Geometry of Horizontal Bundles and Connections

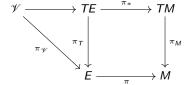
Justin M. Ryan

Wichita State University
Department of Mathematics, Statistics, and Physics

23 April 2014

The Vertical Bundle

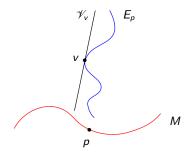
- Let $\pi: E \rightarrow M$ be a smooth fiber bundle.
- The vertical bundle $\pi_{\mathscr{V}}:\mathscr{V} \twoheadrightarrow E$ over E is the kernel of the induced tangent map $\pi_*:TE \twoheadrightarrow TM$, $\mathscr{V}:=\ker \pi_*$. It is a (vector) subbundle of the tangent bundle $\pi_T:TE \twoheadrightarrow E$.



• The vertical bundle \mathscr{V} is natural: there is only one.

The Vertical Bundle

• Over any point $v \in E$, the vertical fiber \mathscr{V}_v consists of all of the vectors in $T_v E$ that are tangent to the fiber E_p of E containing v.



• Therefore $\mathscr{V}_{v} \cong T_{v}F$, where F is the model fiber of $\pi : E \twoheadrightarrow M$.

Horizontal Bundles

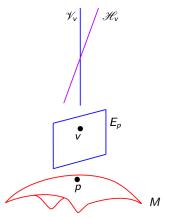
• A horizontal bundle on $\pi: E \twoheadrightarrow M$ is a (vector) subbundle $\mathscr H$ of the tangent bundle $\pi_T: TE \twoheadrightarrow E$ that is complementary to the vertical bundle $\mathscr V$, so that

$$TE = \mathscr{H} \oplus \mathscr{V}.$$

• Horizontal bundles are not natural in general; hence the plurality.

Horizontal Bundles

 In each tangent space T_νE, an admissible horizontal space ℋ_ν is an n-plane that is complementary to the vertical space Ψ_ν in that fiber.



WICHITA STATE UNIVERSITY

Horizontal Bundles

A horizontal bundle is completely determined by any one of the following:

- A section Γ of the horizontal Grassmann bundle $G_H(TE) \twoheadrightarrow E$.
- A section Γ of the first jet prolongation $J^1E \twoheadrightarrow E$ of E.
- A projection $\mathcal{V}: TE \twoheadrightarrow \mathcal{V}$, whence $\mathscr{H}:= \ker \mathcal{V}$.
- A projection $\mathcal{H}: TE \to TE$ satisfying $\ker \mathcal{H} = \mathcal{V}$, whence $\mathscr{H}:= \operatorname{im} \mathcal{H}$.

Pullback Bundles

• If $f: N \to M$ is a smooth map of manifolds and $\pi: E \to M$ is a fiber bundle over M, then the *pullback bundle* $f^*\pi: f^*E \to M$ has fibers

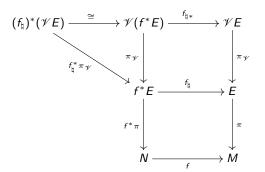
$$(f^*\pi)^{-1}(p) \cong \pi^{-1}(f(p))$$

over N, and the following diagram commutes.

$$\begin{array}{cccc}
f^*E & \xrightarrow{f_{|q}} & E \\
f^*\pi & & \downarrow & \\
N & \xrightarrow{f} & M
\end{array}$$

Pullback Bundles

• Pullback is a functor: it preserves the vertical bundle.

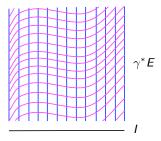


- Let $\pi: E woheadrightarrow M$ be a fiber bundle with horizontal bundle $\mathscr{H} \leq TE$, and let $\gamma: I = [0,1] \to M$ be a path in M with $\gamma(0) = p$ and $\gamma(1) = q$.
- The vertical projection $\mathcal V$ associated to $\mathscr H$ pulls back to a vertical projection on the pullback bundle $\gamma^*E \twoheadrightarrow I$.

$$\widetilde{\mathcal{V}}: T(\gamma^*E) \twoheadrightarrow \mathscr{V}(\gamma^*E): v \mapsto \gamma_{\natural}^* \mathcal{V}(\gamma_{\natural *} v).$$

• $\widetilde{\mathscr{H}}:=\ker\widetilde{\mathscr{V}}$ is a 1-dimensional subbundle of $T(\gamma^*E)$.

• Since $\mathscr H$ is a line bundle, it is integrable. Its integral curves foliate the total space γ^*E .



• We call this foliation \mathcal{P}_{γ} , and denote the unique leaf emanating from $v \in E_{P}$ by $\mathcal{P}_{\gamma}v$.

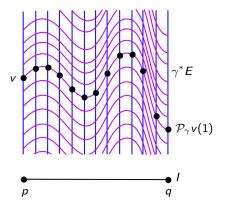
WICHITA STATE UNIVERSITY

• If every leaf of \mathcal{P}_{γ} meets every fiber of γ^*E , we say that γ has horizontal lifts. In this case, \mathcal{P}_{γ} determines a diffeomorphism between the fibers over γ .

$$\mathcal{P}_{\gamma}(t): E_{p} \rightarrow E_{\gamma(t)}: v \mapsto \mathcal{P}_{\gamma}v(t)$$

- In particular, the map $v \mapsto \mathcal{P}_{\gamma}v(1)$ is a diffeomorphism between the fibers E_p and E_q over the points which γ "connects" in the base.
- The map(s) \mathcal{P}_{γ} is called parallel transport along γ .

• Parallel transport along a path γ , with initial value $\overline{\gamma}(0) = v$.



WICHITA STATE UNIVERSITY

- If every path γ in M has horizontal lifts, then we say that $\mathscr H$ has horizontal path lifting, or HPL.
- If *H* has HPL, then the parallel transport it induces can be used to connect the fibers over any two points in the same path component of *M*.
- An Ehresmann connection, or simply a connection, is defined to be a horizontal bundle with HPL.

A Natural Question

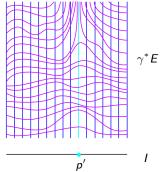
- Ehresmann recognized that HPL is a nontrivial property if the fibers of E
 are not compact. This is evidenced by his inclusion of HPL in his
 definition of a connection.
- This begs the natural question:

Question

Which horizontal bundles actually determine connections on *F*?

The Problem

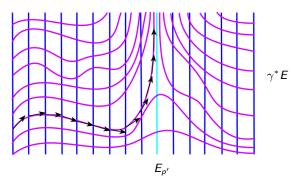
- To answer this fundamental question, one must first understand what could possibly go wrong.
- ullet The problem is that the leaves of the horizontal foliation along a given curve may become asymptotic to a fiber of $\gamma^* E$, and "run off to infinity."



WICHITA STATE UNIVERSITY

The Problem

• Looking more closely at this foliation, we see that the tangent vectors along the "bad" leaves asymptotically approach vertical vectors along the fiber $E_{p'}$.



WICHITA STATE UNIVERSITY

The Solution

- To ensure that a horizontal bundle \mathscr{H} is a connection, we must require that the velocity fields along the leaves of \mathcal{P}_{γ} be bounded away from the vertical space for every path γ .
- ullet This is achieved by demanding that the horizontal bundle ${\mathscr H}$ is uniformly vertically bounded:

Definition

A horizontal bundle \mathscr{H} is uniformly vertically bounded, or UVB, if and only if the horizontal spaces \mathscr{H}_{v} are bounded away from the vertical spaces \mathscr{V}_{v} , uniformly along the fibers of E.

Uniform Vertical Boundedness

- For this to be useful, one needs a way to measure the distance between ${\mathscr H}$ and ${\mathscr V}$ along a fiber of E.
- Wong (1967) used a collection of principal angles to study the geometry of Grassmann manifolds.
- Parker (2011) noticed that since a horizontal bundle is a section of a special Grassmann bundle, these angles could be used to compare a horizontal bundle to the vertical bundle.
- He then used these Wong angles to prove that HPL is equivalent to UVB when E=TM.

HPL if and only if UVB

 The main result of my dissertation is the extension of Parker's theorem to the general fiber bundle case.

Theorem

Let $\pi: E \twoheadrightarrow M$ be a smooth fiber bundle. A horizontal bundle $\mathscr H$ on E is a connection if and only if $\mathscr H$ is UVB.

Wong Angles

• Let U_{α} be a trivializing chart at $p \in M$, so that $E_{\alpha} = U_{\alpha} \times F$. The tangent bundle TE_{α} decomposes as

$$TE_{\alpha} = TU_{\alpha} \times TF$$

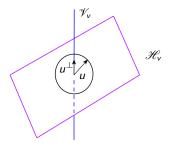
= $\mathscr{B}_{\alpha} \times \mathscr{V}_{\alpha}$.

- Let g_F be a Riemannian metric on F and g_α the Euclidean metric on U_α . Then the product metric $g=g_\alpha\times g_F$ makes $E_\alpha=U_\alpha\times F$ a Riemannian manifold.
- This makes $TE_{\alpha} = \mathscr{B}_{\alpha} \oplus \mathscr{V}_{\alpha}$ an orthogonal sum with respect to g.

Wong Angles

- Let $u \in \mathscr{H}_v$ and let $u^{\perp} \in \mathscr{V}_v$ be its orthogonal complement.
- ullet The Wong angles between \mathscr{H}_{v} and \mathscr{V}_{v} are the non-zero stationary values of

$$heta_{v}(u) := \cos^{-1}\left(rac{|g_{v}(u,u^{\perp})|}{\|u\|\|u^{\perp}\|}
ight).$$



WICHITA STATE UNIVERSITY

Comparing Wong Angles

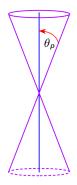
- The Levi-Civita connection for g induces parallel transport \mathcal{P}^g along each fiber E_p of E_α .
- Let $\delta: I \to E_p$ be a path in E_p with $\delta(0) = w$ and $\delta(1) = v$. To compare the Wong angles in $T_w E$ and $T_v E$, transport \mathscr{H}_w and \mathscr{V}_w to sit over v.
- Define $\theta_{\nu}(w,\delta)$ to be the smallest Wong angle between the n- and k-planes $\mathcal{P}^{g}_{\delta}(\mathscr{H}_{w})$ and $\mathcal{P}^{g}_{\delta}(\mathscr{V}_{w})$ in $T_{\nu}E$, as measured by the inner product g_{ν} .
- The Wong angles along the fiber E_p are bounded below by

$$\theta_p := \inf_{w \in E_p} \left\{ \inf_{\delta: w \mapsto v} \theta_v(w, \delta) \right\} \ge 0.$$

UVB via Wong Angles

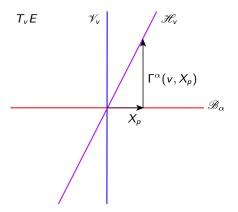
• A horizontal bundle is UVB if and only if the Wong angles θ_p are bounded away from zero along every fiber E_p , $p \in M$.

$$\theta_p \ge \varepsilon_p > 0, \quad p \in M.$$



Local Christoffel Forms

• In every fiber $T_v E$, the horizontal spaces have components in both the basal and vertical directions.



WICHITA STATE UNIVERSITY

Local Christoffel Forms

• The local Christoffel forms for E_{α} are maps

$$\Gamma^{\alpha}: \Gamma E_{\alpha} \times \mathfrak{X}_{\alpha} \to \Gamma \mathscr{V}_{\alpha}$$

defined by

$$\Gamma^{\alpha}(\sigma,X)(p) = -\mathcal{V}_{\sigma_p}(p,\sigma_p,X_p,0).$$

• Fixing $\sigma \in \Gamma E_{\alpha}$ makes $\Gamma^{\alpha}(\sigma, \cdot) =: \Gamma^{\alpha}_{\sigma}$ a \mathscr{V} -valued 1-form on U_{α} , along σ .

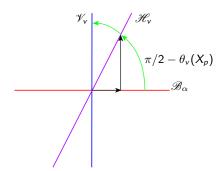
$$\Gamma_{\sigma}^{\alpha}:\mathfrak{X}_{\alpha}\to\mathscr{V}_{\sigma}$$

LCFs and Wong Angles

The local Christoffel forms are bounded in terms of the Wong angles.

$$\|\Gamma^{\alpha}\| \leq \tan(\pi/2 - \theta_{p})$$

along the fiber E_p .



UVB via Christoffel Forms

- This implies that $\mathscr H$ is UVB if and only if the local Christoffel forms are bounded above, along every fiber of E.
- ullet In particular, along any path $\gamma:I o U_lpha$, the horizontal spaces are given by

$$\mathscr{H}_{\mathsf{v}} = (\gamma, \mathsf{c}, \dot{\gamma}, \Gamma^{\alpha}(\mathsf{c}, \dot{\gamma})).$$

• This yields a differential equation for c along γ ,

$$c'(t) = \Gamma^{\alpha}(c(t), \dot{\gamma}(t)).$$

HPL if and only if UVB

- Applying the standard FEUT (and friends), we obtain:
- If Γ^{α} is bounded, then the differential equation $c' = \Gamma^{\alpha}(c, \dot{\gamma})$ has a unique solution for every initial value c(0) = v, and the solution extends over the entire domain of γ .
- Since Γ^{α} is bounded along an arbitrary path γ if and only if $\mathscr H$ is UVB, then $\mathscr H$ has HPL if and only if it is UVB.
- Thus UVB is exactly what is needed to ensure that a horizontal bundle connects the fibers of E via parallel transport, and hence is a connection.

Ancillary Results

 The local Christoffel forms can be used to characterize many geometric properties of horizontal bundles, and illustrate the differences between horizontal bundles and connections

Covariant Derivatives

• If E is a vector bundle, then any horizontal bundle defines a covariant derivative, $\nabla: \mathfrak{X} \times \Gamma E \to \Gamma E$.

$$\nabla_{\!X}\sigma:=\mathfrak{K}\circ\mathcal{V}(\sigma_*X),$$

where $\mathfrak{K}: \mathscr{V} \to E$ is fiber-isomorphism.

ullet Over a trivializing chart U_{lpha} , the covariant derivative is given by

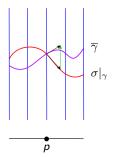
$$\nabla_X \sigma = X^j \frac{\partial \sigma^i}{\partial x^j} \xi_i - (\mathfrak{K} \Gamma_\sigma^\alpha X)^i \xi_i,$$

where ξ is a constant frame field for the fibers of E_{α} .

 Therefore the local Christoffel forms are just lifted versions of the classical Christoffel symbols.

Covariant Derivatives

- Suppose $p \in U_{\alpha}$ and let γ be the integral curve of X passing through p. Let $\overline{\gamma}$ be the horizontal lift of γ with initial value $\overline{\gamma}(p) = \sigma(p)$.
- The covariant derivative measures the failure of σ to be horizontal along the integral curves of X. Thus $(\nabla_X \sigma)(p) = \mathcal{K}(\dot{\gamma}(p) \dot{\sigma}|_{\gamma}(p))$.



Induced Quasisprays

- Now let \mathcal{H} be a horizontal bundle on $TM \to M$.
- \mathcal{H} induces a quasispray (or semi-spray) on M,

$$Q(v) := \pi_*|_{\mathscr{H}_v}^{-1}(v).$$

We write $\mathcal{H} \vdash Q$ to denote this relationship.

• This can be written locally in terms of the Christoffel forms,

$$Q(v) = (p, v, v, \Gamma^{\alpha}(v, v)).$$

- Many horizontal bundles induce the same quasispray. In fact, the space of horizontal bundles fibers over the space of quasisprays.
- Del Riego and Parker defined the torsion of a horizontal bundle to be that which varies over these fibers.
- The torsion-free horizontal bundles are the ones which satisfy

$$\Gamma^{\alpha}(v,X) = \Gamma^{\alpha}(X,v)$$

for all $X \in \mathfrak{X}$ and all $v \in TM$.

Understanding Torsion?

- Thus, the torsion-free horizontal bundles are the ones whose local Christoffel forms are all symmetric.
- Another way to say this is that the torsion-free horizontal bundles respect the π_* -structure on TTM: they induce the same horizontal bundle over both structures π_T and π_* .
- Thus torsion measures the failure of \mathcal{H} to be invariant under the change of bundle structures from π_T to π_* :

$$\mathfrak{I}\mathscr{H}=\mathscr{H}.$$

- A path γ: I → M is a geodesic of ℋ if and only if its velocity lift is horizontal (or ℋ-parallel): γ = ¬̄.
- This can be written in terms of:
 - the covariant derivative: A path γ is an \mathscr{H} -geodesic if and only if $\nabla_{\dot{\gamma}}\dot{\gamma}=0$;
 - the quasispray Q → ℋ:
 A path γ is an ℋ-geodesic if and only if ÿ = Q(ỳ);
 - the local Christoffel forms: A path $\gamma:I\to U_{\alpha}$ is a local \mathscr{H} -geodesic if and only if $\ddot{\gamma}=\Gamma^{\alpha}(\dot{\gamma},\dot{\gamma})$.

Totally Geodesic Submanifolds

- A submanifold $\iota: N \hookrightarrow M$ is *totally geodesic* if for every geodesic $\gamma \subset N$, $\iota(\gamma)$ "=" γ is a geodesic in M.
- Geodesics satisfy $\ddot{\gamma} = Q(\gamma)$, and Q is preserved under the inclusion map ι : $\iota_{**}Q = Q(\iota_*)$, but $\iota_* : TN \hookrightarrow TM$ is the inclusion of the tangent spaces.
- Therefore, a submanifold $\iota: N \twoheadrightarrow M$ is totally geodesic if and only if $Q(TN) = TTN \leq \mathcal{H}$.
- This makes perfect sense, as totally geodesic submanifolds are those which appear flat to observers in M.

Quotation

from A Sand County Almanac

To those devoid of imagination a blank place on the map is a useless waste; to others, the most valuable part.

- Aldo Leopold

Thank you!

