Name: M511: Linear Algebra (Fall 2017) Instructor: Justin Ryan Chapter 4 Exam

Read and follow all instructions. You may not use any notes or electronic devices.

Part I: True/False [4 points each]

Neatly write **T** on the line if the statement is always true, and **F** otherwise [2 points]. In the space provided, give sufficient explanation of your answer [2 points].

- **1.** If $L: V \to V$ is a linear transformation and $\mathbf{x} \in \ker(L)$, then $L(\mathbf{v}+\mathbf{x}) = L(\mathbf{v})$ for all $\mathbf{v} \in V$.
 - **2.** Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. If $L(\mathbf{x}_1) = L(\mathbf{x}_2)$, then \mathbf{x}_1 must be equal to \mathbf{x}_2 .
 - **3.** Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let *A* be the standard matrix representation of *L*. Then range(*L*) = row(*A*).
 - **4.** Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let *A* be the standard matrix representation of *L*. Then ker(*L*) = Null(*A*).
 - **5.** The transformation of \mathbb{R}^2 that reflects each point in the plane over the line y = 2x 4 is a linear transformation.

Part I: Written Problems [10 points each]

Follow all instructions exactly, and show enough work.

- **6–7.** Consider the ordered bases $U = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \end{pmatrix} \right\}$ and $V = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -4 \end{pmatrix} \right\}$ of \mathbb{R}^2 .
- **6.** Consider the linear transformation defined by $L(\mathbf{u}_1) = 2\mathbf{u}_1 \mathbf{u}_2$ and $L(\mathbf{u}_2) = \mathbf{u}_1 + 3\mathbf{u}_2$. Find the matrix representing *L* with respect to the basis *U*.

7. Find the matrix representing *L* with respect to the basis *V*.

8. Let $R_{\ell} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects each vector over the line $\ell : y = x$. Find the matrix representing R_{ℓ} with respect to the standard basis.

9. Let $U = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$, and suppose $L(\mathbf{u}_1) = 2\mathbf{u}_1$ and $L(\mathbf{u}_2) = -4\mathbf{u}_2$. Find the matrix representing *L* with respect to the standard basis.

10–11. Suppose $L: \mathbb{R}^3 \to \mathbb{R}^2$ is given by

$$L\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2\\ x_2 + x_3 \end{pmatrix}.$$

10. Find a basis for ker(L).

11. Is *L* onto? Explain.

- **12–13.** Consider the subspace $S = \text{span} \{e^{-x} \cos x, e^{-x} \sin x\}$ of $C(\mathbb{R})$.
- **12.** Find the matrix representing the derivative $D: f \mapsto f'$ on *S*.

13. Use the Fundamental Theorem of Calculus to compute

$$\int 3e^{-x}\cos x - 5e^{-x}\sin x\,dx$$

as a matrix product.