Math 511: Linear Algebra Midterm Exam 1

Friday, 20 June 2014

Instructions: Complete all 4 problems in part I, and 2 of the 3 problems in each of parts II and III. Clearly mark the problem that you would like to omit in each ofparts II and III. Each problem in Part I is worth 15 points. Each completed problem in parts II and III is worth 10 points.

Show *enough* work, and follow all instructions carefully. Write your name on each page.

You may *not* use a calculator, or any other electronic device. You may use only a 3×5 index card of your own notes, a pencil, and your brain.

Good Luck!

Name:_____

Part I. Complete all 4 problems in the space provided. Show enough work.

1–2. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{x}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, \quad \text{and} \quad \mathbf{x}_4 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}.$$

1. Show that \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 form a basis for \mathbb{R}^3 .

Put
$$X = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\det (X) = -1 \cdot 1 \cdot -1 = 1$$
Since $\det X \neq 0$, its columns form a basis for \mathbb{R}^3 .

2. Write x_4 as a linear combination of x_1 , x_2 , and x_3 .

Solve:
$$\begin{pmatrix} -1 & 0 & 0 & | & 2 \\ 1 & | & 0 & | & | & 1 \\ 0 & | & -1 & | & -3 \end{pmatrix}$$

$$c_1 = -2$$

$$c_2 = 1 - c_1 = 1 + 2 = 3$$

$$+ c_3 = 3 + c_2 = 3 + 3 = 6$$
So $\begin{bmatrix} x \\ -1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$

Name:

3. Consider the subset of P_3 given by $S = \{ p \in P_3 \mid p(0) = 0 \text{ and } p(2) = 0 \}$. Does S form a subspace of P_3 ? Justify your answer (prove or provide a counterexample).

Let $\rho, g \in S$ and $d \in \mathbb{R}$.

- S[. $(\alpha p)(0) = \mathcal{L}(p(0)) = \mathcal{L} \cdot 0 = 0$ } So $(\alpha p) \in S$
- S2. (p+q)(0) = p(0) + g(0) = 0 + 0 = 0 So $(p+q) \in S$. (p+q)(2) = p(2) + g(2) = 0 + 0 = 0 So $(p+q) \in S$.

Therefore S 13 à subspace of P3.

4. Consider the matrix $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Compute A^2 and A^3 . Find a general formula for A^n .

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix}$$

.

$$A^{n} = \begin{pmatrix} 2^{n-1} & -2^{n-1} \\ -2^{n-1} & 2^{n-1} \end{pmatrix}.$$

Name:_____

Part II. Complete 2 of the 3 problems. Show enough work. Clearly mark the one problem that you wish to omit.

5. A matrix $N \in \mathbb{R}^{n \times n}$ is said to be *nilpotent* if $N^k = \mathbf{0}$ for some $k \ge 1$, where $\mathbf{0} \in \mathbb{R}^{n \times n}$ is the zero-matrix.

Prove that if N is nilpotent, then det(N) = 0.

6. Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that if $A\mathbf{x} = A\mathbf{y}$ but $\mathbf{x} \neq \mathbf{y}$, then A is singular.

Suppose A 13 nonsingular. Then A-1 exists and

A-
$$1Ax = A^{-1}Ay$$
 $\Rightarrow Ix = Iy$

But this contradicts the assnarption that $x \neq y$.

Therefore A must be singular.

Name:	
-	

7. Suppose that the set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ span a vector space V. Let \mathbf{v} be any other vector in V. Prove that the set $\{\mathbf{v}, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ must be linearly dependent.

Since
$$\{X_1, \dots, X_n\}$$
 span V, then $Y = C_1X_1 + C_2X_2 + \dots + C_nX_n$ for some coefficients $C_1, \dots, C_n \in \mathbb{R}$. Subtracting Y from both sides, $0 = C_1X_1 + C_2X_2 + \dots + C_nX_n + (-1)Y$.

Since the coefficient on Y is not 0 , the set $\{Y_1, X_2, \dots, X_n\}$ is linearly dependent.

Part III. Complete 2 of the 3 problems. Show enough work. Clearly mark the one problem that you wish to <u>omit</u>.

8. Let S be the subspace of P_3 satisfying p(0) = 0 and p(2) = 0. Find a basis for S.

let
$$p(x) = a + b(x-2) + c(x-2)^2$$
 be the representation for $p \in P_3$ centered at 2.

We must have $p(a) = -2b + 4c$

For $p \in S_1$, then $-2b + 4c = 0$, or $b = 2c$.

Thus $p(x) = 2c(x-2) + c(x-2)^2 = 2cx - 4c + cx^2 - 4cx + 4c$
 $= cx^2 - 2cx$
 $= c(x^2 - 2x)$

So $S = Span \{(x^2 - 2x)\}$, or $p(x) = x^2 - 2x$ is a basis for S_1 .

Name:

9. Find the null space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & -1 & 2 \\ 3 & 3 & -1 & -3 & -5 \\ -2 & -2 & 2 & 1 & -4 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & 0 & -1 & 2 & 0 \\ 3 & 3 & -1 & -3 & -5 & 0 \\ -2 & -2 & 2 & 1 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 0 & 0 \end{pmatrix}$$

$$3R_{1} - R_{2} \rightarrow R_{2}$$

$$2R_{1} + R_{3} \rightarrow R_{3}$$

$$x_{1} = -\beta - 4\alpha$$

$$x_{2} = \beta$$

$$x_{3} = -\alpha$$

$$x_{4} = -2\alpha$$

$$x_{5} = \alpha$$

$$x_{7} = \beta \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -4 \\ 0 \\ -1 \end{pmatrix}$$

$$x_{7} = \beta \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -4 \\ 0 \\ -1 \end{pmatrix}$$

$$x_{7} = \beta \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -4 \\ 0 \\ -1 \end{pmatrix}$$

$$x_{7} = \beta \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

Name:_____

10. Consider a linear system whose matrix equation is of the form

$$\begin{pmatrix} 1 & -4 & -3 \\ 2 & 4 & 2 \\ -2 & 2 & \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix}.$$

For what values of α will the system have a unique solution?

$$def(A) = -2 \begin{vmatrix} -4 & -3 \\ 4 & 2 \end{vmatrix} - 2 \begin{vmatrix} 1 & -3 \\ 2 & 2 \end{vmatrix} + 4 \begin{vmatrix} 1 & -4 \\ 2 & 4 \end{vmatrix} \neq 0$$

or
$$2(-8+12)+2(2+6) = \frac{8+16}{12} = \frac{24}{12} = 2$$