Name: Key

Math 123: Trigonometry

Midterm Exam # 4 26 November 2013

Follow all instructions. All scratch work should be done on the paper provided. You may use a calculator, but no other electronic devices.

Part I: True or False

Read each statement carefully, then write T or F in the space provided.

- 1. $3 + 4i = 5(\cos(\pi/4) + i\sin(\pi/4))$ $\theta \neq \sqrt[\pi/4]{4}$

2. For every nonzero complex number z = a + bi, there are unique real numbers r > 0 and $0 \le \theta < 2\pi$ such that $z = r(\cos \theta + i \sin \theta)$.

_____3. Every complex number z = x + iy can be identified with a vector $\langle x, y \rangle$.

Part II: Fill in the Blank

Choose the appropriate answer from the word bank, and write its corresponding letter in the space provided.

Word Bank:

A. conjugatesB. -iC. imaginaryD. pairsE. discriminantF. root(s)G. determinantH. realI. -1

J. i K. quadratic formula L. 1

6. A(n) number has the form a + bi, where $a \neq 0$ and b = 0.

 $_{-}$ **5.** $i^{1997} = _{-}$.

______9. $\frac{1}{i} = ______$.

10. The expression $b^2 - 4ac$ is called the _____ of the quadratic equation $ax^2 + bx + c = 0$.

Part III: Multiple Choice

Write the letter corresponding to the appropriate answer in the space provided.

- 11. Determine the nature of the roots of the equation: $2x^2 5x + 5 = 0$.
 - A. one real solution

B. two distinct real solutions

C. one complex solution

- D. two complex solutions
- 2 12. Perform the operation: $\frac{3+i}{-3+4i}$.

A.
$$-1 - 3i$$

B.
$$-5 - 15i$$

C.
$$\frac{-1}{5} - \frac{3}{5}i$$

C.
$$\frac{-1}{5} - \frac{3}{5}i$$
 D. $\frac{-1}{25} - \frac{3}{25}i$

13. Find all roots of the equation: $2x^2 - 8x = -10$

A. 2,
$$-2$$

B.
$$2i, -2i$$

C.
$$1 + 2i$$
, $1 - 2i$

D.
$$2 + i$$
, $2 - i$

For problems 14 and 15, consider the complex number z = -4 + 4i.

C 14. Find the modulus |z|.

B.
$$8\sqrt{2}$$

C.
$$4\sqrt{2}$$

_15. Find the argument θ .

$$\mathbf{A.} \ \frac{3\pi}{4}$$

$$\mathbf{B.} \; \frac{\pi}{4}$$

C.
$$\frac{-\pi}{4}$$

D.
$$\frac{-3\pi}{4}$$

6. Find a polynomial p such that 2 and -3 are zeros, and p(0) = 3.

A.
$$p(x) = (x+2)(x-3)$$

B.
$$p(x) = 2(x-2)(x+3)$$

C.
$$p(x) = -\frac{1}{2}(x-2)(x+3)$$
 D. $p(x) = \frac{1}{2}(x-2)(x+3)$

D.
$$p(x) = \frac{1}{2}(x-2)(x+3)$$

17. How many times does the graph of $y = 2x^2 - 8x + 9$ cross or touch the x-axis?

18. A ball is kicked upward from ground level with an initial velocity of 48 ft/sec. The height h (in ft) is given by $h(t) = -16t^2 + 48t$, $0 \le t \le 3$, where t is the time (in sec). After reaching its peak and beginning to fall back toward the ground, at what time is the ball at a height of 32 ft?

Part IV: Short Answer

Show enough work. Clearly mark your final answers. Partial credit given when deserved.

Find a polynomial function of lowest degree that has 3i and 2 as zeros.

Zeros:
$$3i, -3i, 2$$

$$p(x) = (x+3i)(x-3i)(x-2)$$

$$= (x^2+9)(x-2)$$

$$p(x) = x^3 - 2x^2 + 9x - 18$$

20. Let
$$z_1 = 18(\cos(60^\circ) + i\sin(60^\circ))$$
 and $z_2 = 6(\cos(30^\circ) - i\sin(30^\circ))$. Find z_1z_2 and z_1/z_2 . Give your answers in standard form $(a + bi)$.

$$2.2=108(\cos(30^\circ)+i\sin(30^\circ)=.108(\frac{\sqrt{3}}{2}+i\frac{1}{2})=[54\sqrt{3}+54i]$$

$$\frac{2_1}{2_2} = \frac{18}{6} \left(\cos(90^\circ) + i \sin(90^\circ) \right) = 3 \left(0 + 1i \right) = \boxed{3i}$$

21. Given that 3 - i is a zero of the polynomial $f(x) = x^3 - 2x^2 - 14x + 40$, find all other zeros. Write f as a product of linear factors.

If 3-i is a zero, so is 3ti
Then
$$(x - (3-i))(x - (3ti))$$
 is a factor.

$$= (x^2 - (3-i)) \times (3ti) \times + 9 + 1$$

$$= x^2 - 6x + 10$$

divide:

$$x + 4$$

$$x^{2} - 6x + 10 | x^{3} - 2x^{2} - 14x + 40$$

$$= x^{3} + 6x^{2} + 10x$$

$$4x^{2} - 24x + 40$$

$$4x^{2} - 24x + 40$$

$$0$$

$$f(x) = (x - 3 + i)(x - 3 - i)(x + 4)$$