VECTORS AND THE

 ——————

GEOMETRY OF SPACE

In this chapter we introduce vectors and coordinate systems for three-dimensional space. This will
be the setting for the study of functions of two variables in Chapter || because the graph of such
a function is a surface in space. In this chapter we will see that vectors provide particularly simple
descriptions of lines, planes, and curves.We will also use vector-valued functions to describe the
motion of objects through space. In particular, we will use them to derive Kepler’s laws of plane-
tary motion.

10.1 | THREE-DIMENSIONAL COORDINATE SYSTEMS

z To locate a point in a plane, two numbers are necessary. We know that any point
in the plane can be represented as an ordered pair (a, b) of real numbers, where a is
the x-coordinate and b is the y-coordinate. For this reason, a plane is called two-
dimensional. To locate a point in space, three numbers are required. We represent any

-9 K point in space by an ordered triple {a, b, ¢) of real numbers.
— In order to represent points in space, we first choose a fixed point O (the origin)
y and three directed lines through O that are perpendicular to each other, called the
x ~ coordinate axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the
FIGURE 1 ’ x- and y-axes as being horizontal and the z-axis as being vertical, and we draw the ori-

entation of the axes as in Figure 1. The direction of the z-axis is determined by the
right-hand rule as illustrated in Figure 2: If you curl the fingers of your right hand
around the z-axis in the direction of a 90° counterclockwise rotation from the positive
x-axis to the positive y-axis, then your thumb points in the positive direction of the
z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane con-
tains the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate
planes divide space into eight parts, called octants. The first octant, in the fore-
ground, is determined by the positive axes,

Coordinate axes

X

FGURE 2
Right-hand rule

FIGURE 3 (a) Coordinate planes b)

Because many people have some difficulty visualizing diagrams of three-dimen-
sional figures, you may find it helpful to do the following [see Figure 3(b}]. Look at
any bottom corner of a room and call the corner the origin. The wall on your left is in
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FIGURE 4

S(a, 0, ¢)

(a,0,0)

Qla, b,0)

FIGURE 5

the xz-plane, the wall on your right is in the yz-plane, and the floor is in the xy-plan
The x-axis runs along the intersection of the floor and the left wall. The y-axig Tung

along the intersection of the floor and the right wall. The z-axis runs up from the g, Or,
toward the ceiling along the intersection of the two walls. You are situated in the ﬁrst‘\'
octant, and you can now imagine seven other rooms situated in the other seven OCtant
(three on the same floor and four on the floor below), all connected by the commoy,

corner point O.
Now if P is any point in space, let a be the (directed) distance from the yz-plane tg

P, let b be the distance from the xz-plane to P, and let ¢ be the distance frop the.

xy-plane to P. We represent the point P by the ordered triple (a, b, ¢} of real numberg.
and we call , b, and ¢ the coordinates of P; a is the x-coordinate, b is the y-coorj.
nate, and ¢ is the z-coordinate. Thus to locate the point (o, b, ¢) we can start at the or-

gin O and move ¢ units along the x-axis, then b units parallel to the y-axis, and thiey

¢ units paralle] to the z-axis as in Figure 4.
The point P(a, b, ¢) determines a rectangular box as in Figure 5. If we drop a per-
pendicular from P to the xy-plane, we get a point Q with coordinates (a, b, 0) called

the prejection of P on the xy-plane. Similarly, R(0, b, ¢) and 5(q, 0, ¢} are the projec- |

tions of P on the yz-plane and xz-plane, respectively.

As numerical illustrations, the points (—4, 3, —=5) and (3, —2, ~6) are plotted i

Figure 6.

7__,_.___._

FIGURE 6

The Cartesian product R X R X R = {(x, y,2) | x,y,z € R} is the set of all‘or
dered triples of real numbers and is denoted by R*. We have given a one-to-one cor:

respondence between points P in space and ordered triples (g, b, ¢) in R?. It is called
a three-dimensional rectangular coordinate system. Notice that, in terms of coor-

dinates, the first octant can be described as the set of points whose coordinates are:all”

positive.

In two-dimensional analytic geometry, the graph of an equation involving x andy
is a curve in R? In three-dimensional analytic geometry, an equation in x, y, and z rep-
resents a surface in R°.

EXAMPLE | What surfaces in R’ are represented by the following equations?
() z=3 () y=5

SOLUTION

(a) The equation z = 3 represents the set {(x, y, z) | z = 3}, which is the set of all
points in R* whose z-coordinate is 3. This is the horizontal plane that is paralle] to
the xy-plane and three units above it as in Figure 7(a).

B 0 <

e Y e




FIGURE g
The plane y = x

Pi(xy,y1,2)
\

Pa(xy, ¥, 25)

Y/\\Q\B{xz,yz,z;)

Alxy, Y1 zy) \\\»
y

"FIGURE ¢

(a) =3, a plane in R* (b) y=5, a plane in B* {¢)y =35, a line in R?
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(b) The equation y = 5 represents the set of all points in R’ whose y-coordinate
is 5. This is the vertical plane that is parallel to the xz-plane and five units to the
right of it as in Figure 7(b). %

NOTE When an equation is given, we must understand from the context whether it
represents a curve in R? or a surface in R3. In Example 1, y = 5 represents a plane in
R>, but of course y = 5 can also represent a line in R? if we are dealing with two-
dimensional analytic geometry. See Figure 7, parts (b) and (¢).

In general, if & is a constant, then x = k represents a plane parallel to the yz-plane,
y = ks a plane parallel to the xz-plane, and z = kis a plane parallel to the xy-plane.
In Figure 5, the faces of the rectangular box are formed by the three coordinate
planes x = 0 (the yz-plane), y = 0 (the xz-plane), and z = O (the xy-plane), and the
planes x = a,y = h and z = .

B2 EXAMPLE 2 Describe and sketch the surface in R> represented by the
equation y = x.

SOLUTION The equation represents the set of all points in R® whose x- and y-coor-
dinates are equal, that is, {(x, x, z) | x € R, z € R}. This is a vertical plane that

intersects the xy-plane in the line y = x, 7 = 0. The portion of this plane that lies in
the first octant is sketched in Figure 8.

The familiar formula for the distance between two points in a plane is easily
extended to the following three-dimensional formula.

DISTANCE FORMULA IN THREE DIMENSIONS The distance (P;Pﬁ between the
points Pi(xy, y1, z1) and Py(x, s, z5) is

|P1P2] = —x)? + 2 = yi)2 + (2, — 2/

To see why this formula is true, we construct a rectangular box as in Figure 9,
where P; and P, are opposite vertices and the faces of the box are paralle] to the coor-

dinate planes. If A(xy, y;, z1) and B(x,, y2, 7)) are the vertices of the box indicated in
the figure, then

[ PA] = Jx2 = x| AB| = |y, = v |BP2| = |z = 2]
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Plx,y,z)

FIGURE 10

Because triangles P, BP; and P, AB are both right-angled, two applications of the p

Viha
orean Theorem give §

| PPy P = |PiB|* + | BP, ]
and |PB[P = |P A + |AB]

Combining these equations, we get

lP1P3|2:1P1A12+|AB‘2+‘BPzIZ
=l -—xP -l ] -af
= (2 = x)" + (2 =y + (22 — 2,)?
Therefore PPy = (e — 1 )2 (32— )+ (2 — 212

EXAMPLE 3 The distance from the point P(2, —1, 7) to the point O(1, —3, 5)is -

POl =0 -2+ (-3+12+(5-72=J1+4+4=3 X

B4 EXAMPLE 4 Find an equation of a sphere with radius » and center C(h, k, [).

SOLUTION By definition, a sphere is the set of all points P(x, y, z) whose distance
from C is r. (See Figure 10.) Thus P is on the sphere if and only if | PC| = r,
Squaring both sides, we have | PC|> = r* or

C=—h*+ -+ =D =1 n

The result of Example 4 is worth remembering.

EQUATION OF A SPHERE An equation of a sphere with center C(h, &, [) and.
radius r is

x—hP+ G-k +-1)7=
In particular, if the center is the origin O, then an equation of the sphere is

Xy =

EXAMPLE 5 Show that x* + y*> + z2 + 4x — 6y + 22 + 6 =0 is the equahon ot
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a spher
if we complete squares:

F+Hax+4H+ P~ +N+ P +2+ 1) =—-6+4+9+1
x+2+(y =3 +{z+1)=8

I

Comparing this equation with the standard form, we see that it is the equation of:a
sphere with center (—2, 3, —1) and radius /8 = 2/2.
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can be rewritten as

FIGURE 11

10.1 | EXERCISES

EXAMPLE 6 What region in R is represented by the following inequalities?

x4y’ +22<4 z<=0

SOLUTION The inequalities

s yx?+y2+z22 <2

so they represent the points (x, y, z) whose distance from the origin is at least 1
and at most 2. But we are also given that z < 0, so the points lie on or below the
xy-plane. Thus the given inequalities represent the region that lies between (or on)
the spheres x> + y> + z* = l and x> + y* + z* = 4 and beneath (or on) the
xy-plane. It is sketched in Figure 11.

. Suppose you start at the origin, move along the x-axis a dis-
tance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates
of your position?

2. Sketch the points (0, 5, 2), (4,0, —1), (2, 4, 6), and
(1, —1, 2) on a single set of coordinate axes.

3. Which of the points P(6, 2, 3), Q(—5, —1, 4), and
-R(0, 3, 8) is closest to the xz-plane? Which point lies in
the yz-plane?

4. What are the projections of the point (2, 3, 5) on the xy-, yz-,
and xz-planes? Draw a rectangular box with the origin and
(2,3, 5) as opposite vertices and with its faces parallel to
the coordinate planes. Label all vertices of the box. Find the
length of the diagonal of the box.

25.:Describe and sketch the surface in R® represented by the
equation x + y = 2, )

6. (a) What does the equation x = 4 represent in [R*? What
does it represent in [R*? Hlustrate with sketches,
(b) What does the equation y = 3 represent in R*? What
does z = 5 represent? What does the pair of equations
y = 3,z = 5 represent? In other words, describe the set
of points (x, y, z} such that y = 3 and z = 5. Illustrate
with a sketch.

%. Find the lengths of the sides of the triangle POR. Is it a
tight triangle? Is it an isosceles triangle?
@ P(3, -2, -3, 0(7,0,1), R(1,2,1)
® P2, ~1,0), Q4 1,1), R4, -54)

8. Find the distance from (3, 7, —5) to each of the following.

(b) The yz-plane
(d) The x-axis
(f) The z-axis

(a) The xy-plane

(¢y The xz-plane

(e) The y-axis

Determine whether the points lie on straight line.

(@) A(2,4,2), B(3,7,-2), C(1,3,3)

(b) D(0, —5,5), E(1,-2,4), F(3,4,2)

10. Find an equation of the sphere with center (2, —6, 4} and
radius 5. Describe its intersection with each of the coordi-
nate planes.

g

! Find an equation of the sphere that passes through the point
(4,3, —1) and has center (3, 8, 1).

12. Find an equation of the sphere that passes through the ori-
gin and whose center is(1, 2, 3).

1316 = Show that the equation represents a sphere, and find
its center and radius.

13, x2+y*+ 22 —6x + 4y — 2z =11

14, x2 4+ y*> + 22 = 4x — 2y

15, x24+yr+ 2t =x+y+z

16, 4x% + dy* + 47— 8x + 16y = 1

B [ [ 1 u [ L = -

i7. (a) Prove that the midpoint of the line segment from
Py(x1, 3, 21) to Palxa, ¥2, 22) is

X1 + X Wi + Y2 Zy -+ Z7
2 2 72
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(b) Find the lengths of the medians of the triangle with ver- 31-34 = Write inequalities to describe the region.
tices A(1,2,3), B(=2,0,5), and C4, 1, 5). 31. The half-space consisting of all points to the left of the
18. Find an equation of a sphere if one of its diameters has end- xz-plane

points (2, 1, 4) and (4, 3, 10). 32. The solid rectangular box in the first octant bounded by 1y,

Find equations of the spheres with center (2, —3, 6) that planes x = 1,y =2,and z =3
touch (a) the xy-plane, (b) the yz-plane, (c) the xz-plane.

The region consisting of all points between (but not on)
the spheres of radius » and R centered at the origin,

20. Find an equation of the largest sphere with center (5, 4, 9) where r < R

that is contained in the first octant.

34. The solid upper hemisphere of the sphere of radius 2 k" ;
21-30 = Describe in words the region of R’ represented by the centered at the origin
equation or inequality. u a = ] u = " a u a .
2y =—4 22. x=10 Find an equation of the set of all points equidistant from ths
23 ¢ >3 2. y=0 points A(—1, 3, 3) and B(6, 2, —2). Describe the set.
<r=6 26, 22 =1 36. Find the volume of the solid that lies inside both of the
spheres
27, xP+yP+ 203 28. x =z : §
: Py A -2y t4z+5=0 .
¥ +t=9 30, x* +yr+ 27> 2z yorE v !
a | £l u 7 " El " a B u s and X2+y2+22:4

10,2 | VECTORS

D The term vector is used by scientists to indicate a quantity (such as displacement or
B velocity or force) that has both magnitude and direction. A vector is often represented %
y by an arrow or a directed line segment. The length of the arrow represents the magni: i
v tude of the vector and the arrow points in the direction of the vector. We denotea |
c vector by printing a letter in boldface (v) or by putting an arrow above the letter (7).
A For instance, suppose a particle moves along a line segment from point A to point ~
FIGURE 1 B. The'corresponding displacement Veptor v, showp ip Figurg 1, has ipitial point 4 1
(the tail) and terminal peint B (the tip) and we indicate this by writing v = AB. i
Notice that the vector u = CD has the same length and the same direction as v even
though it is in a different position. We say that u and v are equivalent (or equal) and

we write u = v. The zere vector, denoted by 0, has length 0. It is the only vector with
no specific direction.

Equivalent vectors

COMBINING YVECTORS

C Suppose a particle moves from A to B, so its displacement vector is ATE Then the par-
ticle changes direction and moves from B to C, with displacement vector BC as in
B Figure 2. The combined effect of these displacements is that the particle has moved
from A to C. The resulting displacement vector AC s called the sum of AB and BC and
we write

A —> > —>
AC = AB + BC
FIGURE 2

In general, if we start with vectors u and v, we first move v so that its tail coincides
with the tip of u and define the sum of u and v as follows.




SECTION 10.2 VECTORS ®» 523

DEFINITION OF YECTOR ADDITION If u and v are vectors positioned so the
_ initial point of v is at the terminal point of u, then the sum u + v is the vector
from the initial point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

FIGURE 3 The Triangle Law FIGURE 4 The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another
copy of v with the same initial point as w. Completing the parallelogram, we see that
u + v =v + u. This also gives another way to construct the sum: If we place u and
v so they start at the same point, then u + v lies along the diagonal of the parallelo-
gram with u and v as sides. (This is called the Parallelogram Law.)

\ B EXAMPLE | Draw the sum of the vectors a and b shown in Figure 5.

2 b SOLUTION First we translate b and place its tail at the tip of a, being careful to
draw a copy of b that has the same length and direction. Then we draw the vector
a + b [see Figure 6(a)] starting at the initial point of a and ending at the terminal

FIGURE 5 point of the copy of b.

Alternatively, we could place b so it starts where a starts and construct a + b by
the Parallelogram Law as in Figure 6(b).

Visual 10.2 shows how the
Triangle and Parallelogram
Laws work for various
vectors u and v.

FIGURE 6 (2) ) ]

It is possible to multiply a vector by a real number ¢. (In this context we call the
real number ¢ a scalar to distinguish it from a vector.) For instance, we want 2v to be
the same vector as v + v, which has the same direction as v but is twice as long. In
general, we multiply a vector by a scalar as follows.

DEFINITION OF SCALAR MULTIPLICATION If ¢ is a scalar and v is a vector,
then the scalar multiple cv is the vector whose length is | ¢| times the length
of v and whose direction is the same as v if ¢ > 0 and is opposite to v if

¢ <0.Ic=~00rv=0,thencv = 6.
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This definition is illustrated in Figure 7. We see that real numbers work Jike scals,
ing factors here; that’s why we call them scalars. Notice that two nonzerg Vectors
are parailel if they are scalar multiples of one another. In particular, the Vector

v 2v v —v = (—1)v has the same length as v but points in the opposite direction. We ¢q

/ the negative of v.
By the difference u — v of two vectors we mean

Lit

u-—v=u-+(-v
- —1.5v
So we can construct u — v by first drawing the negative of v, —v, and then adding:;. -
to u by the Parallelogram Law as in Figure 8(a). Alternatively, since v + (u — v) = u,
the vector u — v, when added to v, gives u. So we could construct u — v as in Fig:
ure 3(b) by means of the Triangle Law.

FIGURE 7
Scalar multiples of v

u—-v

FIGURE 38 u

Drawing u — v (a) )

i e

EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a — 2b.

SOLUTION We first draw the vector —2b pointing in the direction opposite to b and |
twice as long. We place it with its tail at the tip of a and then use the Triangle Law |
to draw a + (—2b) as in Figure 10.

A

FIGURE 9 FIGURE 10 B

a—2b

y COMPONENTS

(ah'az)

a For some purposes it’s best to introduce a coordinate system and treat vectors alge-
braically. If we place the initial point of a vector a at the origin of a rectangular coor-
0 * dinate system, then the terminal point of a has coordinates of the form (ai, a2) of
(a1, az, a3), depending on whether our coordinate system is two- or three-dimensional

a={a, a,) (see Figure 11). These coordinates are called the components of a and we write

z a={a,a,) or a = (a, a, as)

We use the notation (a, a;) for the ordered pair that refers to a vector so as not-to
I confuse it with the ordered pair (a1, a») that refers to a point in the plane.
! ~_>F0r instance, the vectors shown in Figure 12 are all equivalent to the vector
i OP = {3, 2) whose terminal point is P(3, 2). What they have in common is that the
x \\\1 Y terminal point is reached from the initial point by a displacement of three units to the:
right and two upward. We can think of all these geometric vectors as J representations %
of the algebraic vector a = (3, 2). The particular representation OP from the origit
FIGURE 11 to the point P(3, 2) is called the position vector of the point P.

a=(a, a,, a)




(a,+ b,a,+ by)
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Y (4,5) z
position
1,3y 1P3,2) vector of P
L7
0
5 Axy, ) '

FIGURE 12 FIGURE 13
Representations of the vector a = (3,2) Representations of a = (a,, a,, ay)

In three dimensions, the vector a = 513 = (a1, ay, as) is the position vector of the
point P(ai, as, a3). (See Figure 13.) Let’s consider any other representation AB of
a, where the initial point is A(xy, y;, z;) and the terminal point is B(x2, y,, z,). Then we
must have x; + a;=Xx3, y1 +ax=y, and z; + a3 =2z and 0 a, = x, — x;,
ay = ya» — yi, and a3 = z; — z;. Thus we have the following result.

Gi\_/gn the points A(x1, y1, z1) and B(x, y2, z2), the vector a with represen-
tation AB is

a = <Xz — X Y2 T Vi, 22 T Zl>

EXAMPLE 3 Find the vector represented by the directed line segment with initial
point A{2, —3, 4) and terminal point B(—2, 1, 1).

SOLUTION By (1), the vector corresponding to /IE is
a=(-2—-2,1-(=3),1 —4) ={(—4,4, -3}
The magnitude or length of the vector v is the length of any of its representations

and is denoted by the symbol | v| or ||v|. By using the distance formula to compute
the length of a segment OP, we obtain the following formulas.

The length of the two-dimensional vector a = (a,, as) is
la| = Va? + a?
The length of the three-dimensional vector a = (ay, ¢, as) is

o 2 2 2
vapt+oai +oa;g

|a

How do we add vectors algebraically? Figure 14 shows that if a = (a4, @») and
b = (b, by),thenthe sumisa + b = {(a, + by, a; + by), at least for the case where
the components are positive. In other words, fo add algebraic vectors we add their
components. Similarly, to subtract vectors we subtract components. From the similar
triangles in Figure 15 we see that the components of ca are ca; and ca,. So to multi-
ply a vector by a scalar we multiply each component by that scalar.
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= Vectors in n dimensions are used to
list various quantities in an organized
"way. For instance, the components of a
six-dimensional vector

P = (P, P2, 3, Pas Ps, Do)

might represent the prices of six differ-
ent ingredients required to make a partic-
ular product. Four-dimensional vectors
{x,, 7, ) are used in relativity theory,
where the first three components specify
a position in space and the fourth repre-
sents time.
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Ifa = (aj,a) and b = (by, b,), then
a+ b= (a +b,a,+ by) a—b=(a —b,a — by)
ca = {ca, caz)
Similarly, for three-dimensional vectors,

(an, a2, a3) + (by, by, b3) = {ai + b1, as + by, as + by)

(ay, as, as) — (b, by, b3)

f

<a1 = by, a; — by, a3 — b3>

clay, az, asy = {ca,, cay, caz)

EXAMPLE 4 Ifa = (4,0,3) and b = (=2, 1, 5), find | a| and the vectors
a -+ b,a — b, 3b, and 2a + 5b.

la] = 42+ 02 + 37 = /25 =5
a+b=(40,3)+(=21,5)
=(4-2,0+1,3+5) =(2,1,8)

SOLUTION

a—-b=1(403) - (=2,1,5)
=4 -(-2),0~1,3-5)=(6—1,-2)
3b =3(=2,1,5) = (3(—2), 3(1), 3(5)) = (—6,3, 15)

2a + 5b=2¢(4,0,3) +5(=2,1,5)
= (8,0,6) + (—10,5,25) = (—2,5,31)

We denote by Vi the set of all two-dimensional vectors and by Vs the set of all
three-dimensional vectors. More generally, we will later need to consider the set V, o
all n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

a= {(a,ay...,a,

where ay, a,, ..., a, are real numbers that are called the components of a. Addition
and scalar multiplication are defined in terms of components just as for the cases:
n=2andn =3.

PROPERTIES OF YVECTORS If a, b, and ¢ are vectors in V,z and ¢ and d are
scalars, then
.La+b=b+a 2.at+tb+te=(a+b)+ec
4. a2+ (—a)= 0

6. (c +d)a=ca+da

3.at+0=a
5. cla+b)=ca+ch

7. (cd)a = c(da) 8. la=a

These eight properties of vectors can be readily verified either geometrically-or
algebraically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the
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Parallelogram Law) or as follows for the case n = 2:
a+b= <a17 a2> + <b1,b2> = (a; + b;,az + b2>

<b1 + a;,bz + 612> = <bh b2> + <ah a2>

f

=bhb-+a

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ is obtained either by first con-
structing a + b and then adding ¢ or by adding a to the vector b + ¢.

Three vectors in V3 play a special role. Let

fat+hy+e
a+ (b +¢)

i=(1,0,0) j=1(0,1,0) k= (0,01)

F These vectors i, j, and k are called the standard basis vectors. They have length 1 and
point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions
we define t = (1,0) and j = (0, 1). (See Figure 17.)

GURE 16

¥
0, 1)—,
i
o i) x
1 (1,0)
FIGURE 7
Standard basis vectors in V, and V, () ()

If a = {(ay, as, a3), then we can write
(" )
ke a - <£I,1, as, Cl3> = <a], 0, 0> -+ <O, ay, 0> -+ <O, 0, L(q>
a;(1,0,0) + a20,1,0) + a:(0,0,1)

f

az}

f

{l;i -+ Clzj + (131{

>
I

@a=aitaj Thus any vector in V3 can be expressed in terms of i, j, and k. For instance,

4 (1,-2,6) =i — 2j + 6k

Similarly, in two dimensions, we can write

a={a,a) =ailtanj

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

asj

e |
®a=aitaj+ ok EXAMPLE 5 Ifa =i + 2j — 3kand b = 4i + 7k, express the vector 2a + 3b in
FIGURE 18 terms of i, j, and k.

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

2a + 3B = 2(i + 2j — 3k) + 3(4i + 7k)
=2+ 4j — 6k + 12i + 21k = 14i + 4j + 15k ®
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A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vec.
tors. In general, if a ¥ 0, then the unit vector that has the same direction as a is

a

1
g = ——a= T
a a

In order to verify this we let ¢ = 1/
has the same direction as a. Also

a|. Then u = ca and c is a positive scalar, so y

1

lul =|cal =|c||a| =Tal

1

lal =1
EXAMPLE 6 Find the unit vector in the direction of the vector 2i — j — 2k.
SOLUTION The given vector has length

128 —j = 2k| = 27+ (=12 + (-2 =9 =3

s0, by Equation 4, the unit vector with the same direction is

LQi— -2k = 3i- 1 -k

APPLICATIONS

Vectors are useful in many aspects of physics and engineering. In Section 10.9 we will
see how they describe the velocity and acceleration of objects moving in space. Here
we look at forces.

A force is represented by a vector because it has both a magnitude (measured in
pounds or newtons) and a direction. If several forces are acting on an object, the resul-
tant force experienced by the object is the vector sum of these forces.

< 50° 320 EXAMPLE 7 A 100-1b weight hangs from two wires as shown in Figure 19. Find the
e tensions (forces) T, and T, in both wires and their magnitudes.

T, SOLUTION We first express T, and T, in terms of their horizontal and vertical com-
ponents. From Figure 20 we see that ' -

T, = —| T |cos 50°i + | Ty|sin 50° §

T, = | T,|cos 32° 1 + | T2 |sin 32°

I

FIGURE 19

The resultant T, + T of the tensions counterbalances the weight w and so we must:
have

T, + T = —w = 100]
Thus

(=] T1|cos 50° + | Ty

cos 32°)1 + (T, | sin 50° + | T |sin 32°) j = 100]

Equating components, we get .

—| T |cos 50° + | T2 |cos 32° = 0
| Ty |sin 50° + | T2 |sin 32° = 100

FIGURE 20

Solving the first of these equations for | T, | and substituting into the second, we gt

| Ty cos 50°
cos 32°

[T, | sin 50° + sin 32° = 100
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So the magnitudes of the tensions are

and

100 =~ 85.64 1b
sin 50° + tan 32° cos 50° ’
T s 50°
[Tu]eos 30° _ 40110
cos 32

Substituting these values in (5) and (6), we obtain the tension vectors

T, = —55.05i + 65.60j

—
| 0.2 | EXERCISES
L

T, = 55.051 + 34.40j E

Name all the equal vectors in the paralielogram shown.

A B

D c
2. Write each combination of vectors as a single vector.
—» > P —
() PO+ OR (b) RP + PS
—> > i —— —
(cyQ§ — PS ()RS + SP.+ P

P

R

3. Copy the vectors in the figure and use them to draw the
following vectors.
(@u+v ®u-—v
©v+w dw+v+u

4. Copy the vectors in the figure and use them to draw the
following vectors.

R R e e

(@)a-+b (b)a—b

(© 2a (d) —3b

©2a+h (f) b — 3a
a b

5-8 = Find a vector a with representation given by the directed
line segment AB. Draw AB and the equivalent representation
starting at the origin.

5. A(2,3), B(=2,1) 6. A(-2,-2), B(5,3)

A(0,3,1), B(2,3, -1 8. A4,0,-2), B(4,2,1)

1 L] B 3 B L1 ® 8 # L L]

912 » Find the sum of the given vectors and illustrate
geometrically.

9. (3,—1), (—2,4)
1. (0,1,2), (0,0,-3) 12. (—1,0.2), (0,4,0)

] '] L L L] [ L] L} L] o L] B

1. (-2,-1), (5,7

13-16 = Finda + b, 2a + 3b, [a|,and |a — b|.

3. a= (5,-12), b= (=3, —6)

4. a=4i+§ b=1i-2j

15, a=1i+ 2j — 3k, b=*2i-j+5k

t6. a=2i—4j+4k b=2j—k

® " u u u # " ™ ® 5 " ®
Find a unit vector with the same direction as 8i — } + 4k.

18. Find a vector that has the same direction as (—2, 4, 2) but
has length 6.

- If v lies in the first quadrant and makes an angle /3 with
the positive x-axis and | v| = 4, find v in component form.

20. If a child pulls a sled through the snow with a force of 50N
exerted at an angle of 38° above the horizontal, find the hor-
izontal and vertical components of the force.

Two forces F; and F, with magnitudes 10 Ib and 12 Ib act
on an object at a point P as shown in the figure. Find the
resultant force ¥ acting at P as well as its magnitude and its
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direction. (Indicate the direction by finding the angle 9
shown in the figure.)

22, Velocities have both direction and magnitude and thus are
vectors. The magnitude of a velocity vector is called speed.
Suppose that a wind is blowing from the direction N45°W
at a speed of 50 km/h. (This means that the direction
from which the wind blows is 45° west of the northerly
direction.) A pilot is steering a plane in the direction N60°E
at an airspeed (speed in still air) of 250 km/h. The rrue
course, or track, of the plane is the direction of the resul-
tant of the velocity vectors of the plane and the wind. The
ground speed of the plane is the magnitude of the resultant.
Find the true course and the ground speed of the plane.

23. A woman walks due west on the deck of a ship at 3 mi/h.
The ship is moving north at a speed of 22 mi/h. Find the
speed and direction of the woman relative to the surface of
the water.

24. Ropes 3 m and 5 m in length are fastened to a holiday deco-
ration that is suspended over a town square. The decoration
has a mass of 5 kg. The ropes, fastened at different heights,
make angles of 52° and 40° with the horizontal. Find the
tension in each wire and the magnitude of each tension.

o
40,/

25. A clothesline is tied between two poles, 8 m apart. The line
is quite taut and has negligible sag. When a wet shirt with

10.3 | THE DOT PRODUCT

a mass of 0.8 kg is hung at the middle of the line, the mig
point is pulled down 8 cm. Find the tension in each hal 0;
the clothesline.

26. The tension T at each end of the chain has magnitude 35y '

What is the weight of the chain?

~
~

3707\\

(a) Draw the vectors a = (3,2),b = (2, —1), and
c=(7,1).

(b) Show, by means of a sketch, that there are scalars 5 a5g
¢t such that ¢ = sa + rb.

(¢) Use the sketch to estimate the values of s and ¢,

(d) Find the exact values of s and .

28. Suppose that a and b are nonzero vectors that are not paraj-
lel and ¢ is any vector in the plane determined by a and b,
Give a geometric argument to show that ¢ can be written a5

¢ = sa + tb for suitable scalars s and ¢. Then give an argy-

ment using components.

Ifr={x,v.2)and ro = (xo, Yo, 20}, describe the set of all
points (x, y, z) such that |r ~ ro| = 1.

30. fr = (x,y), 1 = {xi, 0, and 12 = {x2, y2), describe thie
set of all points (x, y) such that |r — 1] + |r ~ ry| = &>
where k > |11 — 2],

3. Figure 16 gives a geometric demonstration of Property 2 of
vectors. Use components to give an algebraic proof of this
fact for the case n = 2.

32

Then use similar triangles to give a geometric proof.

Use vectors to prove that the line joining the midpoints of
two sides of a triangle is parallel to the third side and half
its length.

Prove Property 5 of vectors algebraically for the case n =3,

i P o R B A A SN

So far we have added two vectors and multiplied a vector by a scalar. The question
arises: Is it possible to multiply two vectors so that their product is a useful quantity?
One such product is the dot product, whose definition follows. Another is the cross
product, which is discussed in the next section.
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KB DEFINITION Ifa = (a;, a, as) and b = {b,, by, bs), then the dot prod-
uet of a and b is the number a -+ b given by

a‘b= a1b1 -+ azbz + a3b3

Thus to find the dot product of a and b we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the
dot product is sometimes called the scalar product (or inner product). Although
Definition 1 is given for three-dimensional vectors, the dot product of two-dimen-
sional vectors is defined in a similar fashion:

(@i, sy + {by, ba) = arby + asby

EXAMPLE |
(2,4) + (3, ~1) =2(3) + 4(—=1) =2
(=1,7,4) - (6,2, 1) = (=1)(6) + 72) + 4(~3) =6
i+ 2§ —3K) « (2 — k) = 1(0) + 2(2) + (=3)(—=1) =7

The dot product obeys many of the laws that hold for ordinary products of real
numbers. These are stated in the following theorem.

PROPERTIES OF THE DOT PRODUCT Ifa, b, and ¢ are vectors in Vs and ¢
is a scalar, then

lba-a=|al 2..a-b=b-a
l.a'b+ep=a-b+ta-c 4. (ca)*b=cla-b)=a- (ch)
5. 0-a=20

These properties are easily proved using Definition 1. For instance, here are the
proofs of Properties 1 and 3:

lLara=al +af + ai=|al
3.2-(b+¢)={a,ama) (b +c,b+ byt c3)
= a\(by + ¢1) + as(bs + ) + aslbs + ¢3)

ajb, + ai ¢y + agbg + 202 + 613173 + asCy

i

(a1by + asby -+ asbs) + (arci + ascz + ascs)

I

=a-'b+ta-c

The proofs of the remaining properties are left as exercises. O

The dot product a + b can be given a geometric interpretation in terms of the angle
6 between a and b, which is defined to be the angle between the representations of a
and b that start at the origin, where 0 < 6 < . In other words, § is the angle between
the line segments OA and OB in Figure 1. Note thatif a and b are parallel vectors, then
§=0or8=m

The formula in the following theorem is used by physicists as the definition of the
dot product.
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EJ THEOREM If ¢ is the angle between the vectors a and b, then

a-b=al|b|cosh

PROOF If we apply the Law of Cosines to triangle OAB in Figure 1, we get

|AB* = |OA[* + |OB|* = 2| OA|| OB| cos 8

(Observe that the Law of Cosines still applies in the limiting cases when 6 = ( or
mora=0orb=0)But|OA|=a|, |OB| = b} and [AB| = [a — b| s0
Equation 4 becomes

la—DbP=|af+|b[*—2lal|blcost

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this
equation as follows:

\a—b|2=(a~b)~(a——b)=a-a—a-b—b-a+b~b
~laP—2a-b+|b]
Therefore, Equation 5 gives
laff—2a-b+ |b[>=|al’ + |b[’ — 2|a[[b|cosd
Thus ~2a-b=—2]al|b|cos@
or a-b=/|al|b|cosf 0

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between
them is /3, find a + b.

SOLUTION Using Theorem 3, we have
a-b=/|al|b|cos(m/3) =4-6-3=12

COSG:W

e
|

i EXAMPLE 3 Find the angle between the vectors a = (2,2, —1) and
b= (5 —3,2).

SOLUTION Since

_ /PTTT(CIF =3 and |b| =3 F (3T 22 =V®

and since a b=205 +2-3)+(-1H2)=2

a

we have, from Corollary 6,

cos 0 = lal|b| = 3758
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So the angle between a and b is

2
§ = cos™! NS =~ 146 (or 84°)

Two nonzero vectors a and b are called perpendicular or orthogonal if the angle
between them is 8 = 7/2. Then Theorem 3 gives

a-b=al|b|cos(n/2) =0
and conversely if a - b = 0, then cos 6 = 0, so 6 = 7/2. The zero vector 0 is con-

sidered to be perpendicular to all vectors. Therefore, we have the following method
for determining whether two vectors are orthogonal.

Two vectors a and b are orthogonal if and only ifa * b = 0.

EXAMPLE 4 Show that 2i + 2j — k is perpendicular to 5i — 4j + 2k.
SOLUTION Since
(2i + 2j — k) - (5i — 4] + 2k) = 2(5) + 2(—4) + (=1D(2) =0

these vectors are perpendicular by (7).

Because cos§ > 0 if 0 <6 < /2 and cos 8 < 0 if w/2 <6 < 7, we see that
a + b is positive for 6 < 7/2 and negative for 6 > /2. We can think of a - b as
measuring the extent to which a and b point in the same direction. The dot product
a-b<0 a - b is positive if a and b point in the same general direction, 0 if they are perpendi-
cular, and negative if they point in generally opposite directions (see Figure 2). In the
extreme case where a and b point in exactly the same direction, we have 6 = 0, so

= =
5
=2 -
Al

T R S M

FIGURE 2 cos 6 = 1 and
a-b=lallb]
isual 10.3A shows an anima- If a and b point in exactly opposite directions, then ¢ = 7 and so cos ¢ = —1 and
 tion of Figure 2. a-b=—lallbl
PROJECTIONS

> —>
Figure 3 shows representations PQ and PR of two vectors a and b with the same ini-
tial point P. If S is the foot of the perpendicular from R to the line containing P(, then

> .
the vector with representation PS is called the vector projection of b onto a and is

_ Visual 10.3B shows how
Figure 3 changes when we
“" vary g and b.

FIGURE 3
Vector projections
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P " 1b| cos 8 = comp, b

FIGURE 4
Scalar projection

FIGURE 5

denoted by proj, b. (You can think of it as a shadow of b). The scalar projection of
b onto 2 (also called the component of b along a) is defined to be numerically the
length of the vector projection, which is the number | b | cos 6, where 6 is the angle -
between a and b. (See Figure 4.) This is denoted by compa, b. Observe that it is nega.
tive if m/2 < 0 < .

The equation

a-b=/|al|b|cosd=al(|blcos)

shows that the dot product of a and b can be interpreted as the length of a times the =~ |
scalar projection of b onto a. Since

a b
EY

Ib|cosf = =\~§—i~b

the component of b along a can be computed by taking the dot product of b with the
unit vector in the direction of a. To summarize:

]

Scalar projection of b onto a: comp, b =

b
Vector projection of b onto a: proja b = (i—-) _—=

Notice that the vector projection is the scalar projection times the unit vector in the
direction of a.

EXAMPLE 5 Find the scalar projection and vector projection of b = (1, 1,2)
ontoa = {(—2,3,1).

SOLUTION Since |a| = /(=2)* + 32 + 12 = /14, the scalar projection of b onto

ais

p_2Ah (=) +30) +12) 3
COmPD = Tal Jia RVIT)

The vector projection is this scalar projection times the unit vector in the direction
of a:

IV S - AP 39 3 .
POWD = A4 Ta| 14 7° 14" 14 .

One use of projections occurs in physics in calculating work. In Section 7.5 we
defined the work done by a constant force F' in moving an object through a distance d
as W = Fd, but this applies only when the force is directed along the 1ine_t_9f motion
of the object. Suppose, however, that the constant force is a vector F = PR pointing
in some other direction as in Figure ! 5. If the force moves the object from P t0 O, then
the displacement vector is D = PQ. The work done by this force is defined to bethe:
product of the component of the force along D and the distance moved:

W = (|F| cos 6) | D|
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But then, from Theorem 3, we have

W=|F||D|cos6=F:D

Thus the work done by a constant force ¥ is the dot product F - D, where D is the dis-
placement vector.

EXAMPLE 6 A crate is hauled 8 m up a ramp under a constant force of 200 N
applied at an angle of 25° to the ramp. Find the work done.

SOLUTION If F and D are the force and displacement vectors, as pictured in
Figure 6, then the work done is

W=F- -D=|F||D]| cos25°
= (200)(8) cos 25° = 1450 N'm = 14501]
EXAMPLE 7 A force is given by a vector F = 31 + 4j + 5k and moves a particle

from the point P(2, 1, 0) to the point Q(4, 6, 2). Find the work done,

SOLUTION The displacement vector is D = PB = (2,5,2), so by Equation 8, the
work done is

W=F-D=(34,5) (252
=6+ 20 + 10 = 36

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 1.

4oa=(-2,3) b=(0712)
Sa={41,1), b=(6-3 -8)

b a= (5,25, 3s), b=, 150
La=i-2j +3k b=5i+9k
8 a=45-3k b=2i+4j+6k

r i0.3 EXERCISES

[. Which of the following expressions are meaningful? Which 910 = If u is a unit vector, findu - vand u « w.
are meaningless? Explain. 10
(a) (a *b)-c (b) (a - b)e ’ u
) |al®- ¢ da-b+c
@a-b+ec () ]al- (b + o) b \ v

1. Find the dot product of two vectors if their lengths are 6 w i 1
and % and the angle between them is 7r/4.

3~8 ¢ Find a - b. W

3 lal=6, |b|=35, the angle between aand b is 27/3 {

If. (a) Show thati-j=j -k=k- -i=0
(b) Show thati-i=j-j=k- k=1

12. A street vendor sells @ hamburgers, b hot dogs, and ¢ soft
drinks on a given day. He charges $2 for a hamburger,
$1.50 for a hot dog, and $1 for a soft drink. If A = (a, b, ¢)
and P = (2, 1.5, 1), what is the meaning of the dot prod-

L] [ = u B ® " & ® " B uct A - P?
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1315 = Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

13. a = (—8,6), b={(/7.3)

14, a= (4,0,2), b=1(2,-1,0)
a=j+k b=i+2j~-3k

16. Find, correct to the nearest degree, the three angles of the
triangle with vertices D(0, 1, 1), E(—2, 4, 3), and
F(1,2,~1).

17-18 » Determine whether the given vectors are orthogonal,
parailel, or neither.

17. (@) a=(-523,7), b=1{(6-82)
b)a={46), b= (-32)
(c)a=—i+2j+5k, b=3i+4]j-k
(da=2i+6]j—4k b= -31—9j+ 6k

18. () u=(—3,9,6), v=(4,-12,-8)

Mu=i—j+2k v=2i—j+k
© u="{ab,c), v={(-ba0)

19. Use vectors to decide whether the triangle with vertices
P(1, =3, -2), 0(2, 0, —4), and R(6, —2, —5) is right-
angled.

20. For what values of b are the vectors (—6, b, 2) and
{b, b*, b) orthogonal?

Find a unit vector that is orthogonal to both i + jand i + k.

22. Find two unit vectors that make an angle of 60° with
v = (3,4).

2326 = Find the scalar and vector projections of b onto a.

23. a = (3, -4), b=(50)

24. a= (1,2), b= (—41)

25. a=(3,6,-2), b=1{(1,2,3)

26.a=i+j+k b=i—-j+k

= %« ®» s = a a = & s s =

% Show that the vector orth, b = b — proj, b is orthogonal
to a. (It is called an orthogonal projection of b.)

28. For the vectors in Exercise 24, find orth, b and illustrate by
drawing the vectors a, b, proja b, and orth, b.

Ifa = (3,0, —1), find a vector b such that comp, b = 2.

30. Suppose that a and b are nonzero vectors.
(a) Under what circumstances is compa b = compy a?
(b) Under what circumstances is proj, b = projp a?

31. A constant force with vector representation
F = 10i + 18j — 6k moves an object along a straight line

from the point (2, 3, 0) to the point (4, 9, 15). Find the Work
done if the distance is measured in meters and the magnjiyd,
of the force is measured in newtons.

32. Find the work done by a force of 20 Ib acting in the direg.
tion N50°W in moving an object 4 ft due west.

33. A woman exerts a horizontal force of 25 Ib on a crate ag ghe
pushes it up a ramp that is 10 ft long and inclined at an
angle of 20° above the horizontal. Find the work done on
the box.

34. A wagon is pulled a distance of 100 m along a horizontal
path by a constant force of 50 N. The handle of the wagon
is held at an angle of 30° above the horizontal. How much:
work is done?

Use a scalar projection to show that the distance from a
point Pi(xy, yi) to the line ax + by + ¢ =0 s

lax, + by, + c|
VYT

Use this formula to find the distance from the point (-2, 3)
to the line 3x — 4y + 5= 0.

36. Ifr = {x,y,z),a = {a, as, a3y, and b = (by, by, by),
show that the vector equation (r — a) + (r = b) = 0 repre:
sents a sphere, and find its center and radius.

| Find the angle between a diagonal of a cube and one of its
edges.

38. Find the angle between a diagonal of a cube and a diagonal
of one of its faces.

39. A molecule of methane, CHa, is structured with the four
hydrogen atoms at the vertices of a regular tetrahedron
and the carbon atom at the centroid. The bond angle is the
angle formed by the H— C-—H combination; it is the:angle
between the lines that join the carbon atom to two of the
hydrogen atoms. Show that the bond angle is about 109:5°.
[Hint: Take the vertices of the tetrahedron to be the points
(1,0,0),0,1,0),(0,0,1), and (1, 1, 1) as shown in the
figure. Then the centroid is (% i %)] :

40, Ifc = |a|b + |b|a, where a, b, and ¢ are all nonzet0
vectors, show that ¢ bisects the angle between a and b.

g

41, Prove Properties 2, 4, and 5 of the dot product (Theorer Z
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“Suppose that all sides of a quadrilateral are equal in length (b) Use the Cauchy-Schwarz Inequality from Exercise 43 to
and opposite sides are paraliel. Use vector methods to show prove the Triangle Inequality. [Hint: Use the fact that

- that the diagonals are perpendicular.

Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

. The Triangle Inequality for vectors is

la+b|<|al+|b]

la-b] = al[b|

|a-+Db|*= (a-+b)-(a+ h)and use Property 3 of the
dot product.]

45. The Parallelogram Law states that

la+ b2+ |a—bP=2[al’+2|b]

(a) Give a geometric interpretation of the Parallelogram
Law.
(b) Prove the Parallelogram Law. (See the hint in

(a) Give a geometric interpretation of the Triangle Inequality. Exercise 44.)

THE CROSS PRODUCT

The cross product a X b of two vectors a and b, unlike the dot product, is a vector.
For this reason it is also called the vector product. Note that a X b is defined only
when a and b are three-dimensional vectors.

product of a and b is the vector

DEFINITION Ifa = (ai, as,as) and b = (b, by, b3), then the cross

a Xb = (@b — asby, asb — a\bs, a\b; — ayb))

This may seem like a strange way of defining a product. The reason for the partic-
ular form of Definition 1 is that the cross product defined in this way has many useful
properties, as we will soon see. In particular, we will show that the vector a X b is
perpendicular to both a and b.

In order to make Definition 1 easier to remember, we use the notation of determi-
nants. A determinant of order 2 is defined by

a b|
di—ad—bc

2 1
For example, ! 4 = 204) — 1{—6) = 14

—6

A determinant of order 3 can be defined in terms of second-order determinants as
follows:

|
ay dy as .
by by by

) 2 C3

ibl b3!+03 bl ]92

Observe that each term on the right side of Equation 2 involves a number a; in the first
row of the determinant, and g, is multiplied by the second-order determinant obtained
from the left side by deleting the row and column in which a; appears. Notice also the
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minus sign in the second term. For example,

o 1l
1 1

;42 ! !

(W RO R
B O N

i —

I

100 —4)—2(06+5 +(-1H(12-0)=-38

If we now rewrite Definition 1 using second-order determinants and the standard
basis vectors i, j, and k, we see that the cross product of a = ai + a2j + ask and
b = b]i + sz + bzklb

axb=|® @|i-|® “3tj+1“‘ a|

by 531 ibl b31 ibl bz]

In view of the similarity between Equations 2 and 3, we often write

i j k
axXb=la a
by by by

Although the first row of the symbolic determinant in Equation 4 consists of vectors,
if we expand it as if it were an ordinary determinant using the rule in Equation 2, we
obtain Equation 3. The symbolic formula in Equation 4 is probably the easiest way of
remembering and computing cross products.

K3 EXAMPLE | Ifa= (1,3,4) andb = (2,7, —5), then

i j k
AV L R TR R TR E R T T
]2 . _5‘ 7 -5 12 -5 27,

= (~15-28)i— (-5 —8)j+(7—6)k=—43i + 13] + k

B2 EXAMPLE 2 Show thata X a = 0 for any vector a in V.
SOLUTION If a = (ai, a2, a3), then

i j ok
axXa=|a a &
ay a4y as

= (mas — asar)i — (@1az — asar) § + (@az — wma)k

=0i~0j+0k=0

One of the most important properties of the cross product is given by the follow-
ing theorem.
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THEOREM The vector a X b is orthogonal to both a and b.

PROOF In order to show that a X b is orthogonal to a, we compute their dot prod-
uct as follows:

(aXb)'a=1a2 as al_ia; azta2+!a; ay
.bz b, 1171 b3.

= ay(a2bs — asby) — axlaibs — ashi) + az(arb, — asby)
= didsby — a1bras — a\axbs + biasas + arbray — biasas
= ()

A similar computation shows that (a X b} - b = 0. Therefore, a X b is orthogonal
to both a and b. ]

If a and b are represented by directed line segments with the same initial point (as
in Figure 1), then Theorem 5 says that the cross product a X b points in a direction
perpendicular to the plane through a and b. It turns out that the direction of a X b is
given by the right-hand rule: If the fingers of your right hand curl in the direction of
a rotation (through an angle less than 180°) from a to b, then your thumb points in the
direction of a X b.

@aXb

P b Now that we know the direction of the vector a X b, the remaining thing we need
to complete its geometric description is its length |a X b|. This is given by the fol-
lowing theorem.

. HGUBE y } THEOREM If 0 is the angle between a and b (so 0 < 6 =< ), then
: The right-hand rule gives
' the direction of a X b. la X b|=|a||b|sing

Visual 10.4 shows how a X b PROOF From the definitions of the cross product and length of a vector, we have
changes as b changes.
}a X blz = (a2b3 - agbz)z + (Clgb] - 611}73)2 + ((l,;bz - azb])z
= a2b? — 2a,asbabs + alb3 + alb? — 2a,asbiby + afbi

+ atb? ~ 2a,a:b1by + a2bf

= (af + a? + ad)(b? + b} + b) — (aiby + axby + asby)’

3
.
£
i
i
.
.

= [a|b|" — (a - b)’

= } a 12i b 12 — ‘ a H b {ZCOSZ(') (by Theorem 10.3.3)

= lal|b|*(1 — cos’0)

= |a|’|b|*sin’*f

Taking square roots and observing that v/sin?¢ = sin 6 because sin § = 0 when
0 <6 = 7, we have

la X b|=|aj|b|sin6 O

%

:
Z:
|
:

§

|
.
:
o
L
!




540 = CHAPTER 10 VECTORS AND THE GEOMETRY OF SPACE

Geometric characterization of a X b

FIGURE 2

Since a vector is completely determined by its magnitude and direction, we can
now say that a X b is the vector that is perpendicular to both a and b, whose orien,.
tion is determined by the right-hand rule, and whose length is [a||b|sin 6. In 5
that is exactly how physicists define a X b. ’

CORGLLARY Two nonzero vectors a and b are parallel if and only if

axXb=19

PROOE Two nonzero vectors a and b are parallel if and only if 8 = 0 or 7. In either
case sinf = 0, so |a X b| = 0 and therefore a X b = 0. .

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2, If
and b are represented by directed line segments with the same initial point, then the
determine a parallelogram with base | a|, altitude | b |sin 6, and area :

A =|a|(|b|sin6) = [a X b]|

Thus we have the following way of interpreting the magnitude of a cross product:

The length of the cross product a X b is equal to the area of the parallelogram
determined by a and b.

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
P(1,4,6), 0(—2,5,—1),and R(1, —1, 1).

SOLUTION The vector P_Q> X ﬁf is perpendicular to both PB and 13? and is there-
fore perpendicular to the plane through P, Q, and R. We know from (10.2.1) that

PO=(-2~1)i+(G-4j+(~1-6k=-3i+]j—7Tk
PR=(1—1i+(-1-4j+(1-6k=-5j—5k

We compute the cross product of these vectors:

i j k

—> >
POXPR=|-3 1 -7
0 -5 -5

= (=5—135)i— (15— 0)j + (15 — O)k = —40i — 15j + 15k

So the vector {—40, —15, 13) is perpendicular to the given plane. Any nonzero
scalar multiple of this vector, such as {—8, —3,3), is also perpendicular to the
plane.

EXAMPLE 4 Find the area of the triangle with vertices P(1, 4, 6), O(—2, 5, ~1),
and R(1, —1, 1). :

SOLUTION In Example 3 we computed that PZ X PR = (—-40, —15, 15). The
area of the parallelogram with adjacent sides PQ and PR is the length of this cros$
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product:

|PG % PR| = =407 + (—15) + 152 = 582

The area A of the triangle POR is half the area of this parallelogram, that is, 2./82.

If we apply Theorems 5 and 6 to the standard basis vectors i, j, and k using
§ = /2, we obtain

iXj=k jXk=1i kXi=j
IXi=—k kXj=~i iX k= -}
Observe that
PXj#EjXi

Thus the cross product is not commutative. Also
IXEXP=iXk=—]

whereas
iXDPXj=0xXj=0

So the associative law for multiplication does not usually hold; that is, in general,
(aXb)Xec#axX(bXe)

However, some of the usual laws of algebra do hold for cross products. The following
theorem summarizes the properties of vector products.

THEOREM If a, b, and ¢ are vectors and c¢ is a scalar, then
l.LaXb=-bXa

(ca) X b=rc(a Xb)=a X (ch)
axX(b+tgog=axXb+aXe
.(atb)Xe=aXc+bXc
.as(bXe¢)=(aXb)-c
.axX(bXce)=(a-e)b—(a-b)

These properties can be proved by writing the vectors in terms of their components
and using the definition of a cross product. We give the proof of Property 5 and leave
the remaining proofs as exercises.

PROOF OF PROPERTY & Ifﬁ - <a1, asg, ag>, b = <b;, bz, b3>, and ¢ == <C), Ca, C3>,
then

a- (b X C) == a1(b2()3 - bng) =+ az(bgcl - b]Cg) + ClS(bICQ - szI)
= (11]926‘3 - a]b36‘2 -+ a2b3c1 - a2b1C3 —+ Clgb]Cz - agbzcl
= (Clzb3 el a3b2)61 -+ (a3b1 - a1b3)C2 + (albz - a2b1>C3

=(@xXb) ¢ O
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FIGURE 3

TRIPLE PRODUCTS

The product a + (b X ¢) that occurs in Property 5 is called the scalar trj

. . , Ple prog
of the vectors a, b, and ¢. Notice from Equation 9 that we can write h oo

. € sealar 1

product as a determinant: a
ay dy day
a- (b X C) === b1 bz b3
C| (o] C3

The geometric significance of the scalar triple product can be seen by COIlSi@é'
the parallelepiped determined by the V§ctors a, b, and ¢. (See Figure 3.) The areq
the base parallelogram is A = |b X ¢|. If 6 is the angle between a and b x
the height / of the parallelepiped is & = |a||cos 8]. (We must use | cos §
cos §1in case 8 > 7/2.) Therefore, the volume of the parallelepiped is

.
| instead

V=Ah=|bXxc

|al{cos 6] = |a- (b X ¢)

Thus we have proved the following formula.

1§ The volume of the parallelepiped determined by the vectors a, b, and ¢4
the magnitude of their scalar triple product:

V=la-(bXc¢)

If we use the formula in (11) and discover that the volume of the paralleleps
determined by a, b, and ¢ is 0, then the vectors must lie in the same plane; thatis;
are coplanar. .

5 EXAMPLE 5 Use the scalar tripte product to show that the vectors a = (],
b= {2, —1,4) and ¢ = {0, —9, 18) are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

1 4 =7
a-bxe=2 -1 4
0 -9 18

N 4]"“42 4_72—1*

-9 18] 0 18 0 -9

1(18) — 4(36) — 7(—18) =0

I

Therefore, by (11) the volume of the parallelepiped determined by a, b, and c;i’
This means that a, b, and ¢ are coplanar.

The producta X (b X ¢) that occurs in Property 6 is called the vector triple pr
uct of a, b, and ¢. Property 6 will be used to derive Kepler’s First Law of plar
motion in Section 10.9. Its proof is left as Exercise 42. '
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TORQUE

The idea of a cross product occurs often in physics. In particular, we consider a force
F acting on a rigid body at a point given by a position vector r. (For instance, if we
tighten a bolt by applying a force to a wrench as in Figure 4, we produce a turning
effect.) The torque 7 (relative to the origin) is defined to be the cross product of the
position and force vectors

r=r XF

and measures the tendency of the body to rotate about the origin. The direction of the
torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of
the torque vector is

7| =|r X F|=|r|{|F|sing

where 6 is the angle between the position and force vectors. Observe that the
only component of F that can cause a rotation is the one perpendicular to r, that is,
| F | sin 6. The magnitude of the torque is equal to the area of the parallelogram deter-
mined by r and F.

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as
/ shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is
|7| = |r X F| = |r||F|sin75° = (0.25)(40) sin 75°
= 10 sin 75° = 9.66 N-m
If the bolt is right-threaded, then the torque vector itself is
7= |7|n=9.66n

where n is a unit vector directed down into the page.

m EXERCISES

'~7 = Find the cross product a X b and verify that it is orthog- State whether each expression is meaningful. If not, explain
onal to both a and b. why. If so, state whether it is a vector or a scalar.

ba=(1,2,0), b=1(0,31) (@a-(bxc (b) a X (b-c)
2a— ’ © ax(bXe @ (a-b) xc
=514, b=(-1,02) © (a-b) X (c-d) () (a X b) - (¢ X d)

la=2i+j-k b=j+2k
fas=i-j+k b=i+j+k
Sa=3i+2j+4k b—i-2j-3k
basitejtetk b=2i+ej-e'k
Ca= (00, b= (1,23 |

2 & u " " w n 6 [ »

1¢~1t = Find |u X v| and determine whether u X v is directed
into the page or out of the page.

10, it.

jul=6

> jv]=28
150° \
“Ifa=j—2kandb=j + k, find a X b. Sketch a, b, and

24X b as vectors starting at the origin. " B ® " 5 B " B e u s
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The figure shows a vector a in the xy-plane and a vector b

in the direction of k. Their lengths are |a| = 3 and |b| = 2.

(a) Find |a X b].

(b) Use the right-hand rule to decide whether the compo-
nents of a X b are positive, negative, or 0.

ZA

<y

13. fa=(1,2,1) and b= (0,1,3),finda X band b X a.

14, Ifa= (3,1,2), b={(-1,1,0),and ¢ = (0,0, —4),
show that a X (b X ¢) # (a X b) X ¢.

' Find two unit vectors orthogonal to both (2,0, —3)
and {—1,4,2).

16. Find two unit vectors orthogonal to both i + j + k
and 21 + k.

17. Show that 0 X a = 0 = a X 0 for any vector a in V.
18. Show that (a X b) - b = 0 for all vectors a and b in V5.
19. Prove Property 1 of Theorem 8.

20. Prove Property 2 of Theorem 8.

21. Prove Property 3 of Theorem 8.

22. Prove Property 4 of Theorem 8.

23. Find the area of the parallelogram with vertices A(—2, 1),
B(0, 4), C(4, 2), and D(2, — 1).

24. Find the area of the parallelogram with vertices K(1, 2, 3),
L(1,3,6), M(3,8,6),and N(3, 7, 3).

25-28 = (a) Find a nonzero vector orthogonal to the plane
through the points P, Q, and R, and (b) find the area of

R(0,0,3)
R(3,0,6)

., 000,2,0),
26. P(2,1,5), Q(~1,3,4),
L P(0,-2,0), 04, 1,-2), R(5,3,1)
28. P(2,0, -3), 0(3,1,0), R(522)

] L] L] a B L] L} L] o B

29--38 = Find the volume of the parallelepiped determined by
the vectors a, b, and c.

29. a=(6,3,—-1), b={(0,1,2),
3.a=i+j—k b=i-j+k

C=<4,“‘2,5>
e=—-i+j+k

B a ® " L L " " ] n un a

31-32 = Find the volume of the parallelepiped with adjacent
edges PQ, PR, and PS.

3. P(2,0,-1), Q4 1,0), RG,-11), S2 -2,2)
32. P(3,0,1), 0(=1,2,5), RG,1,-1), $0,4,2)

33. Use the scalar triple product to verify that the vectors
un=1i+5j— 2k v=3i~jandw=51+9j — 4k
are coplanar.

34, Use the scalar triple product to determine whether the
points A(1, 3, 2), B(3, —1, 6), C(5,2, 0), and D(3, 6, —4)
lie in the same plane,

35. A bicycle pedal is pushed by a foot with a 60-N force ag
shown. The shaft of the pedal is 18 cm long. Find the mag-
nitude of the torque about P.

36. Find the magnitude of the torque about P if a 36-1b force is
applied as shown.

37. A wrench 30 cm long lies along the positive y-axis and '

grips a bolt at the origin. A force is applied in the direction- "

(0,3, —4) at the end of the wrench. Find the magnitude-of-
the force needed to supply 100 N-m of torque to the bolt.:

38. Let v = 5j and let u be a vector with length 3 that starts at
the origin and rotates in the xy-plane. Find the maximum
and minimum values of the length of the vector u X v. 1
what direction does u X v point?

(a) Let P be a point not on the line L that passes through:
the points Q and R. Show that the distance d from the
point P to the line L is

_ la X b

SPY

> —
where a = QR and b = QP.

S S S O R i




(b) Use the formula in part (a) to find the distance from
the point P(1, 1, 1) to the line through Q(0, 6, 8) and

R(=1,4,7).

40. (2) Let P be a point not on the plane that passes through the
points 0, R, and S. Show that the distance d from P to

the plane is

_ [axb)-cf
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. Suppose thata # 0.

(a) Ifa-b =a- ¢, does it follow that b = ¢?

(oY Ifa X b = a X ¢, does it follow that b = ¢?

() Ifa*b=a-canda X b =a X ¢, does it follow
thatb = ¢?

46. If vy, v, and v; are noncoplanar vectors, let

k = Vo X vy
Py — —> ‘"vl-(vzxvg)
where a = OR, b = 08§, and ¢ = QP.
(b) Use the formula in part (a) to find the distance from the Vs X v
point P(2, 1, 4) to the plane through the points 0(1, 0, 0), k, = m
R(0, 2, 0), and S0, 0, 3). ’
41 Prove that (2 — b) X (a + b) = 2(a X b). K, = — XY

v+ (v2 X v3)

.42, Prove Property 6 of Theorem 8, that is,

43; Use Exercise 42 to-prove that

aX(bxXe)+bX(ecxXxa+eX@aXb)=0
44, Prove that

aX{bXeg=(@- cb—-(a-bc

(axXb)-(exd=

o 0

1G.5

(These vectors occur in the study of crystallography. Vectors
of the form n; v, + n,vy + na3vs, where each n; is an inte-
ger, form a lattice for a crystal. Vectors written similarly in
terms of ki, ks, and k; form the reciprocal lattice.)
(a) Show that k; is perpendicular to v; if i 7 J.
(b) Show thatk; - v; = 1 fori=1,2,3.

1

Show thatk, » (k, X ky) = ———.
(c) Show that ki * (kz X k3) v

oo
a ©

EQUATIONS OF LINES AND PLANES

FIGURE 2

A line in the xy-plane is determined when a point on the line and the direction of the
line (its slope or angle of inclination) are given. The equation of the line can then be
written using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point
Po(x0, Yo, zo) on L and the direction of L. In three dimensions the direction of a line is
conveniently described by a vector, so we let v be a vector parallel to L. Let P(x,y,2)
be an arbitrary point on L qui let 1o _z}gg r be the position vectors of Py and P (thz_i_tﬁi_s;,
they have representations OP, and OF ). If a is the vector with representation FoP,
as in Figure 1, then the Triangle Law for vector addition gives r = ¥, + a. But, since
a and v are paralle! vectors, there is a scalar ¢ such that a = rv. Thus

fE r=1ryF v

which is a vector equation of L. Bach value of the parameter ¢ gives the position
vector r of a point on L. In other words, as ¢ varies, the line is traced out by the tip of
the vector r. As Figure 2 indicates, positive values of ¢ correspond to points on L that
lie on one side of Py, whereas negative values of ¢ correspond to points that lie on the
other side of Py.

If the vector v that gives the direction of the line L is written in component form as
v = (a, b, ¢y, then we have rv = (fa, th, 1c). We can also write r = (x,v,z) and



