
Calculus III Project:

Div, Grad, Curl, and all that...
Due date: Tuesday, 14 May 13, 8.00 am

This project closely follows section 13.5 in our book. You may find it useful to have the book
open to this section as you work your way through these problems.

This is a “double project” worth 4% toward your overall grade in this course. Complete all of
the items marked as Ex in the space provided on this paper.

Please complete all exercises neatly on this paper.

For the entirety of these notes, we will assume that we are working in an open, connected domain D
in R3. Sometimes we will want all of R3 to be our domain, in which case we simply write R3 instead of D.

gradient and the del operator

Let f : D → R be a smooth function. Recall that the gradient is an operator that sends the function f to
the vector field

grad f = ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.

Think of ∇ as an operator that takes in a smooth function on D and returns a vector field on D. The del
operator ∇ is given by

∇=

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

This definition extends to Rn for any n in the obvious way. The del operator is the standard differential
operator that we will use to construct a number of other operators.

curl

In R3 we can define something called the curl of a vector field. Let F(x, y, z) = P (x, y, z)i +Q(x, y, z)j +
R(x, y, z)k . We define the curl of F to be the vector field on D defined by

curlF = ∇× F,

where × is the usual cross product in R3. In matrix form this equation is given by

curlF =

∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ .
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Ex 1 Find curlF for F = 〈1, x+ y, xy −
√
z 〉.

Theorem 2 If f : D ⊆ R3 → R has continuous second-order partial derivatives, then curl(∇f) = 0.

That is, if F is conservative, then curlF = 0.

Ex 3 Proof:
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The next theorem is the converse of the previous one. As with two-dimensional vector fields, this
direction requires some more assumptions.

Theorem 4 If F is a vector field defined on a simply connected domain D ⊆ R3 whose components have
continuous first-order partial derivatives and curlF = 0, then F is conservative.

I won’t make you prove this one.

Ex 5 Verify that F =
〈
2xy, (x2 + 2yz), y2

〉
is conservative. Find its potential function.

divergence

Let F = 〈P, Q, R〉 on D ⊆ R3 and suppose ∂P/∂x, ∂Q/∂y, ∂R/∂z exist. The divergence of F is the
function on D given by

divF = ∇· F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

Ex 6 Find the div F for F = 〈1, x+ y, xy −
√
z 〉.
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The next theorem says that, in R3, vector fields that are the curl of another vector field, lie in the
kernel of the divergence operator (whatever that means...).

Theorem 7 If F = 〈P, Q, R〉 is a vector field on R3 and P, Q, R have continuous second-order partial
derivatives, then

div curlF = 0.

Ex 8 Proof:

If F(x, y, z) represents the flow of a fluid, then divF(x, y, z) measures the tendency of the fluid to
“diverge” from the point (x, y, z); hence the name. If divF = 0, then the F is called incompressible.

the Laplacian

Another important differential operator is called the Laplacian. This takes in smooth functions (at least
twice differentiable) as arguments, and outputs another function. It is given by

∆f = div(grad f) = div(∇f) = ∇· ∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

Some physicists and applied mathematicians write the Laplacian as ∇2 instead of ∆ since it is the dot
product of two del operators. It also emphasizes the fact the the Laplacian is the sum of the second
derivatives of f . That said, I personally don’t think it’s a very good idea to write it this way.

Ex 9 A function f : D → R that satisfies ∆f = 0 is said to be harmonic on D. Verify that f(x, y) =
ex sin y is harmonic on R.
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Green’s Theorem revisited

There are two ways to rewrite Green’s Theorem in the language of the differential operators that we have
studied in these notes. First, let k = 〈0, 0, 1〉 be the unit vector in the z-direction, and F a vector field on
D ⊆ R2. Then Green’s Theorem can be rewritten as∫

∂D
F · dr =

∫∫
D
(curlF) · k dA.

To make sense of this, we need to consider the 2-vector field F as a 3-vector field by making it constant
(zero) in the z slot.

Ex 10 Proof:

There is another way to rewrite Green’s Theorem. For this version we need to introduce the normal
vector field to D along its boundary ∂D. This vector field is given by

n(t) =
〈ẏ(t),−ẋ(t)〉

‖ṙ (t)‖

where r (t) = 〈x(t), y(t)〉 is a parametrization of ∂D. In this situation, Green’s Theorem can be rewritten
as ∫

∂D
F · n ds =

∫∫
D
divF dA.

Ex 11 Proof:
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Ex 12 Using the last version of Green’s Theorem, prove Green’s first identity :∫∫
D
f∆g dA =

∫
∂D

f(∇g) · n ds−
∫∫

D
∇f · ∇g dA,

where D is as in Green’s Theorem, and the appropriate partial derivatives of f and g exist and are
continuous. Notice: This looks like an Integration-by-Parts-like formula for area integrals! (Especially if
you replace the ∆ by ∇2.)

Ex 13 Use Green’s first identity to prove Green’s second identity :∫∫
D
(f∆g − g∆f) dA =

∫
∂D

(f∇g − g∇f) · n ds

where all of the same assumptions on D, f , and g are satisfied.
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