Calculus III: Project 7 Due date: Monday, 22 July 2013 Recall from Calculus II (section 7.5) a region \mathcal{R} in the plane can be thought of as a thin plate or lamina. Suppose that \mathcal{R} has constant density ρ ; then its moments with respect to the y- and x-axes are given by the integrals $$M_y = \rho \int_a^b x f(x) dx$$, and $M_x = \rho \int_a^b \frac{1}{2} [f(x)]^2 dx$, (1) where \Re is the region bounded by x = a, x = b, y = 0, and y = f(x). Now, in section 12.4, we want to consider a more general region \mathcal{R} with a varying density $\rho = \rho(x, y)$. The moments are now given by the integrals $$M_x = \iint_{\mathcal{R}} y \, \rho(x, y) \, dA$$, and $M_y = \iint_{\mathcal{R}} x \rho(x, y) \, dA$ **Problem 1.** Suppose \mathcal{R} is a type I region bounded by $x=a,\ x=b,\ y=0,\ \text{and}\ y=f(x),$ with constant density $\rho(x,y)=\rho$. Show that the double-integral definitions of the moments of \mathcal{R} agree with the definitions in equation (1). The coordinates (\bar{x}, \bar{y}) of the *center of mass* of a lamina occupying the region \mathscr{R} and having density function $\rho(x, y)$ are given by $$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint_{\mathcal{R}} x \rho(x, y) dA$$, and $\overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint_{\mathcal{R}} y \rho(x, y) dA$ where the mass m of the lamina is given by $m = \iint_{\mathbb{R}} \rho(x, y) dA$. **Problem 2.** Find the mass and center of mass of the lamina that occupies the triangular region \mathcal{R} with vertices (0,0), (2,1), and (0,3), with density function $\rho(x,y)=x+y$. **Problem 3.** Convert the moment and mass integrals to polar coordinates. **Problem 4.** A lamina occupies the region inside the circle $x^2 + y^2 = 2y$, but outside the circle $x^2 + y^2 = 1$. Sketch the region. Find the center of mass if the density at any point is inversely proportional to its distance from the origin. **Problem 5.** Find the mass and center of mass of the cardioid $r = 1 + \cos \theta$ with density function $\rho(x, y) = \sqrt{x^2 + y^2}$. ** Show all work, even if you use Wolfram|Alpha for help. Remember that Wolfram|Alpha, and calculators in general, are *tools* that you use to help you compute. They are not *crutches* that you lean on to be lazy.