Math 344: Calculus 111

Final Exam
14 May 2013

Name: K E\(

Instructions: Complete all problems, showing all work. Problems are
graded based not only on whether the answer is correct, but if the work
leading up to the answer is correct. Simplify as necessary. Leave any
answers involving 7 or irreducible square roots or logs in terms of such
(no rounded off decimals). Each problem is worth 10 points.







1. Find the length of the curve r(t) = (2t%/2, cos(2t),sin(2t)), 0 <t < 1.
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2. A particle starts at the origin with initial velocity v(0) =i — j + 3 k. Its acceleration is
a(t) = 6ti+ 12t%j — 6t k. Find its position function.
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3. Find the point in which the line with parametric equations © = 2 —¢, y = 1+ 3¢, z = 4¢
intersects the plane 2z — y + z = 2.
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4. Find the gradient of the function f(z,y, z) = 2%e*V¥,
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5. Find the directional derivative of f(z,y) = 2/ — y? at the point (1,5) in the direction
toward the point (4, 1).
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6. Prove the theorem: Suppose f is a differentiable function of at least two variables. The
mazimum value of the directional derwative Dyf(x) is ||V f(x)|| and it occurs when u has
the same direction as the gradient vector V f(x).
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7. Find the volume of the solid bounded above by the cone z = V2?2 + 42, bounded below

by the plane z = 0, and sitting above the disk z2 4 y? <9.
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8. Evaluate the double integral
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where D is bounded by y = /2, y =0, and z = 1.
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9. Evaluate the triple integral
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where H is the solid hemisphere that lies above the zy-plane, has center at the origin, and
radius 2.
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10.  Use Green’s Theorem to evaluate [, z%ydz — zy® dy, where C is the circle 22 4 y2 = 4
with positive orientation.
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11. Show that F(z,y) = (1 + zy)e®™ i+ (e¥ + z%e*¥) j is conservative, then find a function
f such that F =V /.
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