Name:

M242: Calculus I (Fall 2017)

Instructor: Justin Ryan

Chapter 1 Exam

Read and follow all instructions. You may not use any notes or electronic devices. All you need is a pencil and your brain!

Part I: True/False [2 points each]

Neatly write **T** if the statement is always true, and **F** otherwise.

- **____2.** Let f be a function satisfying f(a) = k. Then $\lim_{x \to a} f(x) = k$.
- **____3.** If *p* is a polynomial, then $\lim_{x \to b} p(x) = p(b)$.
- **____4.** The equation $x^4 6x^2 + 5 = 0$ has a root in the interval (0,2).
- **____5.** If |f| is continuous at a, so is f.

Part II: Multiple Choice [5 points each]

Select the best answer and write its corresponding letter neatly on the given line.

- _____6. Compute $\lim_{x\to 0} \cos(x + \sin x)$
 - **A.** 0

B. 1

C. cos(1)

 $\mathbf{D.} \; \frac{\pi}{2}$

- - **A.** 0

B. 5

- **C.** 10
- **D.** Does Not Exist

- ______8. Compute $\lim_{x\to 0} x^2 \cos\left(\frac{2\pi}{x}\right)$
 - **A.** 0

B. 1

 \mathbf{C} . $+\infty$

D. Does Not Exist

- **____9.** Compute $\lim_{\theta \to \frac{\pi}{2}^+} \tan \theta$
 - $A. +\infty$

B. $-\infty$

C. 0

D. Does Not Exist

- ______**10.** Compute $\lim_{x \to 3} \frac{x^2 + 2x 5}{x + 2}$
 - **A.** 0

B. −2

C. 2

D. Does Not Exist

- _____11. Compute $\lim_{v \to 4^+} \frac{4-v}{|4-v|}$
 - **A.** -1

B. 1

C. 0

D. Does Not Exist

12–13. Use the graph of the function f to compute the limits.

- _____12. $\lim_{x \to 3^{-}} f(x)$
- **A.** 0

B. 3

C. 4

D. Does Not Exist

- _____13. $\lim_{x \to 1} f(x)$
- **A.** 0

B. $-\frac{1}{4}$

C. 3

D. Does Not Exist

Part III: Written Problems [10 points each]

Complete all problems, showing enough work.

14. Does the function $f(x) = \cos x - x^3$ have a real zero between 0 and $\frac{\pi}{2}$? Explain.

15. Compute $\lim_{\theta \to 0} \frac{\sin^2(2\theta)}{\theta^2}$. Show enough work.

16. You wish to prove that $\lim_{x\to 2} 14 - 5x = 4$. If you fix $\varepsilon > 0$, what should you set δ equal to in order to finish the proof? Show enough work.

17. Compute $\lim_{h\to 0} \frac{(x+h)^3 - x^3}{h}$. Show enough work.

18. Let
$$F(x) = \begin{cases} x^2 - 2 & x < 0 \\ k & x = 0. \\ -2\cos(x) & x > 0 \end{cases}$$

What must k equal in order for F to be continuous at 0? Explain.