Math 511: Linear Algebra Final Exam, Part II

Friday, 25 July 2014

Name:	Key	

Instructions: Complete all 3 problems in part I, and 3 of the 4 problems in part II. Clearly mark the problem in part II that you would like to omit. Each problem in part I is worth 20 points; each completed problem in part II is worth 15 points.

Show *enough* work, and follow all instructions carefully. Write your name on each page.

You may *not* use a calculator, or any other electronic device. You may use only a 3×5 index card of your own notes, a pencil, and your brain.

Good Luck!

Name:

Part I. Complete all 3 problems in the space provided. Show enough work. Each problem is worth 20 points.

1. Let *S* denote the subset of $\mathbb{R}^{2\times 2}$ consisting of all symmetric matrices. [Recall that $A \in \mathbb{R}^{2\times 2}$ is symmetric if and only if $A^T = A$.]

(a.) Show that S is a subspace of
$$\mathbb{R}^{2\times 2}$$
.
A \in S looks like $A = \begin{pmatrix} A & b \\ b & c \end{pmatrix}$. Similarly, $B = \begin{pmatrix} d & e \\ e & f \end{pmatrix}$. Let $A \in \mathbb{R}$.

SI.
$$(AA) = A \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} aa & \kappa b \\ \kappa b & \alpha c \end{pmatrix}$$
. $(\kappa A)^T = \begin{pmatrix} \kappa a & \kappa b \\ \kappa b & \kappa c \end{pmatrix}$. Thus $(\kappa A)^T = \alpha A$, and $\alpha A \in S$.

Whenever A=S, ZER.

52.
$$(A+B) = \begin{pmatrix} a+d & b+e \\ b+e & c+f \end{pmatrix}$$
. $(A+B)^T = \begin{pmatrix} a+d & b+e \\ b+e & c+f \end{pmatrix}$

Thus (A+B)T = (A+B) and A+B & S whenever A,B & S. D

(b.) Find a basis for S. What is the dimension of S?

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 form a basis for S.

indeed any A = (ab) = aA, +bA2+cA3.

clearly A1, Az, A3 are linearly independent.

Name:_____

2. Let $A \in \mathbb{R}^{n \times n}$, and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that if $A\mathbf{x} = A\mathbf{y}$ but $\mathbf{x} \neq \mathbf{y}$, then A is singular,

Pfl Suppose A 13 nonsingular.
Then An exists and

$$A \times = Ay \implies A'(Ax) = A^{-1}(Ay)$$

$$\Rightarrow (A'A) \times = (A'A) Y$$

$$\Rightarrow x \times = y$$

but this contradicts the assumption that xxy!

Name:_____

- 3. Let S be the subspace of $C(-\infty,\infty)$ spanned by $e^x \sin x$ and $e^x \cos x$, and let $D \in C(-\infty,\infty) \to C(-\infty,\infty)$ be the differentiation operator: D(f(x)) = f'(x).
 - (a.) Find the matrix representing D with respect to the ordered basis $\{e^x \cos x, e^x \sin x\}$.

$$D(e^{x}\cos x) = e^{x}\cos x - e^{x}\sin x = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

$$D(e^{x}\sin x) = e^{x}\cos x + e^{x}\sin x = \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

(b.) Find the inverse matrix D^{-1} and use it to calculate the integral

$$\int e^x \sin x - 2e^x \cos x \, dx.$$

Give your answer as a function in S.

$$D^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$e^{x} \sin x - 2e^{x} \cos x = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 in coords

$$D^{-1}\begin{pmatrix} -2 \\ 1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} -2 \\ 1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3/2 \\ -\gamma_2 \end{pmatrix} \text{ in coords.}$$

$$\int e^{x} \sin x - 2e^{x} \cos x \, dx = -\frac{3}{2} e^{x} \cos x - \frac{1}{2} e^{x} \sin x$$

Name:	:	

Part II. Complete 3 of the 4 problems. Show enough work. Clearly mark the one problem that you wish to <u>omit</u>. Each completed problem is worth 15 points.

4. Show that any finite set of vectors in a vector space V that contains the zero vector is linearly dependent.

Then 1.0 + 0.
$$\times_2$$
 + 0. \times_3 + -- + 0. \times_n = 0 nontrivial!

$$A \subseteq Q$$
 where $A > (Q, X_1, ..., X_n)$.

Thus the vectors in S are linearly dependent of

Name:_____

5. (a.) Let $A \in \mathbb{R}^{m \times n}$. State the Rank-Nullity Theorem.

(b.) Find bases for the row, column, and null spaces of A. Clearly label each one.

$$A = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 12 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 \\ 0 & 5 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 \\ 0 & 3 & 6 \end{pmatrix}$$

Thus,
$$\mathbb{R}_{ow}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -8 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$$

$$G(A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$$

$$N(A): X_1 = 8d$$

 $X_2 = -2d$

So
$$N(A) = span \left\{ \begin{pmatrix} 8 \\ -2 \\ 1 \end{pmatrix} \right\}$$

Name:

- **6.** Consider the ordered bases $E = \{1, x, x^2\}$ and $V = \{1, (x+2), (x+2)^2\}$ of P_3 .
 - (a.) Find the transition matrix from E to V.

(b.) Write the vector $p(x) = 1 + x + x^2$ in both *E*-coordinates and *V*-coordinates. Clearly label each answer.

$$p(x) = 1 + x + x^{2}$$

$$[p]_{E} = [l]_{E}$$

$$[p]_{V} = V^{-1}[p]_{E} = (l^{-2} u)[l]_{E}$$

$$[l]_{V} = (l^{-3})_{V} = (l^{-3})_{V}$$

Name:	

7. Consider the following vectors in \mathbb{R}^2 .

$$\mathbf{x}_1 = \begin{pmatrix} -1\\2 \end{pmatrix}$$
, $\mathbf{x}_2 = \begin{pmatrix} 2\\-3 \end{pmatrix}$, $\mathbf{y}_1 = \begin{pmatrix} 4\\1 \end{pmatrix}$, and $\mathbf{y}_2 = \begin{pmatrix} -6\\-2 \end{pmatrix}$

Let $A = (\mathbf{x}_1, \mathbf{x}_2)$ and define a linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ by $L(\mathbf{x}) = A\mathbf{x}$. Find the matrix representing L with respect to the basis $Y = {\mathbf{y}_1, \mathbf{y}_2}$.

$$A = (y_{11} y_{2}) = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$$

$$Y = E \xrightarrow{A} E \xrightarrow{Y^{-1}} Y$$

$$Y = (y_{11} y_{2}) = \begin{pmatrix} +-6 \\ 1-2 \end{pmatrix}$$

$$Y^{-1} = \frac{1}{-2} \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 6 \\ 1/2 & -2 \end{pmatrix}$$

$$Y = \begin{pmatrix} -2 & 6 \\ 1/2 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 6 \\ 1/2 & -2 \end{pmatrix} = \begin{pmatrix} -17 & 20 \\ -11 & 13 \end{pmatrix} = B$$

$$Y = \begin{pmatrix} -17 & 20 \\ -11 & 13 \end{pmatrix} = B$$

Bonus. [5 points] What is the most interesting thing that you learned this summer?

Test cricket favors the batsmen while T20 favors the bowlers (and the viewers).

Long live the bowlers!