Math 511: Linear Algebra Midterm Exam 1

Thursday, 20 February 2014

	VEV	
Name:	1/6/	

Instructions: Complete all 10 problems. Each problem is worth 10 points. Show \underline{enough} work, and follow the instructions carefully. Write your name on each page. You may not use a calculator, or any other electronic device. You may use one 3×5 index card of your own notes, a pencil, and your brain.

Good Luck!

Name:	

1. True or False: Read each statement <u>carefully</u>, then write **T** or **F** in the space provided. Each statement is worth 2 points.

 $A \in \mathbb{R}^{n \times n}$ is symmetric, then its diagonal entries must be 0.

This is true for skew-symmetric matrices.

_____b.) If A is a singular matrix, then A can be factored into a product of elementary matrices.

A is now equiv. to I.

If E is an elementary matrix, then E^{-1} is an elementary matrix of the same type.

Proved in class.

 $\underline{\hspace{1cm}}$ d.) If A is row equivalent to I and AB = AC, then B must equal C.

AT exists, so A-IAB = A-IAC = A=C.

_____ e.) If $A, B \in \mathbb{R}^{n \times n}$ are nonsingular matrices, then A + B is also nonsingular.

e.g., $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $A + B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.

2. Find A^2 , A^3 , and A^k for the matrix given by

 $A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}.$

 $A^{2} = \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} = \begin{pmatrix} 2^{3} & 2^{3} \\ 2^{3} & 2^{3} \end{pmatrix} \qquad 3 = 2(2) - 1$

 $A^{3} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} = \begin{pmatrix} 32 & 32 \\ 32 & 32 \end{pmatrix} = \begin{pmatrix} 2^{5} & 2^{5} \\ 2^{5} & 2^{5} \end{pmatrix} \qquad 5 = 2(3) - 1$

 $A^{k} = \begin{pmatrix} 2^{2k-1} & 2^{2k-1} \\ 2^{2k-1} & 2^{2k-1} \end{pmatrix}$

Name:_____

3. Find all solutions of the linear system

$$x_1 + 2x_2 - x_3 = 1$$

$$2x_1 - x_2 + x_3 = 3$$

$$-x_1 + 2x_2 + 3x_3 = 7$$

$$\begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 2 & -1 & | & | & 3 \\ -1 & 2 & 3 & | & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 0 & -5 & 3 & | & 1 \\ 0 & 4 & 2 & | & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 0 & -5 & 3 & | & 1 \\ 0 & 0 & \frac{14}{5} & | & \frac{14}{5} \\ R_{2} - 2R_{1} \rightarrow R_{2} \end{pmatrix}$$

$$R_{3} + \frac{4}{5} R_{2} \rightarrow R_{3}$$

$$R_{3} - 2R_{1} \rightarrow R_{2}$$

$$R_{3} + \frac{4}{5} R_{2} \rightarrow R_{3}$$

$$R_{3} + \frac{4}{5} R_{2} \rightarrow R_{3}$$

$$\begin{pmatrix}
1 & 2 & -1 & | & 1 \\
0 & -5 & 3 & | & 1 \\
0 & 0 & 22 & | & 44
\end{pmatrix}$$

Now back solve.

$$22 \times 3 = 44 \implies x_3 = 2$$

$$-5 \times 2 + 6 = 1$$

$$-5 \times 2 = -5 \implies x_2 = 1$$

$$x_1 + y_1 = 2 = 1 \implies x_1 = 1$$

$$(x_{11}, x_{21}, x_{3}) = (1, 1, 2)$$

Name:	

4. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be *idempotent* if $A^2 = A$. Show that if A is idempotent, then I - A is also idempotent.

$$(I-A)^{2} = (I-A)(I-A)$$

$$= I^{2}-A-A+A^{2}$$

$$= I^{2}-A(-A+A)$$

$$= I-A$$

5. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be an *involution* if $A^2 = I$. Show that for any fixed angle θ , the matrix

$$B = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

is an involution.

$$B^{2} = \begin{pmatrix} (os \theta & sin \theta) \\ sin \theta & -cos \theta \end{pmatrix} \begin{pmatrix} (os \theta & sin \theta) \\ sin \theta & -cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} (os^{2}\theta + sin^{2}\theta) \\ 0 \\ sin^{2}\theta + cos^{2}\theta \end{pmatrix}$$

$$= \begin{pmatrix} (i \theta) \\ 0 \end{pmatrix}$$

Name:_____

For problems 6 and 7, let $A \in \mathbb{R}^{3\times3}$ be given by

$$A = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 5 & 0 \\ 3 & 7 & 1 \end{pmatrix}.$$

6. Find the inverse A^{-1} of A.

$$\begin{pmatrix}
2 & 4 & 0 & | & 1 & 0 & 0 \\
0 & 5 & 6 & | & 0 & 1 & 0 \\
3 & 7 & | & | & 0 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & | & 2 & 0 & 0 \\
0 & 5 & 6 & | & 0 & 1 & 0 \\
3 & 7 & | & | & 0 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & | & 2 & 0 & 0 \\
0 & 5 & 6 & | & 0 & 1 & 0 \\
3 & 7 & | & | & & 0 & 0 & |
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & | & 2 & 0 & 0 \\
0 & 5 & 0 & | & 0 & 1 & 0 \\
0 & 1 & | & & & & & & & & & \\
\end{cases}$$

$$\frac{1}{3}R_{1} \rightarrow R_{1}$$

$$R_{3} - 3R_{1} \rightarrow R_{3}$$

$$R_{3} - 3R_{1} \rightarrow R_{3}$$

$$R_{5}R_{2} \rightarrow R_{2}$$

7. Solve the system $A\mathbf{x} = \mathbf{b}$, where

$$\mathbf{b} = \begin{pmatrix} \mathbf{0} \\ -1 \\ 1 \end{pmatrix}$$

$$\underline{X} = A^{-1} \underline{b} = \begin{pmatrix} 1/2 & -2/5 & 0 \\ 0 & 1/5 & 0 \\ -3/2 & -1/5 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2/5 \\ -1/5 \\ 6/5 \end{pmatrix}$$

$$So \left[\begin{array}{c} X = \frac{1}{5} \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix} = \begin{pmatrix} 2/5 \\ -1/5 \\ 6/5 \end{pmatrix} \right]$$

Name:____

For problems 8 and 9, let

$$A = \begin{pmatrix} I & 0 \\ B & I \end{pmatrix},$$

where all four block submatrices are $n \times n$.

8. Find the block form of the inverse A^{-1} .

$$\begin{pmatrix}
I & 0 | I & 0 \\
B & I | 0 & I
\end{pmatrix} \rightarrow \begin{pmatrix}
I & 0 | I & 0 \\
0 & I | -B & I
\end{pmatrix}$$

$$R_2 - BR_1 \rightarrow R_2$$

So
$$A^{-1} = \begin{pmatrix} I & O \\ -B & I \end{pmatrix}$$

9. Find the block form of $\frac{1}{2}(A+A^{-1})A^{T}$.

$$\frac{1}{2}(A + A^{-1})A^{\dagger} = \frac{1}{2}\left(\begin{pmatrix} \pm 0 \\ B I \end{pmatrix} + \begin{pmatrix} I & 0 \\ -B & I \end{pmatrix}\right)\begin{pmatrix} \mp & B^{\dagger} \\ 0 & I \end{pmatrix}$$

$$= \frac{1}{2}\begin{pmatrix} 2I & 0 \\ 0 & 2I \end{pmatrix}\begin{pmatrix} I & B^{\dagger} \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \pm & 0 \\ 0 & I \end{pmatrix}\begin{pmatrix} \pm & B^{\dagger} \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \pm & 0 \\ 0 & I \end{pmatrix}\begin{pmatrix} \pm & B^{\dagger} \\ 0 & I \end{pmatrix}$$

Name:

Find the LU factorization of 10.

$$A = \begin{pmatrix} -2 & 1 & 2 \\ 4 & 1 & -2 \\ -6 & -3 & 4 \end{pmatrix}$$

Clearly identify the matrices L and U_*

$$\begin{pmatrix}
-2 & 1 & 2 \\
4 & 1 & -2 \\
-6 & -3 & 4
\end{pmatrix}$$

$$R_2 + \lambda R_1 \rightarrow R_2 \Rightarrow l_{21} = -\lambda$$

$$R_3 = 3R_1 \Rightarrow R_2 \Rightarrow l_{31} = 3$$

$$\begin{pmatrix}
-2 & 1 & 2 \\
0 & 3 & 2 \\
0 & -6 & -2
\end{pmatrix}$$

$$\begin{pmatrix} -2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix} = \mathcal{U}$$

Thus
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

4	5			