Following: Walsh, "Metrics of psc and Morse Functions" Let X be a smooth closed n-mild. Later: n ≥ 5, X simply conn. Riem (X) = space of Riemannian metrics on X. The topology on this space is induced by the Ck-norm on Riemannian metrics: Let g be any metric in Riem (X), [Recall that Riem (X)] is nonempty for all X.) and ∇ the W-connection for g. Let $\Pi \nabla g \Pi$ be the standard Enclidean, norm on ∇g . Define $\Pi g \Pi_K = \max_{i \le K} \sup_{X} \| \nabla^i g \|$. The topology on Riem (X) does not depend on choice of g. We shall (usually) assume that k=2. [Notice that ∇^2 is "like a Laplacian".] Let $Riem^+(X) = \{q \in Riem(X) \mid 5q > 0\}$ be the space of psc metrics on X. $Riem^+(X)$ is open in Riem(X). whether or not a given X admits a psz metric has been studied extensively. [we'll return to this later in the seminar.] Thus, we shall assume Riem (X) \$ 0. Ex. $Riem^{+}(X)$ is a convex space. i.e., $g_0, g_1 \in Riem^{+}(X) \Rightarrow sg_0 + (1-s)g_1 \in Riem^{+}(X) \forall s \in [0,1]$. The topology of Riem (X) is not well-under stood. We shall need two equivalence relations on X: Defn. Two metrics go and go are said to be isotopic if they lie in the same path component of Riemt (X). A path g_s , se I_1 w/ $g_s(0) = g_0$ and $g_s(1) = g_0$ is said to be an isotopy. Defn. If \exists a psc metric \overline{g} on the cylinder $X \times I$ 5.t. for some $\delta > 0$, $\overline{g} |_{X \times [0, \delta]} = g_0 + ds^2$ and $\overline{g} |_{X \times [1-\delta, 1)} = g_1 \times ds^2$, then g_0 and g_1 are said to be concordant. The metric \overline{g} is known as a concordance. ## Concordance: 21 × d52 9 go x ds2 Lemma. Let g_r be a smooth p-th in $Riem^+(X)$, $r \in I$. \exists a constant $0 < \Lambda \le 1$ s.t. \forall smooth $f: \mathbb{R} \to [0,1]$ w/ $||f||, ||f|| \le \Lambda$, the metric $f_f(x) + ds^2$ on $X \times \mathbb{R}$ has $p \le C$. Corollary. Metrics which are isotopic are also concordant. Question: When are concordant metrics isotopic? one difficulty in auswering this question is that in general a concordance can be extremely complicated. Niz. p.7 of Marks Husis. Thus, we will not be able to answer this question in full generality | | ·
· | · · | | | |--|--------|-----|---|--| 4 | | | | | | 4 | | | | | | 4 | | | | | | 4 | | | | | | ¥ | | | | | | ₹ | | | | | | 4 | | | | | | 4 | | | | | | 4 | | | | | | ¥ | | | | | | 7 | | | | | | 4 | | | | | | 4 | | | | | | 4 | | | | | | * | | | | | | 7 | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | | | * | | | | | | | | Consequently, we will not approach this problem at the level of arbitrary concordance. Instead, we will restrict our attention to concordances which are constructed by a particular application of the surgery technique of Gromov and Lawson. Such concordances will be called *Gromov-Lawson concordances*. Before discussing the relationship between surgery and concordance, it is worth recalling how the surgery technique alters a psc-metric. Figure I.2: The concordance \bar{g} on $S^n \times I$, formed by taking a connected sum of metrics \bar{h} and g. ## I.2.3 Surgery and positive scalar curvature We begin by stating the Surgery Theorem of Gromov-Lawson and Schoen-Yau. Surgery Theorem.([14], [38]) Suppose X admits a psc-metric and X' is a manifold which is obtained from X by surgery in codimension ≥ 3 . Then X' admits a psc-metric also. In their proof, Gromov and Lawson show that a psc-metric g on X can be replaced with a psc-metric g_{std} which is standard in a tubular neighbourhood of the embedded surgery sphere. More precisely, let ds_n^2 denote the standard round metric on the sphere S^n . We denote by $g_{tor}^n(\delta)$, the metric on the disk D^n which, near ∂D^n , is the Riemannian cylinder $\delta^2 ds_{n-1}^2 + dr^2$ and which near the centre of D^n is the round metric $\delta^2 ds_n^2$. The metric $g_{tor}^n(\delta)$ is known as a torpedo metric, see section II.2 for a detailed construction. For sufficiently small $\delta > 0$ and provided $n \geq 3$, the scalar curvature of this metric can be bounded below by an arbitrarily large positive constant. Now, let (X,g) be a smooth n-dimensional Riemannian manifold of positive scalar curvature and let S^p denote an embedded p-sphere in X with trivial normal bundle and with p+q+1=n and $q\geq 2$.