Math 511: Linear Algebra
Final Exam, Part 11

Friday, 25 July 2014

Name: K(’, Y
I

Instructions: Complete all 3 problems in part I, and 3 of the 4 problems in part II.
Clearly mark the problem in part II that you would like to omit. Each problem in
part I is worth 20 points; each completed problem in part 11 is worth 15 points.
Show enough work, and follow all instructions carefully. Write your name on each
page.

You may not use a calculator, or any other electronic device. You may use only a
3 x 5 index card of your own notes, a pencil, and your brain.

Good Luck!
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Part 1. Complete all 3 problems in the space provided. Show enough work. Each problem is
worth 20 points.

1. Let Sdenote the subset of R2*2 consisting of all symmetric matrices. [Recall that A € R?*?
is symmetric if and only if AT = A.]

(a.) Show that S is a subspace of R?*2.
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(b.) Find a basis for S. What is the dimension of 82—
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2. Let AcR™”, andx,ye€ R". Show that if Ax= Ay butx #y, then A is singular.
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Let S be the subspace of C(—oco0,00) spanned by e*sinx and e*cosx, and let D :
C(~00,00) — C(—00,00) be the differentiation operater: D(f(x)) = f’(x).

(a.) Find the matrix representing D with respect to the ordered basis {e* cos x, e* sin x}.
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(b.) Find the inverse matrix D! and use it to calculate the integral
f e*sinx—2e*cosxdx.

Give your answer as a function in S.
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Part 11. Complete 3 of the 4 problems. Show enough work. Clearly mark the one problem that
you wish to omit. Each completed problem is worth 15 points.

4. Show that any finite set of vectors in a vector space V that contains the zero vector is
linearly dependent.
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(a.) Let A€ R™* ™ State the Rank-Nullity Theorem.

rank (K) + nall (R)= 0 .

(b.) Find bases for the row, column, and null spaces of A. Clearly label each one.
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6. Consider the ordered bases E = {1, x, x*} and V = {1, (x + 2), (x + 2)?} of P5.

(a.) Find the transition matrix from E to V.

EXIN
v-(s37) - v

0

(b.) Write the vector p(x) =1+ x+ x2 in both E-coordinates and V-coordinates. Clearly
label each answer.

F(!()= [+ % +Xx*
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Consider the following vectors in R2.

w3 (3 el el

Let A = (x;,%») and define a linear transformation L : R* — R? by L(x) = Ax. Find the
matrix representing L with respect to the basis Y = {y,y2}.
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Bonus. [5 points] What is the most interesting thing that you learned this summer?
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