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1 The Fibonacci and Lucas Numbers

In this note, we will develop a collection of sequences each of which is a subse-
quence of the Fibonacci sequence. Each of these sequences has the property
that the quotient of consecutive terms converges to a power of the golden
ratio. We will begin with a review of the Fibonacci sequence and some of its
properties as well as examine a the sequence that yields the Lucas numbers.
The sequences we will define involve Fibonacci and Lucas numbers in their
definitions.

The nth term of the Fibonacci sequence will be denoted by Fn. The
sequence itself is given by

Fn+1 = Fn + Fn−1, with F0 = F1 = 1.

The first few terms of the Fibonacci sequence are then

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, . . . .

If we compute the quotients of consecutive terms, we get
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The decimal representation of these quotients appear to hover around the
value 1.61. The quotient 4181

2584
= 1.618034056.

As it turns out, among the many results that have been discovered about
the Fibonacci sequence over the years is that
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lim
n→∞

Fn+1

Fn

=
1 +
√

5

2
= ϕ, the golden ratio.

This limit can be obtained using the result called the Binet formula 1

Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 , n = 0, 1, 2, . . . .

If we let ϕ =
1 +
√

5

2
and ϕ =

1−
√

5

2
, we can then write

Fn =
1√
5

[
ϕn+1 − ϕn+1

]
, n = 0, 1, 2, . . . .

The French mathematician Franois Édouard Anatole Lucas (1842–1891) made
a detailed study of the Fibonacci sequence and related sequences. A sequence
of the form fn+1 = fn + fn−1 where f0 and f1 are given is referred to as a
Fibonacci-type sequence. Lucas came up with his own Fibonacci-type se-
quence given by

Ln+1 = Ln + Ln−1, with L0 = 2 and L1 = 1.

This yields the sequence of numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, . . . .

One might reasonably ask why start with 2, 1 instead of 1, 3. If the sequence
starts with 2, 1, then the de Moivre-Binet formula is very nice

Ln =

(
1 +
√

5

2

)n

+

(
1−
√

5

2

)n

= ϕn + ϕn, n = 0, 1, 2, . . . .

In addition one can define L−k = (−1)kLk, for k = 1, 2, 3, . . . if the sequence
Lk starts 2, 1.

1There appears to be some controversy as to the credit given for this formula. Most refer
to it as the Binet formula in honor of J. P. M. Binet (1786-1856) a French mathematician
who published the formula in 1843. However, some say Abraham de Moivre (1667-1754)
obtained the result one hundred years earlier in 1730, so we will call it the de Moivre-Binet
formula.
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2 Subsequences of the Fibonacci Sequence

We are going to use the Fibonacci numbers and the Lucas numbers to define
a collection of sequences as follows

xk,n = Lkxk,n−1 +(−1)k−1xk,n−2 with xk,0 = F0 and xk,1 = Fk, k ≥ 1, n ≥ 2.

The sequence

x1,n = L1x1,n−1 + (−1)0x1,n−1 = x1,n−1 + x1,n−2 with x1,0 = 1, x1,1 = 1,

is merely the Fibonacci sequence. The following table gives nineteen terms
for the first four of our sequences.

n x1,n x2,n x3,n x4,n

0 1 1 1 1
1 1 2 3 5
2 2 5 13 34
3 3 13 55 233
4 5 34 233 1597
5 8 89 987 10946
6 13 233 4181 75025
7 21 610 17711 514229
8 34 1597 75025 3524578
9 55 4181 317811 24157817

10 89 10946 1346269 165580141
11 144 28657 5702887 1134903170
12 233 75025 24157817 7778742049
13 377 196418 102334155 53316291173
14 610 514229 433494437 365435296162
15 987 1346269 1836311903 2504730781961
16 1597 3524578 7778742049 17167680177565
17 2584 9227465 32951280099 117669030460994
18 4181 24157817 139583862445 806515533049393

In this table, the second column is the Fibonacci sequence, the third column
appears to be every other term of the Fibonacci sequence, the fourth column
appears to be every third term of the Fibonacci sequence and the fifth col-
umn appears to have every fourth term of the Fibonacci sequence. Moreover,
x2,18

x2,17

is very close to the square of the golden ratio,
x3,18

x3,17

is very close to the

3



cube of the golden ratio, and
x4,18

x4,17

is very close to the fourth power of the

golden ratio.

We will establish that what we see from the table is in fact true. That is,
xk,n generates every kth term of the Fibonacci sequence and that as n goes
to ∞

xk,n+1

xk,n

→ ϕk for k = 1, 2, 3, . . . .

We begin with some lemmas.

Lemma 2.1. L2
k + (−1)k−14 = 5F 2

k−1.

Proof. In the following, we use the fact that ϕϕ = −1.

L2
k + (−1)k−1 = (ϕk + ϕk)2 + (−1)k−14

= ϕ2k + 2ϕkϕk + ϕ2k + (−1)k−14

= ϕ2k + 2(−1)k + ϕ2k + (−1)k−14

= ϕ2k − 2(−1)k + ϕ2k

= (ϕk − ϕk)2 = 5F 2
k−1

Lemma 2.2. Lk +
√

5Fk−1 = 2ϕk and Lk −
√

5Fk−1 = 2ϕk

Proof. This is just a matter of writing out what the terms are.

Lk +
√

5Fk−1 = ϕk + ϕk + ϕk − ϕk = 2ϕk

Lk −
√

5Fk−1 = ϕk + ϕk − ϕk + ϕk = 2ϕk

Lemma 2.3.
Fk − ϕk

Fk−1

= ϕ.

Proof. We begin by calculating ϕFk−1 + ϕk. Again we will use the fact
that ϕϕ = −1.
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ϕFk−1 + ϕk = ϕ

[
1√
5

(ϕk − ϕk)

]
+ ϕk

=
1√
5
ϕk+1 − 1√

5
ϕϕk + ϕk

=
1√
5
ϕk+1 +

1√
5
ϕk−1 + ϕk

=
1√
5
ϕk+1 +

1√
5
ϕk−1(1 +

√
5ϕ)

=
1√
5
ϕk+1 +

1√
5
ϕk−1(−ϕ2)

=
1√
5

(ϕk+1 − ϕk+1)

= Fk.

Therefore, solving for ϕ we have
Fk − ϕk

Fk−1

= ϕ.

We are now ready to prove the major theorem of this note.

Theorem 2.1. xk,n = Fnk.

Proof. For the recurrence relation xk,n = Lkxk,n−1 + (−1)k−1xk,n−2 with
xk,0 = 1, xk,1 + Fk, we have the auxiliary equation

r2 − Lkr − (−1)k−1 = 0

and

r =
Lk ±

√
L2

k + (−1)k−14

2
.

From Lemma 2.1, this becomes r =
Lk ±

√
5Fk−1

2
. Then an application of

Lemma 2.2, yields
r1 = ϕk and r2 = ϕk.

Hence
xk,n = A(ϕk)n + B(ϕk)n with xk,0 = 1, xk,1 = Fk.
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Using the initial conditions that xk,0 = 1 and xk,1 = Fk we obtain,

A + B = 1 (1)

ϕkA + ϕkB = Fk (2)

Multiplying equation (1) by ϕk and subtracting from equation (2) gives

(ϕk − ϕk)A = Fk − ϕK

A =
Fk − ϕk

ϕk − ϕk
=

Fk − ϕk

√
5Fk−1

An application of Lemma 2.3 reduces this to A =
1√
5
ϕ and then B = − 1√

5
ϕ.

Thus,

xk,n =
1√
5
ϕ(ϕk)n − 1√

5
ϕ(ϕk)n

=
1√
5

(ϕnk+1 − ϕnk+1)

= Fnk.

Theorem 2.2. lim
n→∞

xk,n+1

xk,n

= ϕk.

Proof. We note that since ϕ > 1 and ϕ < 1, it follows that
ϕ

ϕ
< 1.

xk,n+1

xk,n

=
F(n+1)k

Fnk

=
ϕ(n+1)k+1 − ϕ(n+1)k+1

ϕnk+1 − ϕnk+1

=

ϕ(n+1)k+1

ϕnk+1 − ϕ(n+1)k+1

ϕnk+1

1−
(

ϕ
ϕ

)nk+1

=
ϕk − ϕ

(
ϕ
ϕ

)nk+1

1−
(

ϕ
ϕ

)nk+1

Therefore,

lim
n→∞

xk,n+1

xk,n

= lim
n→∞

ϕk − ϕ
(

ϕ
ϕ

)nk+1

1−
(

ϕ
ϕ

)nk+1
= ϕk
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3 An Interesting Identity

In searching for a closed form formula for xk,n two different methods of solving
the recurrence relation were used and one ended up with a more complex
closed form. However, putting the two solutions together has resulted in
an interesting identity. The following theorem gives an alternate method of
solving a recurrence relation.

Theorem 3.1. Let xn+1 = axn + bxn−1 with x0 and x1 given. If r1 and r2

are distinct roots 2 of r2 − ar − b = 0, then

xn =
(x1 − r1x0)r

n
2 − (x1 − r2x0)r

n
1

r2 − r1

(3)

Proof. If r1 and r2 are the distinct roots of r2−ar−b = 0, then a = r1+r2

and b = −r1r2. We can then write

xn+1 − axn = bxn−1

as
xn+1 − (r1 + r2)xn = −r1r2xn−1.

Thus
xn+1 − r1xn = r2(xn − r1xn−1) (4)

and
xn+1 − r2xn = r1(xn − r2xn−1) (5)

Applying the recurrence relation (4) to itself yields

xn+1 − r1xn = rn
2 (x1 − r1x0) (6)

In a similar manner (5) gives

xn+1 − r2xn = rn
1 (x1 − r2x0) (7)

Now subtract (6) from (7) to obtain

(r1 − r2)xn = rn
1 (x1 − r2x0)− rn

2 (x1 − r1x0)

2We only need the result for distinct roots.
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which, in turn, yields

xn =
(x1 − r2x0)r

n
1 − (x1 − r1x0)r

n
2

r1 − r2

.

If we apply this lemma to

xk,n = Lkxk,n−1 + (−1)k−1xk,n−2 with xk,0 = 1, xk,1 = Fk,

we have, recalling that r1 = ϕk and r2 = ϕk,

xk,n =
(Fk − ϕk)ϕnk − (Fk − ϕk)ϕnk

ϕk − ϕk

=
Fkϕ

nk − ϕkϕnk − Fkϕ
nk + ϕkϕnk

√
5Fk−1

=
Fk(ϕnk − ϕnk)− ϕkϕk(ϕ(n−1)k − ϕ(n−1)k)√

5Fk−1

=

√
5FkFnk−1 − (−1)k

√
5F(n−1)k−1√

5Fk−1

=
FkFnk−1 + (−1)k−1F(n−1)k−1

Fk−1

However in Theorem 2.1 we found xk,n = Fnk. Therefore equating the two
forms for xk,n, we have

FnkFk−1 = FkFnk−1 + (−1)k−1F(n−1)k−1 with n ≥ 2, k ≥ 1.
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