Math 511: Linear Algebra
Final Exam, Part I

Thursday, 24 July 2014

Name:

Instructions: Complete all 3 problems in part I, and 3 of the 4 problems in part II.
Clearly mark the problem in part II that you would like to omit. Each problem in
part I is worth 20 points; each completed problem in part II is worth 15 points.
Show enough work, and follow all instructions carefully. Write your name on each
page.

You may not use a calculator, or any other electronic device. You may use only a
3 x 5 index card of your own notes, a pencil, and your brain.

Good Luck!
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Part I. Complete all 3 problems in the space provided. Show enough work. Each problem is
worth 20 points.

1. Consider the basis {x;,X»} of R? where
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Use the Gram-Schmidt process to find an orthonormal basis of R?.
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2. Write the matrix A as a product X D X! where D is diagonal and X is nonsingular.
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3. Prove the theorems.

(a.) Theorem. Let (,) be the standard Euclidean inner product on R"; then
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(b.) Theorem. Let (V,(,)) be an inner product space. If x Ly, then
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Part I1. Complete 3 of the 4 problems. Show enough work. Clearly mark the one problem that
you wish to omit. Each completed problem is worth 15 points
4. Consider the initial value problem

Y'=7y+12y=0;
y(0) =1,
y(0)=-1

Solve the IVP by reducing it to a system of first-order differential equations. Clearly label
the solution y = y(¥).
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5. Consider the vector space P3.
[0 (a.) Show that

1
p,q =f0 p(x)g(x)dx

defines an inner product on Ps.
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il (b) Find the projection proj,p of p(x) = x% onto g(x) = x with respect to this inner

product.
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6. Recall that the 1-norm on R is defined by
x|y = x|+ xal + |x3],

where x = (x7, X7, x3) 7.

(a.) Show that this formula indeed defines a norm.
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Consider the matrix

a=fs 2

(a.) Show that A% = 0, where 0 is the zero-matrix.
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(b.) Compute the exponential of the matrix A, e,
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