Name:	Key	
	V	

Math 123: Trigonometry
Midterm Exam # 1

19 September 2013

Follow all instructions. All scratch work should be done on the paper provided. No calculators or other electronic devices. All you need is a pencil and your brain.

Part I: True or False

Read each statement carefully, then write T or F in the space provided.

1. Given a point (x, y) on the terminal side of an angle θ in standard position, then $\tan(\theta) = \frac{x}{y}$.

_____2. $\sin^2(\theta) + \cos^2(\theta) = 1$ for every angle θ .

<u>T</u>3. For an acute angle α in a right triangle, $\sec(\alpha)$ is equal to the length of the hypotenuse divided by the length of the adjacent side.

Two positive angles α and β are called complementary if their sum is equal to π ; that is, if $\alpha + \beta = \pi$.

_____5. $\frac{\pi}{6}$ radians is equal to 60°.

Part II: Fill in the Blank

Choose the appropriate word or phrase from the word bank, and write its corresponding letter in the space provided.

Word Bank:

A. unit circle	B. triangle	C. asymptotic
D. odd	E. even	F. periodic
G. complementary	H. supplementary	I. arc length
J. cyclical	K. coterminal	L. curvature

6. Two angles in standard position are called _____ if they have the same terminal side.

7. A function f is called _____ if f(-x) = -f(x) for all x in the domain of f.

8. A function f is called _____ if there is a number c such that f(x+c) = f(x) for all x in the domain of f.

A 9. $x^2 + y^2 = 1$ is the equation of the _____.

<u>T</u> 10. Let θ be an angle in standard position, and $x^2 + y^2 = r^2$ a circle centered at the origin. The _____, s, of the curve subtending the angle θ is given by the equation $s = r\theta$.

Part III: Multiple Choice

Write the letter corresponding to the appropriate answer in the space provided.

- - **A.** $\frac{\pi}{3}$; $\frac{-\pi}{3}$
 - C. $\frac{10\pi}{3}$; $\frac{2\pi}{3}$
- B. $\frac{10\pi}{3}$; $\frac{-2\pi}{3}$
- D. $\frac{2\pi}{3}$; $\frac{-10\pi}{3}$

- __A__12. Convert 75° to radians.
 - A. $\frac{15\pi}{36}$

B. $\frac{17\pi}{36}$

C. $\frac{7\pi}{5}$

- **D.** $\frac{3\pi}{4}$
- ______13. Find the value of the trig function: $\cot(\frac{-\pi}{6})$.
 - **A.** $\sqrt{3}$

B. $-\frac{\sqrt{3}}{3}$

C. 1

- D. $-\sqrt{3}$

A.
$$\frac{3}{4}$$

B.
$$-\frac{4}{5}$$

C.
$$-\frac{3}{4}$$

D.
$$\frac{4}{3}$$

_____15. Let $\theta = \frac{3\pi}{4}$. Find its complement θ_c and supplement θ_s , if they exist.

A.
$$\theta_c = \frac{\pi}{2}$$
; $\theta_s = \pi$

$$\mathbf{B.}\ \theta_c = -\frac{\pi}{4};\ \theta_s = \frac{\pi}{4}$$

C.
$$\theta_c = -\frac{\pi}{4}$$
; $\theta_s = \text{DNE}$

D.
$$\theta_c = \text{DNE}; \ \theta_s = \frac{\pi}{4}$$

16. Given that
$$\sin(\theta) = \frac{11}{13}$$
, what is $\sin(\pi - \theta)$?

A.
$$\frac{13}{11}$$

B.
$$\frac{11}{13}$$

$$C_{\bullet} = \frac{11}{13}$$

D.
$$\frac{4\sqrt{3}}{13}$$

A.
$$-65^{\circ}$$

$$\mathbf{B.}~60^{\circ}$$

C.
$$-45^{\circ}$$

D.
$$45^{\circ}$$

_____18. Explain how the graph of the function $y = 2 + \sin(x - \frac{\pi}{2})$ differs from the graph of $y = \sin(x)$.

A. down
$$\frac{\pi}{2}$$
; right 2

B. up 2; left
$$\frac{\pi}{2}$$

C. up 2; right
$$\frac{\pi}{2}$$

D. down 2; left
$$\frac{\pi}{2}$$

Part IV: Short Answer

Show enough work. Clearly mark your final answers. Partial credit given when deserved.

19. Given that θ is in quadrant II and its terminal side coincides with the line y = -4x, find the values of all 6 trig functions.

Pt:
$$(x,y) = (-1.4)$$

 $r = \sqrt{1^2 + 4^2} = \sqrt{17}$

$$\cos\theta = \frac{1}{\sqrt{n}} \qquad \sec\theta = -\sqrt{n}$$

$$\sin\theta = \frac{4}{\sqrt{n}} \qquad \csc\theta = \frac{\sqrt{n}}{4}$$

$$\tan\theta = -4 \qquad \cot\theta = \frac{1}{4}$$

20. Let (-15, -8) be a point on the terminal side of an angle θ in standard position. Find the values of all 6 trig functions at θ . [Hint: $17^2 = 289$.]

$$r = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$$

$$\cos \theta = \frac{-15}{17} \qquad \text{Sec } \theta = \frac{-17}{15}$$

$$\sin \theta = \frac{-8}{17} \qquad \text{Csc} \theta = \frac{-17}{8}$$

$$\tan \theta = \frac{8}{15} \qquad \cot \theta = \frac{15}{8}$$

Determine the (a) frequency, (b) period, and (c) amplitude of the curve

$$y = -2\cos\left(\pi x - \frac{\pi}{2}\right) + 1. = -2\cos\left(\pi\left(x - \frac{1}{2}\right)\right) + 1$$

(d) How much is the graph shifted horizontally, and in which direction?

b)
$$p = \frac{2\pi}{b} = \frac{2\pi}{\pi} = 2$$

c)
$$\alpha = |-2| = 2$$

b)
$$p = \frac{2\pi}{b} = \frac{2\pi}{\pi} = 2$$
c)
$$a = |-2| = 2$$
d) Shift right by ½ unit