
Calculus II Project: Conic Sections

Due date: Wed, 5 Dec12

In this project you will you use the "coordinate invariant" definitions of a circle and parabola to derive their Cartesian equations.

Definition. A *circle* is the set of all points equidistant from a single fixed point.

Problem 1. Referring to the figure below, a circle is the set of all points P that satisfy the equation d(C, P) = r, where d is the usual distance function in \mathbb{R}^2 . Use this definition to derive the standard Cartesian equation of a circle with radius r, centered at (h, k).

Definition. A parabola is the set of all points equidistant from a fixed point F (the *focus*) and a fixed line ℓ (the *directrix*).

Problem 2.a. Draw a picture of a parabola together with its focus and directrix. Label the vertex, focus, directrix, any point P on the curve, and the point Q on the directrix that is the projection of P. Also draw and label the *latus rectum*. What is the length of the latus rectum?

2.b. Suppose the vertex of the parabola is the origin V(0,0). Then its Cartesian equation should be $y = ax^2$. Derive this formula from the picture, and determine exactly the constant a. What is the geometric meaning of a?

2.c. Now let the vertex be V(h, k), and repeat the above calculation to derive the general Cartesian equation of a parabola.