Name: M511: Linear Algebra (Fall 2017) Instructor: Justin Ryan Chapter 1 Exam

Read and follow all instructions. You may not use any notes or electronic devices. You may use a compass, straightedge, and colored pens/pencils.

Part I: True/False [4 points each]

Neatly write **T** on the line if the statement is always true, and **F** otherwise [2 points]. In the space provided, give sufficient explanation of your answer [2 points].

1. If *A* and *B* are $n \times n$ matrices, then $(A - B)^2 = A^2 - 2AB + B^2$.

2. If $A = A^{-1}$, then either A = I or A = -I.

3. Every homogeneous linear system is consistent.

4. If *A* and *B* are nonsingular $n \times n$ matrices, then C = AB is also nonsingular.

5. If *A* and *B* are nonsingular $n \times n$ matrices, then C = (A + B) is also nonsingular.

Part I: Written Problems [10 points each]

Follow all instructions exactly, and show enough work.

6. Solve the linear system, if possible, using your favorite method.

$$\begin{cases} x_1 + 2x_2 - x_3 &= 1\\ 2x_1 - x_2 + x_3 &= 3\\ -x_1 + 2x_2 + 3x_3 &= 7 \end{cases}$$

7. The augmented matrix is in reduced row echelon form. Find the solution of the corresponding system.

1	(1	5	-2	0	3
	0	0	0	1	6
	0	0	0	0	0
	0	0	0	0	0

8. Consider the matrices

$$A = \begin{pmatrix} 3 & 5 & 1 \\ -2 & 0 & 2 \end{pmatrix}, \text{ and } B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 4 & 1 \end{pmatrix}.$$

Compute *AB*.

9. Given that $R = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, show that $R^{-1} = R^T$.

10. The matrix $A = \begin{pmatrix} -2 & 4 \\ 6 & 8 \end{pmatrix}$ is nonsingular. Write A^{-1} as a product of elementary matrices.

11. Find the inverse of the given matrix. Do *not* use determinants.

$$A = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 3 & 0 \\ 2 & 5 & 0 \end{pmatrix}$$

12. Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Compute

$$\binom{A^{-1}}{I} \begin{pmatrix} A & I \end{pmatrix}.$$

13. Find the *LU* Factorization of the matrix.

$$A = \begin{pmatrix} -2 & 1 & 2\\ 4 & 1 & -2\\ -6 & -3 & 4 \end{pmatrix}$$