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Abstract
In this paper we applied the contour integral method for the zeta function
associated with a differential operator to the Laplacian on a surface of
revolution. Using the WKB expansion, we calculated the residues and values
of the zeta function at several important points. The results agree with those
obtained from the heat kernel expansion. We also obtained a closed form
formula for the determinant of the Laplacian on such a surface.
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1. Introduction

Spectral functions, namely functions of the spectrum of, usually, second order differential
operators play an important role in mathematics and physics. The possibly most important
such spectral function is the zeta function which directly relates to topics such as analytic
torsion [40], the heat kernel [27, 43], Casimir energy [4, 5, 13, 20, 36], effective actions and
quantum tunneling [7, 11, 14–16, 21, 28, 42] and the study of critical metrics [10, 38, 39].
The relationship between the zeta function and all these topics is established by the fact that
very specific properties of the zeta function encode the information needed in these areas. For
example residues and values at specific points contain information about the short time heat
kernel asymptotics with all the geometric information it contains, the (finite part of its) value
at s = −1/2 relates to the Casimir energy, and its derivative at s = 0 is relevant in all the other
subjects mentioned above; see, e.g., [29]. It is therefore no surprise that an enormous effort is
made to understand spectral zeta functions as completely as possible.

The situation is particularly satisfying for the one-dimensional case where functional
determinants can be obtained in closed form as boundary values of a suitable initial value
problem [8, 9, 17, 22, 23, 26, 34]. A contour integral approach established in [31, 32] was
used to rederive this case and generalize it to arbitrary boundary conditions. This approach has
the advantage that it allows for the systematic study of higher dimensional configurations as
long as the Laplacian separates in a suitable fashion. Examples are Laplacians with spherically
symmetric potentials [18, 19] and Laplacians for spherical suspensions [24]. In those cases the
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analysis of the associated zeta function is based on explicitly known special functions, namely
Bessel functions and Legendre functions.

Another example, studied in the present paper, is the Laplacian on a compact surface of
revolution. These surfaces are geometrically interesting enough to exhibit many features that
appear in the study of spectral functions and their asymptotics, while at the same time the
rotational symmetry allows the explicit calculations that are necessary in order to understand
meromorphic extensions of the zeta function to regions outside of the domain of convergence.
The complication with this example is that no known special function emerges as a solution
to the relevant initial value problem because the function f whose graph is used to generate
the surface of revolution is kept fairly general. As a result, needed asymptotic behavior has to
be determined from scratch starting from an ordinary differential equation. The WKB method
is our method of choice [3, 35] and it allows us to obtain the values or residues of the zeta
function at several important points, in addition to the determinant of the Laplacian. The
relation between the values of the zeta function and the global geometrical properties of the
surface is revealed. Furthermore it is notable that the result for the determinant is a closed-form
formula.

The structure of the paper is as follows. In section 2we present the geometric preliminaries,
define the generalized zeta function, and reformulate it as a sum of contour integrals. The zeta
function is written as the sum of a one-dimensional term and a two-dimensional term, which
are calculated in section 3 and section 4 respectively. The values and residues of the zeta
function at several selected points are calculated along with the determinant of the Laplacian
in section 4. We conclude in section 5 with a comparison of our method and other approaches.

2. Zeta function for a surface of revolution

2.1. Laplacian on a surface of revolution

We consider the Laplacian on a surface of revolution with Dirichlet boundary values. Let
f ∈ C2(a, b) be a strictly positive function from [a, b] to R, and letM be the compact surface
with boundary that is generated by revolving the graph of f around the x-axis. With the metric
induced by the Euclidean metric ofR3, (M, g) becomes a Riemannian manifold. In the natural
coordinates (x, θ ), the metric is[

1+ f ′(x)2 0
0 f 2(x)

]
.

Recalling the formula for the Christoffel symbols in terms of the metric,

�k
i j = 1

2

2∑
l=1

gkl

(
∂gil

∂x j
+ ∂g jl

∂xi
− ∂gi j

∂xl

)
,

we have

�111 = f ′ f ′′

1+ f ′2 , �212 = �221 = f ′

f
, �122 = − f f ′

1+ f ′2 ,

and the others are zero. We then calculate that

�u = 1

1+ f ′2

[
∂2u

∂x2
+

(
f ′

f
− f ′ f ′′

1+ f ′2

)
∂u

∂x
+ 1+ f ′2

f 2
∂2u

∂θ2

]
. (1)

The eigenvalue equation is �u = −λu. The following facts are standard [25, 41]:

(1) The eigenvalues are real and positive; if labeled and ordered as 0 < λ1 � λ2 � . . ., then
λk → ∞.
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(2) For each λk, the corresponding eigenspace in L2(M) is finite-dimensional.
(3) The spectrum of M is discrete.

We remark here that zero is not an eigenvalue of the Laplacian if Dirichlet boundary
values are taken.

2.2. Generalized zeta function

Our spectral function for the Laplacian generalizes the well-known Riemann zeta function,

ζR(s) =
∞∑

k=1
k−s, (2)

which converges for �(s) > 1. For the Laplacian on a surface of revolution with Dirichlet
boundary condition, if the eigenvalues are labeled and ordered as 0 < λ1 � λ2 � . . ., the
generalized zeta function is defined to be

ζ (s) =
∑

λk∈Spec(�)

λ−s
k , (3)

for those values of s ∈ C for which this sum converges. Weyl’s asymptotic formula can be
used to determine the domain of convergence of equation (3) [12]. On a compact Riemannian
manifold M of dimension n,

λ
n
2
k ∼ 2nπ

n
2�

(
n
2 + 1)

Vol(M)
k, k → ∞.

From this we determine that the zeta function is defined for complex values of s having
�(s) > n/2, in our case �(s) > 1. However, just as for the Riemann zeta function, much
information of geometric and physical significance is contained in ζ (s) for complex values of
s outside of this region. ζ (s) has a simple pole at s = 1. The holomorphic continuation of ζ (s)
to�(s) < 1 turns out to have simple poles at s = 1

2 −n, n ∈ N. Here we obtain expressions for
the residues of ζ (s) at s = 1, 12 ,− 1

2 , and its value at s = 0, in terms of geometrical properties
of the surface. Furthermore we compute the determinant of the Laplacian using the relation
with the zeta function given by [16, 28, 40]

ln det� = −ζ ′(0). (4)

We obtain a formula for ζ ′(0) given entirely in terms of the function f whose graph generates
the surface of revolution.

2.3. Reformulation of the zeta function as a contour integral

A fundamental difficulty in studying generalized zeta functions is that the eigenvalues are not
known explicitly except for special cases. However, as described in [29, 30], the zeta function
can be reformulated as a contour integral, which is highly suitable to such investigations. Here
we adapt this method to the Laplacian on a surface of revolution.

The rotational symmetry of M suggests the use of separation of variables to describe
the eigenvalues of the Laplacian. The eigenfunctions of the Laplacian on the cross-section
S1, denoted by uk(θ ), k ∈ Z, are eikθ , with eigenvalue −k2. Let u(x, θ ) = φ(x)uk(θ ). By
equation (1), u is an eigenfunction of� onM with eigenvalue λ if and only if φ is a nontrivial
solution to

φ′′(x) +
(

f ′

f
− f ′ f ′′

1+ f ′2

)
φ′(x) +

(
λ − k2

f 2

)
(1+ f ′2)φ(x) = 0, (5)
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satisfying the boundary conditions

φ(a) = 0, φ(b) = 0.

Denote by φk(λ; x) the solution to the initial value problem consisting of the same differential
equation (5), but with initial conditions

φ(a) = 0, φ′(a) = 1. (6)

Then for each integer k, λ ∈ C is an eigenvalue if and only if φk(λ; b) = 0. For each fixed
integer k, order the eigenvalues and denote them by 0 < λk,1 � λk,2 � . . .. Since φk(λ; b),
regarded as a function of λ, vanishes at and only at λk,n, n ∈ Z

+, its canonical product
representation [1] is

φk(λ; b) = φk(0; b)

∞∏
n=1

(
1− λ

λk,n

)
.

The convergence of the infinite product is guaranteed by Weyl’s asymptotic formula. Let

Dk(λ) = φk(λ; b)

φk(0; b)
=

∞∏
n=1

(
1− λ

λk,n

)
.

By the residue theorem, we may express ζ (s) as the sum of contour integrals.

ζ (s) = 1

2π i

∫
�

λ−s dlnD0(λ)

dλ
dλ + 2

∞∑
k=1

1

2π i

∫
�

λ−s dlnDk(λ)

dλ
dλ, (7)

where � is any counterclockwise contour that encloses all the λk,n but not the origin. The
factor 2 in the second term above comes from the fact that λk,n = λ−k,n. Following [30]
(figure 3), the contour can be chosen to go around the negative axis, from −∞ to 0 above
the real axis, along which λ = eiπ y, and from 0 to −∞ below the real axis, along which
λ = e−iπ y. Using this contour, equation (7) is simplified to be

ζ (s) = ζ1(s) + ζ2(s), (8)

where

ζ1(s) = sinπs

π

∫ ∞

0
y−s dlnD0(−y)

dy
dy, (9)

ζ2(s) = 2
sinπs

π

∞∑
k=1

∫ ∞

0
y−s dlnDk(−y)

dy
dy. (10)

Note, that equation (10) should be understood in the sense that the analytical continuation of
the integral is constructed first and the summation of that result is performed afterwards.

Next, in section 3, we will use the WKB method to solve equation (5) with k = 0, and
compute important values of ζ1(s) and ζ ′

1(0). In section 4 we will adapt the method to the
series over k, and compute ζ2(s) along with ζ ′

2(0).

3. Zeta function and derivative with k = 0

ByWeyl’s asymptotic formula equation (9) converges for�s > 1
2 . To obtain the meromorphic

extension of ζ1(s) to �s < 1
2 , we apply the WKB method to determine the asymptotics of

φ0(−y; b); see for example [3, 35] for a discussion of the WKB method. First, we make the
change of variables y = z2 in the differential equation (5) with k = 0. It becomes

φ′′(x) +
(

f ′

f
− f ′ f ′′

1+ f ′2

)
φ′(x) − z2(1+ f ′2)φ(x) = 0. (11)
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Denote the coefficient of φ′(x) in equation (11) by u(x),

u(x) = f ′

f
− f ′ f ′′

1+ f ′2 .

Let

φ(x) = exp

(∫ x

a

[
S(z; σ ) − u(σ )

2

]
dσ

)
. (12)

Substituted into equation (11), the equation for S(z; x) is

S′(z; x) + S(z; x)2 = (1+ f ′2)z2 + u2

4
+ u′

2
,

where the prime indicates differentiation with respect to x. The solution can be written as
asymptotic expansions in z. It has two branches, namely,

S±(z; x) = ±s−1z + s0 ± s1
z

+ · · · = ±
(

s−1z + s1
z

+ · · ·
)

+
(

s0 + s2
z2

+ · · ·
)

, (13)

where the coefficients sn(x) can be computed recursively. The first three coefficients are

s−1 =
√
1+ f ′2, s0 = − f ′ f ′′

2(1+ f ′2)
, s1 = −1

8

f ′2

f 2
√
1+ f ′2 + 1

4

f ′′

f (1+ f ′2)3/2
. (14)

Applying the initial condition φ(a) = 0 and φ′(a) = 1, the solution to equation (11) is

φ0(−z2; x) = e−
1
2

∫ x
a u(σ ) dσ e

∫ x
a S+(z;σ ) dσ − e

∫ x
a S−(z;σ ) dσ

S+(z; a) − S−(z; a)

= e
∫ x

a [S+(z;σ )− 1
2 u(σ )] dσ 1− e−

∫ x
a [S+(z;σ )−S−(z;σ )] dσ

S+(z; a) − S−(z; a)
.

Let S± = ±S1 + S2, where

S1(z; x) = s−1z + s1
z

+ · · · , S2(z; x) = s0 + s2
z2

+ · · · . (15)

Notice that

S′
+ + S2+ = S′

− + S2− ⇒ S′
1 + 2S1S2 = 0 ⇒ ln S1(z; a) − ln S1(z; b) = 2

∫ b

a
S2(z; x) dx.

φ0(−z2; b) can be written as

φ0(−z2; b) = e
∫ b

a [S1(z;x)− 1
2 u(x)] dx 1− e−

∫ b
a 2S1(z;x) dx

2
√

S1(z; a)S1(z; b)
. (16)

Now we apply equation (16) to the contour integral equation (9). Noticing that equation (13)
is invalid as z → 0, we write the zeta function as

ζ1(s) = sinπs

π

[∫ 1

0
y−s dlnD0(−y)

dy
dy +

∫ ∞

1
z−2s dlnD0(−z2)

dz
dz

]
. (17)

By equation (16),

lnD0(−z2) =
∫ b

a

[
S1(z; x) − u(x)

2

]
dx − ln S1(z; a) + ln S1(z; b)

2

+ ln
[
1− e−2

∫ b
a S1(z;x) dx

] − ln(2φ0(0; b)). (18)

To compute dD0(−z2)/dz, we need the asymptotic expansion of ∂S1(z; x)/∂z, which can be
derived from equation (15), and the expansion of ∂ ln S1(z; x)/∂z. Let

∂ln S1(z; x)

∂z
= ∂

∂z

[
ln(s−1z) + s1

s−1z2
+ · · ·

]
= t0(x)

z
+ t1(x)

z3
+ · · · ,

5
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where

t0(x) = 1, t1(x) = −2 s1
s−1

= 1

4

f ′2

f 2(1+ f ′2)
− 1

2

f ′′

f (1+ f ′2)2
. (19)

Substituted into equation (18),

∂

∂z
lnD0(−z2) =

∫ b

a
s−1(x) dx − 1

z2

∫ b

a
s1(x) dx − · · ·

− 1

2

t0(a) + t0(b)

z
− 1

2

t1(a) + t1(b)

z3
− · · · .

Now we substitute the equation above into the zeta function in equation (17). The last integral
above is uniformly bounded for s with �s bounded below, while the integration from 0 to 1 in
equation (17) is uniformly bounded for s bounded above by 1 − ε for any ε > 0. Using the
meromorphic extension of the following integrals to s ∈ C,∫ ∞

1
z−2sz−n dz = 1

2s + n − 1 , n = 0, 1, 2, . . . (20)

we can compute the residue of the integral from 1 to ∞ in equation (17) at s = 1
2 , 0,− 1

2 ,

etc. If s is a half integer, sinπs 
= 0, and ζ1 has a single pole at s for a general f (x). If s is
an integer, sinπs has a single zero at s, and so ζ1 has a finite value at s. For example, using
equation (20) with n = 0, 1, 2, 3 respectively, and plugging into equations (14) and (19), we
have

Resζ1

(
1

2

)
= 1

2π

∫ b

a
s−1(x) dx = 1

2π

∫ b

a

√
1+ f ′(x)2 dx, (21)

ζ1(0) = − t0(a) + t0(b)

4
= −1

2
, (22)

Resζ1

(
−1
2

)
= 1

2π

∫ b

a
s1(x) dx = 1

2π

∫ b

a

[
−1
8

f ′2

f 2
√
1+ f ′2 + 1

4

f ′′

f (1+ f ′2)3/2

]
dx, (23)

ζ1(−1) = t1(a) + t1(b)

4
= 1

16

[
f ′(a)2

f (a)2(1+ f ′(a)2)
− 2 f ′′(a)

f (a)(1+ f ′(a)2)2

+ f ′(b)2

f (b)2(1+ f ′(b)2)
− 2 f ′′(b)

f (b)(1+ f ′(b)2)2

]
. (24)

The calculation can be continued for s < −1, but the expressions becomevery complicated
and we do not include them here.

Derivative of ζ1(s) at s = 0.
To compute ζ ′

1(0), we use integration by parts. Rewrite ζ1(s) as

ζ1(s) = sinπs

π
s
∫ ∞

0
y−s−1 lnD0(−y) dy

= sinπs

π
s

[∫ 1

0
y−s−1 lnD0(−y) dy + 2

∫ ∞

1
z−2s−1 lnD0(−z2) dz

]
. (25)

Since lnD0(−y) = O(y) for y → 0, the integration from 0 to 1 is bounded for s = 0. For the
integration from 1 to∞, by the asymptotic expansion equation (15),

S1(z; x) = s−1(x)z + O(z−1) = s−1(x)z · [1+ O(z−2)],

6
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as z → ∞. Substituted into equation (18),

lnD0(−z2) =
∫ b

a

[
s−1(x)z + O(z−1) − u(x)

2

]
dx − 1

2
ln(s−1(a)z) − 1

2
ln(s−1(b)z)

− O(z−2) + ln
[
1− exp

(
−2

∫ b

a
(s−1(x)z + O(z−1)) dx

)]
− ln(2φ0(0; b))

=
∫ b

a

[
s−1(x)z − u(x)

2

]
dx − ln z − ln s−1(a) + ln s−1(b)

2

− ln(2φ0(0; b)) + O(z−1).

Substituted into equation (25), as s → 0,

ζ1(s) = 2s
sinπs

π

∫ ∞

1
z−2s−1 lnD0(−z2) dz

= 2s2
∫ ∞

1
z−2s−1

{
z
∫ b

a
s−1(x) dx − ln z

}
dz + O(s2)

− 2s2
∫ ∞

1
z−2s−1 dz

{
1

2

∫ b

a
u(x) dx + ln s−1(a) + ln s−1(b)

2
+ ln(2φ0(0; b))

}

= 2s2

2s − 1
∫ b

a

√
1+ f ′2 dx − 1

2
+ O(s2)

− s

{
1

2

∫ b

a
u(x) dx + ln s−1(a) + ln s−1(b)

2
+ ln(2φ0(0; b))

}
.

This gives ζ1(0) = − 1
2 , as in equation (22), and furthermore the following theorem.

Theorem 3.1. The derivative of the zeta function in the one-dimensional case is given by

ζ ′
1(0) = − ln f (a) + ln f (b)

2
− ln 2A, (26)

where

A =
∫ b

a

√
1+ f ′(x)2

f (x)
dx. (27)

Proof. By the calculations above, we have

ζ ′
1(0) = −

(
1

2

∫ b

a
u(x) dx + ln s−1(a) + ln s−1(b)

2
+ ln(2φ0(0; b))

)
.

φ0(0; b) can be computed exactly,

φ0(0; b) = f (a)√
1+ f ′(a)2

A,

whereA is defined by equation (27). Combinedwith u(x) = (ln f −ln
√
1+ f ′2)′, equation (26)

follows from a simplification. �

4. Full zeta function and derivative

For k 
= 0, we make the change of variables y = k2z. The differential equation for φ(x)

becomes

φ′′(x) + u(x)φ′(x) − k2(1+ f ′2)
(

z + 1

f 2

)
φ(x) = 0, (28)

7
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where u(x) is as defined in section 3. The zeta function in equation (10) becomes

ζ2(s) = 2
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s dlnDk(−k2z)

dz
dz. (29)

Because the integrand depends on k, the sum and the integral do not factor, but the sum
nevertheless resembles the Riemann zeta function. This is a principal motivation for the
change of variable. We define S(k, z; x) as in equation (12), and equation (16) holds with
φ0(−z2; b) replaced by φk(−k2z; b). The equation for S(k, z; x) is

S′(k, z; x) + S(k, z; x)2 = 1+ f ′2

f 2
(z f 2 + 1)k2 + u2

4
+ u′

2
,

and the solutions are written as asymptotic expansions in k,

S1(k, z; x) = s−1(z; x)k + s1(z; x)

k
+ · · · . (30)

The first two coefficients are

s−1(z; x) =
√
1+ f ′2

f

√
t + 1,

s1(z; x) = t

(t + 1)3/2
[
−1
8

t − 4
t + 1

f ′2

f
√
1+ f ′2 + 1

4

f ′′

(1+ f ′2)3/2

]
, (31)

where

t(x, z) = z f (x)2. (32)

Recall that Dk(−k2z) = φk(−k2z; b)/φk(0; b). By equation (18),

lnDk(−k2z) =
∫ b

a

[
S1(k, z; x) − u(x)

2

]
dx − ln S1(k, z; a) + ln S1(k, z; b)

2

+ ln
[
1− e−2

∫ b
a S1(k,z;x) dx

] − ln(2φk(0; b)). (33)

Similarly, let

∂ln S1(k,−k2z; x)

∂z
= f 2

∂

∂t

[
ln(s−1k) + s1

s−1
k−2 + · · ·

]
= f 2

[
t0(z; x) + t1(z; x)

k2
+ · · ·

]
,

where

t0 = 1

2(1+ t)
, t1 = t2 − 10t + 4

8(1+ t)4
f ′2

1+ f ′2 + 1− t

4(1+ t)3
f f ′′

(1+ f ′2)2
. (34)

Substituted into equation (33),

∂

∂z
lnDk(−k2z) = k

∫ b

a
f (x)2

∂s−1(z; x)

∂t
dx + k−1

∫ b

a
f (x)2

∂s1(z; x)

∂t
dx + · · ·

− t0(z; a) f (a)2 + t0(z; b) f (b)2

2
− t1(z; a) f (a)2 + t1(z; b) f (b)2

2k2
− · · ·

+ 2e−2
∫ b

a S1(k,z;x) dx

1− e−2
∫ b

a S1(k,z;x) dx

∂

∂z

∫ b

a
S1(k, z; x) dx.

Substituted into equation (29),

ζ2(s) = 2
sinπs

π
ζR(2s − 1)

∫ b

a
dx f (x)2s

∫ ∞

0
t−s ∂

∂t
s−1(z; x) dt

+ 2sinπs

π
ζR(2s + 1)

∫ b

a
dx f (x)2s

∫ ∞

0
t−s ∂

∂t
s1(z; x) dt + · · ·

8
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− sinπs

π
ζR(2s)

∫ ∞

0
[t0(z; a) f (a)2st−s + t0(z; b) f (b)2st−s] dt

− sinπs

π
ζR(2s + 2)

∫ ∞

0
[t1(z; a) f (a)2st−s + t1(z; b) f (b)2st−s] dt − · · ·

+ 2sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
dzz−s 2e−2

∫ b
a S1(k,z;x) dx

1− e−2
∫ b

a S1(k,z;x) dx

∂

∂z

∫ b

a
S1(k, z; x) dx.

As before, ζR is the Riemann zeta function. Since S1(k, z; x) = O(k
√

z) for large k or z, the
last term above does not contribute to the residues or values of ζ2(s) for s being integers or
half integers below (including) 1. Using the following standard formulas [33],

sinπs

π
= 1

�(s)�(1− s)
,

and ∫ ∞

0

z−s

(z + 1)p
dz = B(1− s, s + p − 1) = �(1− s)�(s + p − 1)

�(p)
,

we obtain

ζ2(s) = ζR(2s − 1)�
(
s − 1

2

)
√

π�(s)

∫ b

a
f (x)2s−1

√
1+ f ′(x)2 dx

+ ζR(2s + 1)�
(
s + 1

2

)
√

π�(s)
s

[
5s + 1
3

∫ b

a

f (x)2s−1 f ′(x)2√
1+ f ′(x)2

dx +
∫ b

a

f (x)2s f ′′(x)

(1+ f ′(x)2)3/2
dx

]

+ · · · − 1

2
ζR(2s)[ f (a)2s + f (b)2s]

− ζR(2s + 2) f (a)2s
s2

4

[
f ′2(a)

1+ f ′2(a)

5s + 3
4

+ f ′′(a) f (a)

(1+ f ′2(a))2

]

− ζR(2s + 2) f (b)2s
s2

4

[
f ′2(b)

1+ f ′2(b)

5s + 3
4

+ f ′′(b) f (b)

(1+ f ′2(b))2

]
− · · · .

For s = 1, 12 , 0,− 1
2 , etc, the residue or value of ζ2(s) may have two contributions from the

series above, since both ζR(s) and �(s) have poles. For example, using properties of the
Riemann zeta function, ζR(0) = − 1

2 and Res ζR(1) = 1, we have

Res ζ2(1) = 1

2

∫ b

a
f (x)

√
1+ f ′(x)2 dx, (35)

Res ζ2

(
1

2

)
= − 1

2π

∫ b

a

√
1+ f ′(x)2 dx − f (a) + f (b)

4
, (36)

ζ2(0) = 1

2
, (37)

Res ζ2

(
−1
2

)
= − 1

2π

∫ b

a

[
−1
8

f ′2

f 2
√
1+ f ′2 + 1

4

f ′′

f (1+ f ′2)3/2

]
dx

− 1

32 f (a)

[
1

8

f ′2(a)

1+ f ′2(a)
+ f ′′(a) f (a)

(1+ f ′2(a))2

]

− 1

32 f (b)

[
1

8

f ′2(b)

1+ f ′2(b)
+ f ′′(b) f (b)

(1+ f ′2(b))2

]
. (38)

Adding up ζ1(s) and ζ2(s), and recalling that ζ1(1) is finite, we obtain the following theorem
for the full zeta function.

9
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Theorem 4.1. For the full zeta function of the Laplacian on a surface of revolution,

Res ζ (1) = 1

2

∫ b

a
f (x)

√
1+ f ′(x)2 dx. (39)

Res ζ

(
1

2

)
= − f (a) + f (b)

4
. (40)

ζ (0) = 0. (41)

Res ζ

(
−1
2

)
= − 1

32 f (a)

[
1

8

f ′2(a)

1+ f ′2(a)
+ f ′′(a) f (a)

(1+ f ′2(a))2

]

− 1

32 f (b)

[
1

8

f ′2(b)

1+ f ′2(b)
+ f ′′(b) f (b)

(1+ f ′2(b))2

]
. (42)

The geometric interpretation of the formulas above will be discussed in section 5.
Derivative of ζ2(s) at s = 0.
The derivative of ζ2(s) at 0 can be calculated in a similar but more subtle way. The

following theorem is the main result of the paper.

Theorem 4.2. The derivative at zero of the holomorphic extension of the zeta function on the
two-dimensional surface of revolution is given by

ζ ′(0) = −2 lnφ
(
e−2

π2

A
) + π2

6A
+ 1

6

∫ b

a

f ′(x)2

f (x)
√
1+ f ′(x)2

dx + 1

2

∫ b

a

f ′′(x)

(1+ f ′(x)2)3/2
dx,

(43)

where A is defined in equation (27), and φ is the Euler function [2, 37] defined by

φ(q) =
∞∏

k=1
(1− qk). (44)

Proof. Integrating equation (29) by parts, we find that

ζ2(s) = 2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1 lnDk(−k2z) dz. (45)

S1(k, 0; x) and φk(0; b) can be computed exactly,

S1(k, 0; x) =
√
1+ f ′(x)2

f (x)
k, φk(0; b) = f (a)√

1+ f ′(a)2

ekA − e−kA

2k
,

where A is defined by equation (27). This allows us to write

lnDk(−k2z) =
∫ b

a
S1(k, z; x) dx − Ak − 1

2
ln

S1(k, z; a)S1(k, z; b)

S1(k, 0; a)S1(k, 0; b)
+ ln 1− e−2

∫ b
a S1(k,z;x) dx

1− e−2Ak
.

(46)

By the asymptotic expansion in equation (30), we write S1(k, z; x) as

S1(k, z; x) = s−1(z; x)k + s1(z; x)

k
+ R(k, z; x),

10
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where the remainder R(k, z; x) = O(y−3/2) = O(k−3z−3/2) as y → ∞. In addition, since
S1(k, 0; x) = s−1(0; x)k, we have s1(z; x) = O(z) and R(k, z; x) = O(k−3z) as z → 0. It
implies that ln S1(k, z; x) can be written as

ln S1(k, z; x) = ln(s−1(z; x)k) + D(k, z; x),

where D(k, z; x) = O(y−1) = O(k−2z−1) as y → ∞, and D(k, z; x) = O(k−2z) as z → 0.
Substituting equation (46) into equation (45) and using the expressions for S1(k, z; x), we have

ζ2(s) = 2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1

{∫ b

a

[√
1+ f ′2

f
k(

√
t + 1− 1)

+ s1(z; x)

k
+ R(k, z; x)

]
dx − ln(z f (a)2 + 1) + ln(z f (b)2 + 1)

4

− D(k, z; a) + D(k, z; b)

2
+ ln 1− e−2

∫ b
a S1(k,z;x) dx

1− e−2Ak

}
dz.

The asymptotics of R(k, z; x) and D(k, z; x) as y → ∞ and as z → 0 implies that
∞∑

k=1
k−2s

∫ ∞

0
z−s−1 dz

{∫ b

a
R(k, z; x) dx − D(k, z; a) + D(k, z; b)

2

}

is analytic for − 1
2 < �s < 1. Therefore,

ζ2(s) = 2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1

{∫ b

a

[√
1+ f ′2

f
k(

√
t + 1− 1) + s1(z; x)

k

]
dx

− ln(z f (a)2 + 1) + ln(z f (b)2 + 1)
4

+ ln 1− e−2
∫ b

a S1(k,z;x) dx

1− e−2Ak

}
dz + O(s2).

We now calculate each one of these terms individually. For the first one, we have

2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1 dz

∫ b

a

√
1+ f ′(x)2

f (x)
k(

√
t + 1− 1) dx

= 2
sinπs

π

∞∑
k=1

k1−2s
∫ b

a
f (x)2s

√
1+ f ′(x)2

f (x)
dx

∫ ∞

0

t−s

2
√

t + 1 dt

= ζR(2s − 1) �
(
s − 1

2

)
�

(
1
2

)
�(s)

∫ b

a
f (x)2s−1

√
1+ f ′(x)2 dx

= s
A

6
+ O(s2),

where we used ζR(−1) = −1/12.
For the second term, substituting s1(z; x) from equation (31),

2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1 dz

∫ b

a

s1(z; x)

k
dx

= 2s
sinπs

π

∞∑
k=1

k−2s−1
∫ b

a

f 2s(x) dx√
1+ f ′(x)2

∫ ∞

0

t−s−1 dt√
t + 1

×
[
− t(t − 4)
8(t + 1)2

f ′(x)2

f (x)
+ 1

4

t

t + 1
f ′′(x)

1+ f ′(x)2

]

11
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= sζR(2s+1) �
(
s+ 1

2

)
�

(
1
2

)
�(s)

[
5s+1
3

∫ b

a

f (x)2s f ′(x)2

f (x)
√
1+ f ′(x)2

dx +
∫ b

a

f (x)2s f ′′(x)

(1+ f ′(x)2)3/2
dx

]

= s

[
1

6

∫ b

a

f ′(x)2

f (x)
√
1+ f ′(x)2

dx + 1

2

∫ b

a

f ′′(x)

(1+ f ′(x)2)3/2
dx

]
+ O(s2).

For the third term, we obtain

2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1

[
− ln(z f (a)2 + 1) + ln(z f (b)2 + 1)

4

]
dz

= −1
2

sinπs

π

∞∑
k=1

k−2s
∫ ∞

0

t−s dt

t + 1 [ f (a)2s + f (b)2s]

= −1
2
ζR(2s)[ f (a)2s + f (b)2s]

= 1

2
+ s

[
−2ζ ′

R(0) + ln f (a) + ln f (b)

2

]
+ O(s2)

= 1

2
+ s

[
ln(2π) + ln f (a) + ln f (b)

2

]
+ O(s2),

where we used ζ ′
R(0) = − 1

2 ln(2π). The fourth term involves the Euler function defined in
equation (44),

2s
sinπs

π

∞∑
k=1

k−2s
∫ ∞

0
z−s−1 ln

1− e−2
∫ b

a S1(k,z;x) dx

1− e−2Ak
dz

= 2s
sinπs

π

{ ∞∑
k=1

k−2s
∫ ∞

1
z−s−1 ln

1− e−2
∫ b

a S1(k,z;x) dx

1− e−2Ak
dz + O(1)

}

= −2s sinπs

π

{ ∞∑
k=1

k−2s
∫ ∞

1
z−s−1 ln(1− e−2Ak) dz + O(1)

}

= −2s
∞∑

k=1
ln(1− e−2Ak) + O(s2)

= −2s lnφ(e−2A) + O(s2).

Adding these four terms gives

ζ ′
2(0) = −2 lnφ(e−2A) + A

6
+ ln(2π) + ln f (a) + ln f (b)

2

+ 1

6

∫ b

a

f ′(x)2

f (x)
√
1+ f ′(x)2

dx + 1

2

∫ b

a

f ′′(x)

(1+ f ′(x)2)3/2
dx. (47)

Applying the following formula, which will be proved as lemma 4.3,

lnφ(e−2πr) − lnφ
(
e−

2π
r
) = 1

2

[
π

6

(
r − 1

r

)
− ln r

]
,

with r = A/π , we have

ζ ′
2(0) = −2 lnφ(e−2

π2

A ) + π2

6A
+ ln(2A) + ln f (a) + ln f (b)

2

+1
6

∫ b

a

f ′(x)2

f (x)
√
1+ f ′(x)2

dx + 1

2

∫ b

a

f ′′(x)

(1+ f ′(x)2)3/2
dx. (48)

We now add ζ ′
1(0) from equation (26) with ζ ′

2(0) above to obtain equation (43). �

12
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Lemma 4.3. The following formula holds for the Euler function,

lnφ(e−2πr) − lnφ
(
e−

2π
r
) = 1

2

[
π

6

(
r − 1

r

)
− ln r

]
. (49)

Proof. Consider the special case of f ≡ R/π on an interval of length L. Then the eigenvalues
are

λk,n =
(

kπ

R

)2
+

(nπ

L

)2
.

Due to the symmetry between R and L in the spectrum, ζ2(s)(R, L) = ζ2(s)(L, R). Therefore,
by equation (47),

ζ ′
2(0) = −2 lnφ

(
e−2π

L
R
) + π

6

L

R
+ ln(2R) = −2 lnφ

(
e−2π

R
L
) + π

6

R

L
+ ln 2L.

Letting r = L/R, we obtain equation (49). �

5. Discussion and conclusion

The geometric interpretation of the zeta function’s residues and values can be found from the
heat kernel expansion of the Laplacian on the surface of revolution; references [27, 29, 43]
gave extensive reviews of the heat kernel expansion. On a compact manifold, the heat kernel
of the Laplacian, integrated over space, is defined as

θ (t) =
∑

λk∈Spec(�)

e−tλk .

For a two-dimensionalmanifoldwith boundary, denoted by�, the heat kernel has the following
expansion,

θ (t) = C−1
t

+
C− 1

2√
t

+ C0 + C 1
2

√
t + C1t + · · · .

The coefficients are integrations of geometric invariants over � and its boundary ∂� [6]. For
the surface of revolution, if the Dirichlet boundary condition is taken,

C−1 = |�|
4π

, C− 1
2

= − |∂�|
8
√

π
, C0 = χ

6
, C 1

2
= 1

256
√

π

∫
∂�

[
k2g(σ ) − 8k(σ )

]
dσ,

where |�| is the area of �, |∂�| is the total length of ∂�, χ is the Euler characteristic of �,
kg(σ ) is the geodesic curvature of the boundary at σ , and k(σ ) is the Gaussian curvature of
the surface at σ . For the surface of revolution, χ = 0.

The zeta function is related to the heat kernel by

ζ (s) = 1

�(s)

∫ ∞

0
dtθ (t)ts−1.

Substituting the heat kernel expansion into the equation above, we have

Res ζ (1) = C−1 = |�|
4π

= 1

4π

∫ b

a
2π f (x)

√
1+ f ′(x)2 dx,

Res ζ

(
1

2

)
=

C− 1
2√

π
= −|∂�|

8π
= −2π f (a) + 2π f (b)

8π
,

ζ (0) = C0 = χ

6
= 0,

13
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Res ζ

(
−1
2

)
= −

C 1
2

2
√

π
= − 1

512π

∫
∂�

[
k2g(σ ) − 8k(σ )

]
dσ

= −2π f (a)

512π

[
f ′2(a)

f 2(a)(1+ f ′2(a))
+ 8 f ′′(a)

f (a)(1+ f ′2(a))2

]

− 2π f (b)

512π

[
f ′2(b)

f 2(b)(1+ f ′2(b))
+ 8 f ′′(b)

f (b)(1+ f ′2(b))2

]
.

They agree with theorem 4.1 completely. It confirms the validity of the contour integral method
extended to the surface of revolution. On the other hand, the determinant of the Laplacian,
calculated by the contour integral method, cannot be derived from the heat kernel expansion
directly.

Our results can also be benchmarked against an exactly solvable model with continuous
spectrum. Consider the Laplacian on an infinitely long planar stripe of width L. Given the
infinite volume of this configuration we need to introduce suitable zeta function densities. To
that end, we compactify the infinitely long planar stripe temporarily to a finite stripe of width
2πR and impose periodic boundary conditions along that direction. With a Dirichlet boundary
condition along the remaining direction, the spectrum is

λk,n =
(

k

R

)2
+

(nπ

L

)2
, k ∈ Z, n = 1, 2, 3, . . . .

The associated zeta function is

ζ (s) −
∞∑

n=1

∞∑
k=−∞

[(
k

R

)2
+

(nπ

L

)2]−s

.

As R → ∞, which is the transition to the Riemann integral, the relevant zeta function density
is

ζc(s) := lim
R→∞

1

R
ζ (s) =

∞∑
n=1

∫ ∞

−∞
λ−s

nk dk

= 2ζR(2s − 1)
∫ ∞

0
(x2 + 1)−s dx

(
L

π

)2s−1

= ζR(2s − 1)B
(
1

2
, s − 1

2

) (
L

π

)2s−1

= √
πζR(2s − 1)�

(
s − 1

2

)
�(s)

(
L

π

)2s−1
.

In particular, we have

Res ζc(1) = L

2
, Res ζc

(
1

2

)
= −1

2
, ζc(0) = 0, Res ζc

(
−1
2

)
= 0,

and

ζ ′
c(0) = π2

6L
.

The stripe can be regarded as a surface of revolution with f (x) ≡ R, and R → ∞. For
f (x) ≡ R, theorem 4.1 gives

Res ζ (1) = LR

2
, Res ζ

(
1

2

)
= −R

2
, ζ (0) = 0, Res ζ

(
−1
2

)
= 0,

and

ζ ′(0) = −2 lnφ
(
e−2

π2R
L

) + π2R

6L
.
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One easily verifies, as the above computation shows, that these properties are recovered from

ζc(s) = lim
R→∞

ζ (s)

R
.

As a conclusion, we have extended the contour integralmethod to the surface of revolution.
By theWKB expansion, we calculated the zeta function at several important points. The results
agree with those obtained from the heat kernel expansion. We also computed the determinant
of the Laplacian on such a surface. The WKB expansion allows the evaluation of the zeta
function at more points, however the expressions get increasingly more complicated. In the
future, we can change the Dirichlet boundary condition to, say, Robin boundary condition,
and calculate the associated zeta function. We can also relax the condition that f (x) > 0 by
allowing f (a) = 0 and/or f (b) = 0. This should allow the study of manifolds with cusps.
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