
Math 344: Calculus III
Chapter 13 Notes

30 April – 9 May 2013

These notes are meant to be a guide to help us move more quickly through the end

of the semester. You are expected to follow along in class, then reread them on your

own, as necessary. I plan on doing most of the problems labeled as Ex in class, but

any that we skip will automatically become recommended exercises. Speaking of

recommended exercises, there are a few included in these notes. They are labeled

as RE.

13.1: Vector Fields

A hand-written version of this section’s notes is on my web page.

13.2: Path Integrals

We started this section but didn’t finish it.
Let’s start now by reviewing what we’ve already done. Remember that our text book calls path

integrals “line” integrals, even though the paths we are interested in are rarely actual lines.

A path C is the image of a parametrized curve r(t) = 〈x(t), y(t), . . .〉, a ≤ t ≤ b; i.e., it’s just
the image of the curve, disregarding the parametrization. Given a function f : C → R, we want to
find the integral of f along C. This is a single integral called the path integral of f along C. We
write ∫

C

f(x, y) ds, (1)

where ds is the arc length element from chapters 7, 9, and 10. Now recall that the arc length
function for a path C is given by

s(t) =

∫ t

a

‖ṙ(u)‖ du, (2)

where r(t) is any parametrization of C. Then

ds

dt
=

d

dt

∫ t

a

‖ṙ(u)‖ du = ‖ṙ(t)‖ (3)

by the Fundamental Theorem of Calculus. Thus we can write ds = ‖ṙ(t)‖ dt, and the integral in
equation (1) becomes∫

C

f(x, y), ds =

∫ b

a

f(x(t), y(t)) ‖ṙ(t)‖ dt =

∫ b

a

f(r(t)) ‖ṙ(t)‖ dt, (4)
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for any parametrization r(t) of the path C. This is the formula that we will actually use to calculate
path integrals. It’s just a regular single integral from Calculus 1!

Recall that a directed line segment from p to q can be written as

r(t) = (1− t)r p + tr q, 0 ≤ t ≤ 1, (5)

where r p and r q are the position vectors for p and q. You will probably need this to do your
homework. (We used it in an example last class, and we’ll use it again today.)

Path Integrals in Space

The only real difference here is that the function f is now a function of three variables f = f(x, y, z),
and the path C is given by a space curve r(t) = 〈x(t), y(t), z(t)〉. The path integral equation now
becomes ∫

C

f(x, y, z) ds =

∫ b

a

f
(
x(t), y(t), z(t)

)√
ẋ2(t) + ẏ2(t) + ż2(t) dt

=

∫ b

a

f(r(t)) ‖ṙ(t)‖ dt. (6)

Notice that the last part (the vector equation) is exactly the same as it was in 2D. It will always
be the same, for every Rn and Vn, no matter what n is. Therefore, this is the equation that you
should remember!

Ex 1 Evaluate
∫
C
y dx + z dy + x dz, where C is given by two line segments. The first goes from

(2, 0, 0) to (3, 4, 5), and the second goes from (3, 4, 5) to (3, 4, 0).
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Ex 2 Evaluate
∫
C
y sin z ds where C is the circular helix defined by r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤

2π.

Path Integrals Over Vector Fields

Let F = F(x, y, z) be a continuous vector field on Rn. (Think: force field.) If T is the unit
tangent vector field along a path C, then the work done by F on a particle that moves along C is
approximately F ·T for small neighborhoods around each point. The idea is the usual one: partition
the path C into small sub-paths, find F ·T on each one, add them all up, then take a limit as the
number of partition points goes to infinity; i.e, integrate. Then the work done by F is

W =

∫
C

F(x, y, z) ·T(x, y, z) ds. (7)

But T = ṙ/‖ṙ‖ and ds = ‖ṙ‖ dt, so the equation becomes

W =

∫ b

a

F
(
x(t), y(t), z(t)

)
· 〈ẋ(t), ẏ(t), ż(t)〉 dt

=

∫ b

a

F(r(t)) · ṙ(t) dt

=:

∫
C

F · dr , (8)

where r(t) is any parametrization of the path C, as usual.
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Ex 3 Find
∫
C
F · dr where F = 〈xy, yz, zx〉 and C is given by r = 〈t, t2, t3〉, 0 ≤ t ≤ 1.

Ex 4 Let F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉. Show that∫
C

F · dr =

∫
C

P dx+Qdy +Rdz.

Now we know why we were interested in so-called partial path integrals last class.
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13.3: The Fundamental Theorem for Path Integrals

One half of the Fundamental Theorem of Calculus from Calculus 1 is the Evaluation Theorem. It
says that if f(x) is continuous on [a, b], then∫ b

a

f(x) dx =

∫ b

a

d

dx
F (x) dx = F (b)− F (a), (9)

where F is any antiderivative of f ; i.e., f(x) = F ′(x) for all x ∈ [a, b]. We expect a similar theorem
for path integrals.

Let F be a conservative vector field along a smooth path C. Remember, this means that there
exists a function f such that F(r(t)) = ∇f(r(t)) for all t ∈ [a, b], where r(t) is any parametrization
of C. If ∇f is continuous along C, then∫

C

F · dr =

∫
C

∇f · dr = f(r(b))− f(r(a)). (10)

RE 5 Prove this theorem by reducing it to the Calculus 1 Evaluation Theorem.

Ex 6 Find the work done by gravity on a moving particle with mass m that travels from the point
(3, 4, 12) to the point (2, 2, 0) along any piecewise-smooth curve C.
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Independence of Path

We did an example last class which showed us that path integrals depend on the paths you integrate
along, not just the starting and ending points. However, equation (10) and the last Ex suggest
something different.

Clearly, if F is a conservative vector field, then
∫
C
F · dr does not depend on the path C. The

situation appears to be slightly more general.

Theorem 7
∫
C
F · dr is independent of path in D if and only if

∫
C
F · dr = 0 for every closed path

C in D.

Ex 8 Proof:

As we mentioned before, we already know that conservative vector fields are independent of
path, essentially by definition. The next theorem tells us that conservative vector fields are the only
ones that are independent of path.

Theorem 9 Suppose D is an open, connected region in Rn. Let F be a continuous vector field on
D. If

∫
C
F · dr is independent of path in D, then F is a conservative vector field on D; i.e, there is

a function f : D → R such that F = ∇f .

RE 10 Read the proof: p. 745.
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One question still remains: How can we tell if a vector field is conservative or not? The answer
in (or on?) R2 comes in the form of two more theorems.

Theorem 11 If F(x, y) = P (x, y)i + Q(x, y)j is a conservative vector field, where P and Q have
continuous first-order partial derivatives on a domain D, then throughout D we have

∂P

∂y
=
∂Q

∂x
.

RE 12 Prove this by using Clairaut’s Theorem.

Theorem 13 Let F = P i + Qj be a vector field on an open, simply connected region D. Suppose
that P and Q have continuous first-order derivatives and

∂P

∂y
=
∂Q

∂x

throughout D; then F is conservative.

We’ll prove this theorem in the next section.

Ex 14 Determine whether or not the vector field F(x, y) = (x− y)i + (x− 2)j is conservative.
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Ex 15 Determine whether or not the vector field F(x, y) = (3+2xy)i +(x2−3y2)j is conservative.

Ex 16 (a) If F(x, y) = 〈3 + 2xy, x2 − 3y2〉, find a potential function f such that F = ∇f . (b)
Evaluate the path integral

∫
C
F · dr , where C is determined by r(t) = 〈et sin t, et cos t〉, 0 ≤ t ≤ π.
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Conservation of Energy

Newton’s Second Law says that F = ma . Remembering that v(t) = ṙ(t) and a(t) = r̈(t), we get
a second order differential equation (or SODE):

F(r(t)) = mr̈(t).

Let C be a path defined by the parametrized curve r(t), t ∈ [a, b]. Furthermore, let r(a) = A and
r(b) = B.

RE 17 Use this and the fact that kinetic energy is given by K(r(t)) = 1
2
m‖v(t)‖2 to show that

W =

∫
C

F · dr = K(B)−K(A).

RE 18 Suppose that F is a conservative vector field; i.e., F = ∇f . The potential energy of
an object at a point (x, y, z) is defined to be P (x, y, z) = −f(x, y, z) (hence the name potential
function). Therefore F = −∇P . Show that

P (A) +K(A) = P (B) +K(B).

This is called the Law of Conservation of Energy.

∗∗ Project 5: On your own paper, work out all of the details for RE’s 5, 12, 17 and 18 from
these notes.

Due: Tuesday, 14 May 2013, 8.00 am
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13.4: Green’s Theorem

In this section we will study the relationship between path integrals around a simple closed path C
and double integrals over the simply connected domain D that C encloses. We’ll start by stating
the (in)famous Jordan Curve Theorem.

Theorem 19 Every simple closed curve in R2 divides the plane into exactly two connected regions,
one that is bounded (the interior), and one that is not bounded (the exterior).

This theorem is “infamous” because, although it seems obvious, it turned out to be extremely hard
to prove. In fact the original proof that was presented by Camille Jordan (whom the theorem is
named after) turned out to be flawed. Eventually, after many others had tried and failed, Oswald
Veblen was able to finally give a rigorous proof. Even today, some mathematicians disagree over
who should get credit for the first correct proof. Don’t worry, we won’t try to prove it here. In
honor of this theorem, we frequently call simple closed curves Jordan curves.

Let C be a Jordan curve that encloses a domain D. By convention, we will say that C has
positive orientation, or C is positively oriented, if we traverse C in the counter-clockwise direction.
Therefore, the domain D is always on the left hand side, or driver’s side (in the US, at least), of
the path.

Draw some pictures here:
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Theorem 20 (Green’s Theorem.) Let C be a positively oriented, piecewise smooth Jordan curve in
the plane, and D the domain enclosed by it. If F(x, y) = 〈P (x, y), Q(x, y)〉 has continuous partial
derivatives on an open region containing D, then∫

C

F · dr =

∫
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA (11)

A notation frequently used in physics and applied math to denote the boundary of a domain D is
∂D. In this case ∂D = C, so we could rewrite the equation in the theorem as∫

∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA (12)

to emphasize the relationship that this theorem provides between a domain and its boundary.

RE 21 Read through the proof on p. 752f carefully, then do exercise 28, p. 757.

Ex 22 Evaluate
∫
C
x4 dx+ xy dy, where C is the triangular region with vertices (0, 0), (1, 0), and

(0, 1).
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Ex 23 Let F = (3y−esinx) i+(7x+
√
y4 + 1) j . Evaluate

∫
C
F·dr , where C is the circle x2+y2 = 9.

Both of these examples use Green’s Theorem to convert a path integral to a double integral, but
sometimes it’s useful to use Green’s Theorem in the other direction.

Ex 24 The area of a domain D is given by
∫∫

D
dA. Use Green’s Theorem to find at least 3

different path integral formulas for the area of D.

Ex 25 Find the area enclosed by the ellipse:
x2

a2
+
y2

b2
= 1.

12



Ex 26 Let

F =

〈
−y

x2 + y2
,

x

x2 + y2

〉
.

Show that
∫
C
F · dr = 2π for every positively oriented Jordan curve that encloses the origin.

RE 27 Use Green’s Theorem to prove Theorem 13 when C is a Jordan curve. Can you think of a
way to prove it for any closed curve?
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