
Honors DE : Assignment I

27 Sep 2013

This assignment is meant to help you better understand the new analysis concepts used in
the proof of the FEUT in Chapter 17 of [3]. In our class we are only studying 1-dimensional
“systems” of DE, so every time the book says Rn you should read R (or R1), and every time
there is a vector X you should think of it as a single function y.

The most important part of this assignment is for you to read through Chapter 17 of
[3] carefully, and understand what it is saying. There are some exercises labeled with Ex
in these notes that you should try to complete as you go along. If you are stuck or have
any questions at all, you should ask me. This is not a test, it’s meant to help you learn the
material.

Suprema and Infima

Definition 1 Let S be a subset of the real numbers R.

1. An element u ∈ R is said to be an upper bound of S if s ≤ u for all s ∈ S.

2. An element w ∈ R is said to be a lower bound for S if w ≤ s for all s ∈ S.

It is possible that a subset S may not have either an upper or a lower bound.

Definition 2 Let S be a subset of R.

1. If S is bounded above, then an upper bound is said to be a supremum if it is less than
any other upper bound of S. A supremum is also called a least upper bound, or a lub.

2. If S is bounded below, then a lower bound is said to be an infimum if it is greater than
any other lower bound of S. An infimum is also called a greatest lower bound, or a
glub.

If the set S has a maximum, then the supremum coincides with the max. Likewise, if S has
a minimum, then the infimum coincides with the minimum.

Ex 1 Consider the set S =
{
1 + 1

n

}
, n = 1, 2, 3, . . .. Find the sup and inf of S. Is either

one a max or min?

Ex 2 Give an example of a set of rational numbers that is bounded but does not have a
rational supremum.

Ex 3 Give an example of a set of irrational numbers that has a rational infimum.
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Lipshitz Continuity

Definition 3 A function f : (α, β) → R is said to be Lipshitz continuous (or just Lipshitz)
if there is a constant K ≥ 0 such that

|f(x)− f(y)| ≤ K |x− y|

for all x and y in (α, β). The constant K is called the Lipshitz constant for f .

Notice that the interval I = (α, β) is assumed to be open in this definition; that is, it doesn’t
include its end points. Frequently we can take I = R.

Definition 4 Let f : (α, β) → R be a function such that for every point x in (α, β) there
is a constant ε = ε(x) such that Iε := (x− ε, x+ ε) is a subset of (α, β) and f is Lipshitz on
the interval Iε. Then f is said to be locally Lipshitz.

In this case, for each x ∈ (α, β), f satisfies

|f(y1)− f(y2)| ≤ Kε |y1 − y2|

for all y1 and y2 in Iε. In particular, there could be a different Lipshitz constant Kε for each
subinterval Iε.

Ex 4 Draw a schematic picture that includes the open interval I = (α, β), a point x ∈ I,
the subinterval Iε around x, and the graph of f over Iε. Illustrate how the Lipshitz condition
restricts how the graph of f is allowed to behave over Iε.

Ex 5 Prove that if f : (α, β) → R is Lipshitz, then it is also locally Lipshitz.

Ex 6 Is the function f(x) = sin(x) Lipshitz? If so, find K.

Ex 7 Show that the function f(x) = ex is not Lipshitz, but is locally Lipshitz. Find Kε in
terms of x and ε.

Proving the Lemmas

You should now be able to read and understand the proof of the Lemma on page 387 of [3].
Here are a couple of things to keep in mind that should make it easier to read:

1. Replace F : O → Rn with f : (α, β) → R, as we only care about the 1-dimensional
case right now.

2. When you see DFX read df
dx
(x), where these x’s are confusingly different. The x in dx

is the independent variable while the x in (x) is the point in (α, β) where the derivative
is to be evaluated.
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3. A set is convex if every pair of points can be connected by a straight line that sits
entirely in the set. For example, a disc is convex, but a “fat” letter U is not. In the
1-dimensional case, every connected interval (without holes or breaks) is convex, so
this is not a crazy assumption in any way.

After you believe the proof of the lemma, read the first paragraph on page 388 carefully.
This is a key idea in the proof of the FEUT. We actually discussed this in class in some
detail. It says that we can replace the differential equation

y′ = f(y); y(0) = y0

with the integral equation

y(t) =

∫ t

0

f(y(s)) ds+ y0.

Any function y that solves the DE will necessarily solve the integral equation as well. Unfor-
tunately, these equations are not “equivalent”: There are functions that satisfy the integral
equation but do not solve the DE.

Before we continue, we should rewrite the four assumptions in the middle of the page.

1. Iε = [y0 − ε, y0 + ε] is a closed interval of radius ε centered at y0.

2. There is a Lipshitz constant Kε for f on Iε.

3. |f(y)| ≤ Mε on Iε; i.e., f is bounded on Iε.

4. Choose a < min
{

ε
Mε

, 1
Kε

}
and put J = [−a, a].

The functions U0, U1, . . . in the next paragraph are going to be the Picard iterations φ0, φ1, . . .
that we studied in class. The “Lemma from Analysis” that follows is a fundamental piece of
the puzzle.

Uniform Convergence

Rewrite the lemma as follows:

Lemma 5 Suppose φk : J → R, k = 0, 1, 2, . . ., is a sequence of continuous functions defined
on the closed interval J that satisfy:

Given ε > 0, there is some N > 0 such that for every p, q > N

max
t∈J

|φp(t)− φq(t)| < ε.

Then there is a continuous function φ : J → R such that

lim
k→∞

{
max
t∈J

|φk(t)− φ(t)|
}

= 0.

Moreover, for any t with |t| < a,

lim
k→∞

∫ t

0

φk(s) ds =

∫ t

0

φ(s) ds.
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In other words, this says that the sequence of functions φk converges to a limit function φ,
and that the integrals also converge. You can probably guess that this is exactly what we
will need to prove that the Picard iterations converge to an actual solution of the DE.

Ex 8 For every n = 1, 2, 3, . . ., define fn(x) =
x
n
and define f(x) = 0 for all x ∈ R.

1. Show that the sequence {fn} satisfies the hypotheses of the lemma (except that the
sequence starts at 1 instead of 0, but that’s not a big deal).

2. Use a computer to graph the first few functions in the sequence on the interval [−2, 2].

3. Show that {fn} converges uniformly to f for all x ∈ R by showing that |fn(x)− f(x)| <
ε(n) for all n and ε(n) → 0 as n → ∞. What is ε(n)?

The Proof

You should now be able to work through all of the calculations and claims in the proof
starting near the top of page 389 and continuing to the bottom of page 391. Every time a
claim is made, identify what assumption or analysis fact it is a result of. Then verify that
you believe that the claim is justified and the conclusion is correct.

You should rewrite all of the calculations in the proof yourself as you work through it.
Replace all U ’s with φ’s, X’s with y’s, F ’s with f ’s, and ρ’s with ε’s. If you get stuck on
anything (like maybe Induction?), let me know and I will try to help.

Good luck, and enjoy!
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