Name: M511: Linear Algebra (Fall 2017) Instructor: Justin Ryan Chapter 5 Exam

Read and follow all instructions. You may not use any notes or electronic devices. Show enough work.

1. [20 points] Consider the subspace S of \mathbb{R}^3 spanned by $\mathbf{x} = (1, -1, 1)^T$. Find an orthonormal basis for S^{\perp} .

2. Let (V, \langle , \rangle) be an inner product space.

(a) [10 points] Prove the Cauchy-Schwarz-Bunyakovsky Inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$.

(b) [10 points] Use part (a) to prove the triangle inequality: $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

3. [**20 points**] Consider the matrix

$$A = \left(\begin{array}{rrr} 3 & -1 \\ 4 & 2 \\ 0 & 2 \end{array}\right).$$

Use the Gram-Schmidt process to find an orthonormal basis for col(A).

4. [20 points] Consider the subspace $S = \text{span}\{1, x, x^2\}$ of C[0, 1] with inner product defined by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

Find an orthonormal basis for *S*.

5. Consider the following vectors in (\mathbb{R}^4, \cdot) .

$$\mathbf{x} = \begin{pmatrix} 1\\1\\2\\2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -2\\1\\2\\0 \end{pmatrix}$$

(a) [10 points] State completely the Pythagorean Law for Inner Product Spaces.

(b) [10 points] Compute $p = \text{proj}_y x$, and show that $(x-p) \perp p.$

(c) [10 points] Verify that the Pythagorean Law holds for **x**, **p**, and **x** – **p**.