint rule for approximate inte-
gration that you studied in Calc II.
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The connection can be seen by rearranging the terms in each of the last two equations
to obtain

φ(tk+1)− φ(tk) =

∫ tk+1

tk

f(t, φ(t)) dt ≈ h · f(tk, yk). (6)

As written, this formula really only makes sense for k = 0, but the idea is exactly the same
for all other iterations. Again thinking back to Calc II, we know that we can get a better
approximation of this integral by taking the area of trapezoids instead of rectangles. We
thus obtain a new formula for updating the value yk+1,

yk+1 = yk + h · f(tk, yk) + f(tk+1, yk+1)

2
. (7)

The problem with this formula is that yk+1 shows up on the right-hand side, but we don’t
know what yk+1 is; that’s what we’re trying to find!

To get around this issue, we can use the old Euler formula (5) to approximate the yk+1

on the right-hand side of equation (7). We obtain

yk+1 = yk + h · f(tk, yk) + f(tk+1, yk + h · f(tk, yk))
2

. (8)

This formula is called the improved Euler formula, or the Heun formula.

Ex 3 Use the improved Euler method to approximate solutions to the IVP (2) with initial
data y(0) = 2 on the interval [0, 2]. Use step sizes of h = 0.1 and h = 0.05. Also use the old
Euler method to solve the same problem, and compare your results.

As a final exercise, let’s take a look at the error generated in this improved Euler method.
If such a method is to be used in practice, then we need to know how small we have to choose
h to get an approximation that is “close enough” to the actual solution. On the other hand,
we don’t want to do more work than we absolutely need to. Thus we should choose the
optimal value for h that gives us the accuracy we want, but doesn’t make us do any more
work than we need to.

Suppose that the exact solution is C3. This is very similar to the C2 condition that in
the first section, except that we must also add φ′′′ into the mix. We want to show that the
local truncation error for the improved Euler method is proportional to h3. By assuming
that φ is C3, we are able to write a Taylor expansion for φ around tk up to third order. We
get

φ(tk+1) = φ(tk + h) = φ(tk) + φ′(tk) · h+
φ′′(tk)

2!
· h2 +

φ′′′(t∗k)

3!
· h3, (9)

where tk < t∗k < tk+1. Now assume that yk = φ(tk).
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Ex 4 Show that the error generated by the (k + 1)-st step is given by

ek+1 = φ(tk+1)− yk+1

=
φ′′(tk)− [f(tk+1, yk + h · fk)− fk]

2!
· h+

φ′′′(t∗k)

3!
· h3

by plugging in for yk using equation (8).

Ex 5 Use the facts that φ′′ = ft(t, φ(t)) + fy(t, φ(t))φ
′(t) and the Taylor approximation

with a remainder for a function F (t, y) of two variables is

F (a+ h, b+ k) = F (a, b) + Ft(a, b) · h+ Fy(a, b) · k +
1

2!

[
h2Ftt + 2hkFty + k2Fyy

] ∣∣∣
(ξ,η)

,

where ξ ∈ (a, a+h) and η ∈ (b, b+ k), show that the first term on the right-hand side of the
equation for ek+1 is proportional to h3 plus higher order terms. This is the desired result.

Ex 6 Show that if f(t, y) is linear in both t and y, then ek+1 =
h3φ′′′(t∗k)

6
for some t∗k ∈

(tk, tk+1). [Hint: What are ftt, fty, and fyy?]
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