Name:__

Math 123: Trigonometry Midterm Exam # 3 7 November 2013

Follow all instructions. All scratch work should be done on the paper provided. You may use a calculator, but no other electronic devices.

Part I: True or False

Read each statement carefully, then write T or F in the space provided.

1. The equation sin(x) = 1 has only one solution.

F_3. Two vectors are equivalent if they have the same direction angle. magnifuele also

_____4. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$; then the vector \overrightarrow{PQ} is given in component form by $\langle x_2 - x_1, y_2 - y_1 \rangle$.

For Solution 5. Consider the vector $\vec{\mathbf{v}} = \langle x, y \rangle$ with x > 0 and $y \ge 0$. Its direction angle is $\theta = \cos^{-1}\left(\frac{y}{x}\right)$.

Part II: Fill in the Blank

Choose the appropriate word or phrase from the word bank, and write its corresponding letter in the space provided.

Word Bank:

A. Ambiguous

B. Law of Averages C. Law of Cosines

D. Obvious

E. Heron's Formula

F. Wrong

G. Pythagorus's Formula H. Factorization

I. Law of Sines

J. Cross Product

K. Oblique

L. Dot Product

6. A(n) _____ triangle has no right angle.

7. $c^2 = a^2 + b^2 - 2ab\cos(C)$.

8. Area = $\sqrt{s(s-a)(s-b)(s-c)}$.

9. "Angle-Side-Side" is known as the _____ case.

_10. The _____ can be used to find the angle between two vectors.

Part III: Multiple Choice

Write the letter corresponding to the appropriate answer in the space provided.

- - A. π ; 2π

B. $\frac{\pi}{4}$; $\frac{\pi}{2}$

C. $\frac{\pi}{6}$; $\frac{5\pi}{6}$

D. $\frac{\pi}{3}$; $\frac{2\pi}{3}$

- - A. $\pi + 4\pi n$

B. $\frac{7\pi}{4} + \pi n$

 $\mathbf{C.} - \frac{\pi}{4} + \pi n$

- **D.** $7\pi + 4\pi n$
- For problems 13 through 15: Consider the oblique triangle with $a=4,\,A=\frac{\pi}{4},$ and $B=\frac{\pi}{3}.$
 - \bigcirc **13.** Find b.
 - **A.** $6\sqrt{2}$

B. 5

C. 3

D. $2\sqrt{6}$

- **A.** $\frac{5\pi}{12}$

B. $\frac{7\pi}{12}$

C. $\frac{\pi}{2}$

- D. $\frac{\pi}{6}$
- - **A.** 8.27

B. 9.46

C. 18.92

D. 9.80

____16. Let $\vec{\mathbf{u}} = \langle 3, -7 \rangle$ and $\vec{\mathbf{v}} = \langle 12, 5 \rangle$. Find $\text{proj}_{\vec{\mathbf{v}}}\vec{\mathbf{u}}$.

 $\mathbf{A.} \left\langle \frac{3}{12}, \frac{-7}{5} \right\rangle$

B. $\left\langle \frac{12}{13}, \frac{5}{13} \right\rangle$

C. $\left\langle \frac{12}{169}, \frac{5}{169} \right\rangle$

D. (3, 5)

_____17. How many possible triangles are there with a = 6, b = 6.5, and $A = 58^{\circ}$?

A. 0

B. 1

C. 2

D. I don't know, dude.

 $\mathbf{A.}\,\left\langle -\frac{4}{5}, -\frac{3}{5}\right\rangle$

B. $\left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle$

C. $\langle -3, 4 \rangle$

D. $\left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$

Part IV: Short Answer

Show enough work. Clearly mark your final answers. Partial credit given when deserved.

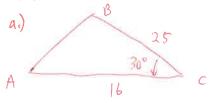
19. Let $\vec{\mathbf{u}} = \langle -3, 2 \rangle$ and $\vec{\mathbf{v}} = \langle 1, 1 \rangle$. Find $\vec{\mathbf{w}}_1 = \operatorname{proj}_{\vec{\mathbf{v}}} \vec{\mathbf{u}}$ and $\vec{\mathbf{w}}_2 = \operatorname{orth}_{\vec{\mathbf{v}}} \vec{\mathbf{u}}$.

$$\vec{W}_1 = \rho v \vec{O}_1 \vec{V} \vec{V} = \left(\frac{\vec{U} \cdot \vec{V}}{\vec{V} \cdot \vec{V}}\right) \vec{V} = \left(\frac{-1}{2}\right) \langle 1, 1 \rangle = \left(\frac{-1}{2}\right) \langle 1, 1 \rangle$$

$$\vec{v} \cdot \vec{v} = -3 + 2 = -1$$
 $\vec{v} \cdot \vec{v} = 1 + 1 = 2$

$$\vec{w}_{2}$$
-orthoria = $\vec{u} - \vec{w}_{1} = \langle -3, 2 \rangle - \langle -\frac{1}{2}, -\frac{1}{2} \rangle = \left[\langle -\frac{5}{2}, \frac{5}{2} \rangle \right]$

- **20.** (a.) Solve for the triangle with a=25, b=16, and $C=30^{\circ}$. Round all answers to one decimal place, if necessary.
- (b.) Find the area of the triangle. Give the exact answer.



$$c^{2} = 16^{2} + 25^{2} = 2(16)(25) \cos(30^{6})$$

$$= 256 + 625 - 800(\frac{12}{2}) = 881 - 800(\frac{12}{2})$$

$$\approx 188.18$$

$$50 c \approx \sqrt{188.18} \approx 13.7 = c$$

$$\sin B = \frac{6 \sin C}{c} = \frac{16 \sin (30^{\circ})}{13.7} = \frac{16(1/2)}{13.7} = \frac{8}{13.7} = 0.5839$$

$$56 \quad B = \sin^{-1}(0.5839) \approx 35.7^{\circ} = B$$
Then $A = 180^{\circ} - B - C = 180^{\circ} - 35.7^{\circ} - 30^{\circ} = 180^{\circ} - 65.7^{\circ} = 114.3^{\circ} = A$

21. Prove the Cauchy-Schwarz Inequality: $|\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}| \le ||\vec{\mathbf{u}}|| ||\vec{\mathbf{v}}||$.

Re call that
$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$
, so
$$|\vec{u} \cdot \vec{v}| = \|\vec{u}\| \|\vec{v}\| \cos \theta|$$
$$= \|\vec{u}\| \|\vec{v}\| |\cos \theta|$$
but $|\cos \theta| \le |\vec{u}| \|\vec{v}\| \le |\vec{u}\| \|\vec{v}\|$