
Honors DE : Assignment II

6 Nov 2013

Let’s take a little bit closer look at power series. We will derive two very important classes
of polynomials known as the Chebyshev polynomials and Legendre polynomials. In each case,
the first n such polynomials form a basis for the vector space Pn of (n−1)-degree polynomials.
Then we’ll show exactly how the coefficients an of a general power series solution of a general
second order DE can always be written in terms of a0 and a1.

1 Chebyshev Polynomials

Consider the differential equation

(1− x2)y′′ − xy′ + α2y = 0.

This equation is called Chebyshev’s equation. It has two singular points, x = ±1. Therefore,
we know that series solutions around x0 = 0 will have a radii of convergence of at least 1.
(Why?)

Ex 1 Find the first four terms of each of y1 and y2 centered at x0 = 0, and show that they
form a fundamental solution set.

If α = n is a non-negative integer, i.e., if α = 0, 1, 2, 3, 4, . . ., then one of the two
fundamental solutions will become a (finite) polynomial of degree n. These are called the
Chebyshev polynomials. They are defined on the interval [−1, 1].

Ex 2 Consider the initial data y(0) = 1 and y′(0) = 1. Find the Chebyshev polynomi-
als that arise from this initial value problem for α = 0, 1, . . . , 7. Call these polynomials
C0, C1, . . . , C7.

Ex 3 Graph each of the polynomials that you found in the last Ex in a different color on
the interval [−1, 1]. Do you notice anything interesting about the behavior of the evens and
odds?

The Chebyshev polynomials that you just found form a basis for the vector space P8[−1, 1],
the 7th degree (and below) polynomials defined on the interval [−1, 1]. This means that any
polynomial in P8 can be written as a linear combination of the Chebyshev polynomials.
Moreover, all of the odd-degree polynomials satisfy∫ 1

−1

C2k+1(x) dx = 0.
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Ex 4 Calculate the definite integrals I2k :=
∫ 1

−1
C2k(x) dx for k = 0, 1, 2, 3.

Now the integral of any polynomial in P8[−1, 1] can be calculated using only the numbers
I0, I2, I4, and I6.

Ex 5 Write the polynomial

p(x) = 32x6 + 16x5 − 64x4 − 20x3 + 40x2 + 4x− 3

as a linear combination of Cn’s. Write
∫ 1

−1
p(x) dx as a linear combination of In’s, and

calculate the exact value.

We can also use these numbers In to approximate the integrals of sufficiently smooth
functions on the interval [−1, 1].

Ex 6 Write the 6th degree Taylor polynomials for ex and cos(x) around the point x0 = 0.
Write the even terms for each as linear combinations of C0, C2, C4, and C6. (This might be

messy, sorry.) Estimate the integrals
∫ 1

−1
ex dx and

∫ 1

−1
cos(x) dx in terms using I0, I2, I4, and

I6. How close are the answers?

2 Legendre Polynomials

Legendre’s equation is given by

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0.

Like Chebyshev’s equation, it has singular points at x = ±1. Again, this means that we can
look for power series solutions in the interval [−1, 1], and be sure that they will converge.
Also like Chebyshev’s equation, if α = n is a non-negative integer, then one of the two
solutions of this equation will become a polynomial of degree n. The Legendre polynomials
of degree n, denoted by Ln, are the polynomial solutions with the additional constraint that
Ln(1) = 1.

Ex 7 Find the Legendre polynomials L0, L1, . . . , L7. Plot each of them in a different color
on the interval [−1, 1]. Find the zeros of each Ln in the interval. (You can use a CAS to
help with this.)

Ex 8 Show that Legendre’s equation can also be written as

[(1− x2)y′]′ = −α(α + 1)y.

The last Ex implies that

[(1− x2)L′
n]

′ = −n(n+ 1)Ln, and (1)

[(1− x2)L′
m]

′ = −m(m+ 1)Lm. (2)
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Ex 9 Multiply equation (1) by Lm and equation (2) by Ln, integrate by parts, then subtract
one equation from the other to show that∫ 1

−1

Ln(x)Lm(x) dx = 0 (3)

for m ̸= n.

Equation (3) is called an orthogonality property. You may remember from Linear Algebra
that if a vector space has an inner product ⟨ , ⟩, then two vectors x and y are called orthogonal
iff ⟨x, y⟩ = 0. It can be shown that the integral in equation (3) defines an inner product on
the vector space P8[−1, 1]. For any two polynomials p and q in P8[−1, 1],

⟨p, q⟩ =
∫ 1

−1

p(x)q(x) dx.

It can further be show that if m = n, then

⟨Ln, Ln⟩ =
∫ 1

−1

L2
n(x) dx =

2

2n+ 1
.

From these facts, you can deduce that polynomials of the form
√
2n+1√

2
Ln form an orthonormal

basis for P8[−1, 1].

3 General Series Near an Ordinary Point

Consider a second order DE of the form

P (x)y′′ +Q(x)y′ +R(x)y = 0 (4)

where P , Q, and R are analytic functions. Remember, a function is analytic if it can be
represented as a power series around every point in its domain. Now assume that equation
(4) has a power series solution around the point x0,

y = φ(x) =
∞∑
n=0

an(x− x0)
n,

and that φ converges for all |x− x0| < R, for some R > 0. For all of the examples that we
did in class, the solution φ could be separated into two separate power series,

φ = a0y1 + a1y2,

where y1 and y2 form a fundamental solution set. It turns out that this always the general
case, and not just special to our examples. What we need to show is that every an can be
written in terms of a0 and a1.

Inside the interval of convergence for φ, equation (4) can be rewritten as

φ′′(x) = −p(x)φ′(x)− q(x)φ(x),
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where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x). Plugging in x = x0 picks out the constant
term of each series for φ, so φ′′(x0) = 2!a2. But by the last equation,

φ′′(x0) = −p(x0)φ
′(x0)− q(x0)φ(x0) = −p(x0)a1 − q(x0)a0.

Putting it all together,

a2 =
1

2!
[−p(x0)a1 − q(x0)a0] .

Ex 10 Differentiate φ′′(x) = −p(x)φ′(x)− q(x)φ(x) and rearrange to obtain an expression
for φ′′′ in terms of φ′′, φ′, and φ. Plug in x = x0 to obtain a3 in terms of a2, a1, and a0.
Substitute in the formula we just found for a2 to get a3 solely in terms of a0 and a1.

Ex 11 Repeat the method of the last Ex to find a4 in terms of a0 and a1.

This method can be repeated as many times as necessary to obtain a generic expression for
any an in terms of p, q, a0, and a1.

Ex 12 Use the formulas for φ(n), n = 0, . . . , 4 from the previous results to complete problems
1 and 2 on page 269 of our text. Since you put in the hard work to derive those formulas,
these problems should just be simple plug and chug exercises.

Now you could go back and do the same for the Chebyshev and Legendre equations, and
derive the first few polynomials using this method instead. You should get the exact same
answers.
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