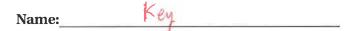
Math 555: Differential Equations Midterm Exam 3

Friday, 11 July 2014



Instructions: Complete all 3 problems in part I, and 2 of the 3 problems in part II. Clearly mark the problem in part II that you would like to omit. Each completed problem is worth 20 points.

Show *enough* work, and follow all instructions carefully. Write your name on each page.

You may *not* use a calculator, or any other electronic device. You may use only a 3×5 index card of your own notes, a pencil, and your brain.

Good Luck!

Name:_____

Part I. Complete all 3 problems in the space provided. Show enough work.

1. Consider the second-order differential equation

$$y'' - 3xy' + y = 0.$$

Find a power series solution centered at $x_0 = 0$.

- (a.) [12] Find and clearly identify the recurrence relation.
- (b.) [6] Find the first four terms of each fundamental solution. Clearly label each solution.
- (c.) [2] Write down and clearly label the general solution. (This does <u>not</u> have to be in Σ -notation.)

You may use the back of the page for work as well, if needed.

$$y^{n} - 3yy^{1} + y = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^{n} - \sum_{n=0}^{\infty} 3(n+1) a_{n+2} x^{n+1} + \sum_{n=0}^{\infty} a_{n} x^{n} = 0$$

$$2 a_{2} + \sum_{n=1}^{\infty} (n+2)(n+1) a_{n+2} x^{n} - \sum_{n=1}^{\infty} 3h a_{n} x^{n} + a_{0} + \sum_{n=1}^{\infty} a_{n} x^{n} = 0$$

$$(2 a_{2} + a_{0}) + \sum_{n=1}^{\infty} ((n+2)(n+1) a_{n+2} - 3n a_{n} + a_{n}) x^{n} = 0$$

$$a.) \quad a_{2} = -\frac{1}{2} a_{0} \quad a_{n} d \quad a_{n+2} = \frac{(3n-1) a_{n}}{(n+2)(n+1)} \quad h \ge 1$$

$$a_{0} = \frac{5}{4} \frac{a_{2}}{4} = \frac{-5}{4} \frac{a_{0}}{6} \quad a_{0} \quad a_{0} = \frac{5}{4} \frac{a_{0}}{6} x^{2} - \frac{5}{4} \frac{1}{4} a_{0} x^{2} - \frac{5}{4} \frac{1}{4} a_{0} x^{2} - \frac{11.5}{6!} x^{6} + \cdots$$

$$a_{1} = \frac{11}{4} \frac{a_{1}}{6 \cdot 5} = -\frac{11.5}{6!} a_{0} \quad a_{0} \quad a_{0} = \frac{2a_{1}}{5!} \quad a_{1} x^{3} + \frac{2a_{2}}{5!} a_{1} x^{3} + \frac{8\cdot 2}{5!} a_{1} x^{5} + \frac{14\cdot 8\cdot 2}{7!} a_{1} x^{7} + \cdots$$

$$a_{1} = \frac{2a_{1}}{5!} \quad a_{1} = \frac{8\cdot 2}{5!} a_{1} \quad a_{0} = \frac{14\cdot 4}{5!} a_{0} \quad a_{0} = \frac{14\cdot 4$$

1

Name:			

2. (a.) [15] Use your favorite method to find the power series expansion of $f(x) = \ln(x+2)$ about the point $x_0 = -1$.

$$f(x) = \ln(x+2)$$

$$f'(x) = \frac{1}{x+2} = \frac{1}{(x+1)+1} = \frac{1}{1-(-(x+1))} = \sum_{n=0}^{\infty} (-(x+1))^n = \sum_{n=0}^{\infty} (-1)^n (x+1)^n$$

$$f(x) = \int f'(x) dx = C + \sum_{n=0}^{\infty} (-1)^n (x+1)^n dx = C + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (x+1)^{n+1}$$

$$f(-1) = C \quad \text{and} \quad f(-1) = \ln(-1+2) = \ln(1) = 0 \quad 7 \leq 0 \quad C = 0$$
Thus
$$\ln(x+2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (x+1)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n} (x+1)^n$$

(b.) [5] What are the radius and interval of convergence? Justify your answer.

Name:

Determine the general term a_n so that the equation

$$\sum_{n=1}^{\infty} n a_n x^{n-1} - 5 \sum_{n=0}^{\infty} a_n x^n = 0$$

is satisfied. (a.) [18] Write the series $\sum_{n=0}^{\infty} a_n x^n$ that solves this equation. (b.) [2] What function is represented by your solution?

$$\sum_{n=1}^{\infty} h a_n x^{n-1} - 5 \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} (n\pi) a_{n+1} x^n - \sum_{n=0}^{\infty} 5 a_n x^n = 0$$

$$\Rightarrow \sum_{n=0}^{\infty} \left[(nn)a_{nn} - 5a_n \right] x^n = 0$$

$$a_0 = ?$$
 $a_1 = 5 a_0$
 $a_2 = \frac{5}{2} a_1 = \frac{5^2}{2 \cdot 1} a_0$
 $a_3 = \frac{5}{3} a_2 = \frac{5^3}{3!} a_0$

$$q_n = \frac{5^n}{n!} q_0$$

$$a_1 = 5 a_0$$
 $a_2 = \frac{5}{2} a_1 = \frac{5^2}{2 \cdot 1} a_0$

The solin is $\sum_{n \ge 0}^{10} a_n x^n = a_0 \sum_{n \ge 0}^{10} \frac{5^n}{n!} x^n = a_0 \sum_{n \ge 0}^{10} \frac{5^n}{n!} x^n = a_0 \sum_{n \ge 0}^{10} \frac{5^n}{n!} x^n$
 $a_3 = \frac{5}{3} a_2 = \frac{5^3}{3!} a_0$

Name:

Part II. Complete 2 of the 3 problems. Show enough work. Clearly mark the one problem that you wish to omit.

Find the general solution of the equation

$$(x-1)^2y'' + 5(x-1)y' + 3y = 0$$

that is valid in any interval not containing the point $x_0 = 1$.

$$u^2y'' + 5uy' + 3y = 0$$

Euler! char egin

$$(r+3)(r+1)=0$$

So y(u) = C, u + C2 4-3

and
$$y(x) = C_1(x-1)^{-1} + C_2(x-1)^{-3}$$
 or $y(x) = \frac{C_1}{x-1} + \frac{C_2}{(x-1)^3}$

or
$$y(n) = \frac{C_1}{x-1} + \frac{C_2}{(x-1)^2}$$

5. Consider the second-order differential equation

$$(x^3 + x^2 + x)y'' + 2xy' - 5y = 0.$$

Determine the minimum radius of convergence of the power series solution centered about the points:

(a.) [6.5]
$$x_0 = -\frac{1}{2}$$

$$R = \frac{1}{2}$$

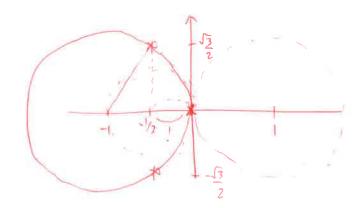
$$\chi^{3} + \chi^{2} + \chi = 0$$

$$\chi(\chi^{2} + \chi + 1) = 0$$

$$\chi = 0 \qquad (\chi + \frac{1}{2})^{2} = -\frac{3}{4}$$

$$\chi = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$$

(*b*.) [6.5]
$$x_0 = -1$$



(c.) [6.5]
$$x_0 = 1$$

Name:			

6. Consider the Legendre equation

$$(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0, \quad \alpha \in \mathbb{R}.$$

(a.) [10] Find all singular points and determine whether each one is regular or irregular.

$$X_{0} = \frac{1}{1}$$

$$X_{0} = \frac{1}{1}$$

$$\lim_{|x| \to 1} (x-1)^{\frac{-2x}{1-x^{2}}} = \lim_{|x| \to 1} (x-1)^{\frac{-2x}{1-x^{2}}} = \frac{2}{2} = 1$$

$$\lim_{|x| \to 1} (x-1)^{2} \frac{x(\alpha+1)}{1-x^{2}} = \lim_{|x| \to 1} (x-1)^{2} - x(\alpha+1) = \frac{0}{2} = 0$$

$$\lim_{|x| \to 1} (x-1)^{2} \frac{x(\alpha+1)}{1-x^{2}} = \lim_{|x| \to 1} (x-1)^{2} - x(\alpha+1) = \frac{0}{2} = 0$$

$$\chi_{0}=-1 \text{ [im (x)]} \frac{(x+1)^{2}}{(1-x)(1+x)} = \frac{1}{2} = 1$$

$$\lim_{\chi_{0}\to -1} (x+1)^{2} \frac{\alpha(x+1)}{(1-x)(1+x)} = \frac{0}{2} = 0$$

$$\int_{0}^{2} \delta x \, \chi_{0}=-1 \text{ if also regular}$$

(b.) [10] Determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point.

$$P(x) = 1 - x^2$$
 $P(\frac{1}{8}) = 1 - \frac{1}{8}^2$
 $Q(x) = -2x$ $Q(\frac{1}{8}) = \frac{-2}{3}$
 $Q(x) = \alpha(\frac{1}{8}) = \alpha(\alpha + 1)$

$$p(\xi) = \frac{1}{\xi^{2}(1-1/\xi^{2})} \left(2\xi\left(1-\frac{1}{\xi^{2}}\right) + \frac{2}{\xi}\right) = \frac{1}{\xi^{2}-1} \left(2\xi\right) = \frac{2\xi}{\xi^{2}-1} \text{ ok at } \xi=0.$$

$$g(\xi) = \frac{\chi(\chi+1)}{\xi^{4}(1-\frac{1}{\xi^{2}})} = \frac{\chi(\chi+1)}{\xi^{2}(\xi^{2}-1)} \text{ not } \delta\chi \text{ at } \xi=0, \quad \xi \in \mathbb{R} \text{ singular.}$$

$$g^{2}g(5) = g^{2} \frac{\chi(\chi H)}{g^{2}(5^{2}-1)} = \frac{\chi(\chi H)}{g^{2}-1}$$
 is $\partial \chi$ at $s=0$, so $\chi = \frac{1}{2}$