Name: Key M243: Calculus II (Sp 2019) Quiz 10 (In class)

Instructions. Complete all exercises, showing enough work. You may work in groups, but be sure to write your own solutions.

True–False If the statement is always true neatly write \mathbf{T} on the line. Otherwise, write \mathbf{F} . If true, explain why. If false, give a counter-example.

1. If the parametric curve x = x(t), y = y(t) satisfies $\dot{y}(1) = 0$, then it has a horizontal tangent line when t = 1.

F 2. If
$$x = x(t)$$
 and $y = y(t)$ are twice differentiable, then $\frac{d^2y}{dx^2} = \frac{\ddot{y}(t)}{\ddot{x}(t)}$
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\left(\frac{dy}{dx}\right)^{\bullet}}{\dot{x}} = \frac{\left(\frac{\ddot{y}}{\dot{x}}\right)^{\bullet}}{\dot{x}} = \frac{\dot{y}(t)}{\dot{x}(t)}$$

1 3. The length of the parametrized curve $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ from t = a to t = b is $\int_{a}^{b} \sqrt{(\dot{x})^{2} + (\dot{y})^{2}} dt.$ $ds = \int dx^{2} + dy^{2} = \int (\dot{x} dt)^{2} + (\dot{y} dt)^{2} = \int (\dot{x}^{2} + \dot{y}^{2}) dt^{2} = \int \dot{x}^{2} + \dot{y}^{2} dt$

F 4. If a point is represented by (x, y) in Cartesian coordinates with $x \neq 0$ and (r, θ) in polar coordinates, then $\theta = \arctan(\frac{y}{x})$. This is only true in Quadrant I. In QI and QII: $\theta = T + \operatorname{archan}(\frac{y}{x})$ In QII: $\theta = 2T + \operatorname{archan}(\frac{y}{x})$ T 5. The polar curves $r = 1 - \sin(2\theta)$ and $r = \sin(2\theta) - 1$ have the same graph.

<u>T</u>5. The polar curves $r = 1 - \sin(2\theta)$ and $r = \sin(2\theta) - 1$ have the same graph. They trace the same curve but in opposite orientations.

<u>T</u>6. The equations r = 2, $x^2 + y^2 = 4$, and $\mathbf{r}(t) = \langle 2\sin(3t), 2\cos(3t) \rangle$ $(0 \le t \le 2\pi)$ all have the same graph. Then, are all circles centered at the origin will radius 2.

F 7. The parametric equations
$$\mathbf{r}_1(t) = \langle t^2, t^4 \rangle$$
 and $\mathbf{r}_2(t) = \langle t^3, t^6 \rangle$ have the same graphs.

For
$$\vec{r}_1$$
, $vange(x) = [0, \infty)$ but for \vec{r}_2 , $vange(x) = |R|$

8. Find polar equations, $r = r(\theta)$, for the curves

a.)
$$x + y = 2$$

 $r\cos\theta + r\sin\theta^{2} \lambda$
 $r(\cos\theta + \sin\theta)^{2} \lambda$
 $r^{2} \frac{\lambda}{\cos\theta + \sin\theta}$

b.)
$$x^2 + y^2 = 2$$

 $y^2 = \lambda$
 $r = \sqrt{\lambda}$

9. The curve with polar equation $r = \sin(\theta)/\theta$ is called a **cochleoid**. Try to sketch the cochleoid by hand, then graph it using a CAS and compare.

10. Find the area enclosed by the loop of the parametric curve

$$\begin{cases} x = t^{3} - t, \\ y = t^{2} + t + 1 \end{cases}$$
Start by laking at the graph. Aprin,
using supeMuth:

This is plotted for t-values from - his to o.ss.

$$A = \int_{-1}^{t_{1}} x \, dy = \int_{-1}^{0} (t^{3}-t) (2t+1) \, dt = \int_{-1}^{0} 2t \frac{y+t^{3}}{-3} - t^{2} - t \, dt$$

$$= 2 \frac{t^{5}}{t^{5}} + \frac{1}{4} t^{4} - \frac{3}{3} t^{2} - \frac{1}{2} t^{2} \Big|_{-1}^{0}$$

$$= - \left(-\frac{2}{5} + \frac{1}{4} + \frac{3}{3} - \frac{1}{2}\right)$$

$$= - \left(-\frac{18-102}{120}\right) = -\frac{1}{60}$$
but area should be positive,
so I must have integrated in the urray direction.

$$Arca = \frac{1}{60}$$

11. Find the area enclosed by the inner loop of the curve $r = 1 - 3\sin\theta$.

12. Find the length of the parametric curve segment,

$$\begin{cases} x = 2 + 3t, & \dot{x} = 3 & \dot{x}^2 = 9 \\ y = \cosh(3t), & \dot{y} = 3 \sinh(3t) & \dot{y}^2 = 9 \sinh^2(3t) \\ 0 \le t \le 1. & ds = 3 \sqrt{1 + \sinh^2(3t)} & dt \end{cases}$$

Hyperbolic Pythagarean Theorem:
$$\cos h^2 x - \sin h^2 x = 1$$

so $ds = 3 \int \cos h^2 (3t) dt$ but $\cosh h is always \ge 1$.
so $ds \ge 3 \cosh (3t) dt$ and

$$S = \int_{0}^{1} 3 \cosh(3t) dt = \sinh(3t) \Big|_{0}^{1}$$

$$= \sinh(3) - \sinh(0)$$

= $\sinh(3)$
= $\left[\frac{1}{2}e^{3} - \frac{1}{2}e^{-3}\right]$

13. In the figure the circle of radius a is stationary, and for every θ , the point P is the midpoint of the segment QR. The curve traced out by P for $0 < \theta < \pi$ is called the **longbow curve**. Find parametric equations for this curve.

$$P: \begin{cases} x=\frac{1}{2}(2a \sin \theta \cos \theta + 2a \sin \theta) \\ y=\frac{1}{2}(2a \sin^2 \theta + 2a) \end{cases}$$

Simplifying, the longbox is parametrized by \cdot $x(\theta) = a(\sin^2\theta + 1)\cot\theta$ $y(\theta) = a(\sin^2\theta + 1)$