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Abstract of the Dissertation

Direct Numerical Simulation of Bubbly Flows
and Interfacial Dynamics of Phase Transitions

by

Tianshi Lu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2005

We studied the propagation of acoustic and shock waves in bubbly fluids

using the Front Tracking hydrodynamic simulation code FronTier for axisym-

metric flows. We compared the simulation results with the theoretical predic-

tions and the experimental data. The method was applied to an engineering

problem on the mitigation of cavitation erosion in the container of the Spal-

lation Neutron Source liquid mercury target. The simulation of the pressure

wave in the container and the subsequent analysis on the collapse of the cavi-

tation bubbles confirmed the effectiveness of the non-condensable gas bubble

injection method on reducing cavitation damage.

Then we analyzed the interfacial dynamics of liquid-vapor phase transi-

iii



tions and the wave equations for immiscible thermal conductive fluids. The

phase transition rate is associated by the kinetic theory with the deviation of

the vapor pressure from the saturated pressure. Analytical solutions to the

linearized equations have been explored. The adiabatic and the isothermal

limits have been investigated for both the linearized and the nonlinear equa-

tions, for latter the method of travelling wave solutions has been used. The

wave structure of the solution to the problem with Riemann data has been

discussed.

We also implemented a numerical scheme for solving the Euler equations

with thermal conduction and phase transitions in the frame of front tracking.

Heat conduction has been added to the interior state update with second order

accuracy. Phase boundary propagation has been handled according to the

interfacial dynamics. A numerical technique has been introduced to account

for the thermal layer thinner than a grid cell. The scheme has been validated,

extended to multi-dimension, adapted for cylindrical and spherical symmetry,

and applied to the simulation of condensing and cavitating processes.

Key Words: bubbly flow, cavitation mitigation, phase transition, Rie-

mann problem.
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Chapter 1

Introduction

1.1 Direct Numerical Simulation of Bubbly Flows

Wave propagation in bubbly fluids has attracted investigators for many

decades because of its special properties. Bubbly fluids have the unique fea-

ture that even a minute bubble concentration (volume fraction less than one

percent) increases the compressibility of the system drastically. The system

transports energy at a speed considerably lower than the sound speeds in both

phases as a result of the energy exchange between the liquid and the bubbles.

When additional effects such as vaporization and condensation play a role,

e.g. in cavitating flows, further phenomena, still little understood, are super-

imposed upon the basic behavior of bubbly flows. The rich internal structure

of bubbly flows endows the medium strikingly complex behavior.

One of the reasons for the study of bubbly flows is their wide applications

ranging from hydraulic engineering to high energy physics experiments. In

particular, we are interested in a recent application of bubbly fluids in the

mitigation of cavitation damages in the Spallation Neutron Source (SNS)[1],
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which will be discussed in details in Chapter 3. Another important moti-

vation is to connect the microscopic behavior of individual bubbles to the

macroscopic behavior of the mixed medium that one directly observes. Since

the microstructure in this case is made up of a complex substructure, the task

is much more complicated than that of classical kinetic theory.

The wave propagation in bubbly fluids has been studied using a variety

of methods. Extensive investigation has been done on the subject based on

various mathematical models. Significant progress has been achieved on the

study of systems consisting of non-condensable gas bubbles (see for example

[46, 6, 4, 44]) and of vapor bubbles (see for example [15, 24]). The treatment

of the kinetic and thermal properties of the medium, e.g. the compressibility

of the liquid and the thermal conduction, by different authors varies. But they

shared a common feature that the two phases were not separated explicitly,

i.e. the bubble radius and concentration were considered as functions of time

and space. The Rayleigh-Plesset equation or the Keller equation governing

the evolution of spherical bubbles has been used as the kinetic connection be-

tween the bubbles and fluid. These models include many important physical

effects in bubbly systems such as the viscosity, the surface tension and thermal

conduction. Numerical simulations of such systems requires relatively sim-

ple algorithms and are computational inexpensive. Nevertheless, such models

treat the system as a pseudo-fluid and cannot capture all features of the rich

internal structure of the bubbles. They exhibit sometimes large discrepancies

with experiments [44] even for systems of non-condensable gas bubbles. These

models are also not suitable if the bubbles are distorted severely by the flow or

2



even fission into smaller bubbles, as it may happen in cavitating and boiling

flows [7, 13].

A powerful method for the multiphase problem, direct numerical simula-

tion (DNS), is based on techniques developed for free surface flows. Welch [45]

investigated numerically the evolution of a single vapor bubble using interface

tracking method. Juric and Tryggvason [29] simulated the boiling flows using

the incompressible flow approximation for both liquid and vapor and a sim-

plified version of interface tracking. In the thesis, we describe a DNS method

for the simulation of bubbly fluid using front tracking. Our FronTier code is

capable of tracking and resolving topological changes of a large number of in-

terfaces in two- and three-dimensional spaces. Both the bubbles and the fluid

are compressible in the simulation because we are interested in the speed of

wave propagations. We simulated the propagation of acoustic and shock waves

in bubbly fluids and compared them with the theory and the experiments in

Chapter 2.

After the validation of the FronTier code on the bubbly flows, it was

applied to the engineering problem of cavitation mitigation in the Spallation

Neutron Source. In Chapter 3, after the description of SNS and the related

bubble injection technique for the mitigation of the cavitation, the problem was

tackled in two steps. First, the pressure wave propagation in the container of

the mercury target for the SNS was simulated using the front tracking method.

Then the collapse pressure of cavitation bubbles was calculated by solving

the Keller equation under the ambient pressure whose profile was obtained

in the first step. Finally the efficiency of the cavitation damage mitigation
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was estimated by comparing the average collapse pressure with and without

injected bubbles.

1.2 Interfacial Dynamics of Phase Transitions

The dynamics of gas bubbles and the wave propagation in fluid filled with

non-condensable bubbles have been investigated theoretically and experimen-

tally for many decades, but the research on the corresponding problem for

vapor bubbles is relatively new and the understanding is less developed. The

interest on the dynamics of vapor bubbles is twofold.

Due to the large amount of energy absorbed or liberated in the form of

latent during phase transitions, boiling and condensation are key processes

in the extraction of energy from fuels for daily life. Heat exchanger equip-

ment and piping in power plants and oil refineries are examples of traditional

applications. A more recent issue coming from the space shuttles is the en-

hancement of heat transfer during boiling in microgravity. Another area that

phase transitions play an important role is the cavitating flows, e.g. in the jet

simulation in a diesel engine [22]. All these applications require detailed under-

standing of the phase transition process. Despite its importance and the vast

body of research on boiling, the fundamental physical mechanisms involved are

far from being understood, as pointed out by Juric et. al. [29] and Welch[45].

Not much experimental measurement on the dynamics of phase transitions is

available because of the small time and spatial scale of the process.

The dynamics of phase transitions is of great scientific interest too. An-

alytical and numerical efforts to understand the boiling have been focused
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mainly on simple models of vapor bubble dynamics until recently. Rayleigh

[41] formulated a simplified equation of motion for inertia controlled growth

of a spherical vapor bubble. Plesset and Zwick [37] and later Prosperetti and

Plesset [40], among others, extended Rayleigh’s analysis. Most models have

been based on the Rayleigh-Plesset equation for incompressible liquid or the

Keller equation of first order in c−1
l for weakly compressible liquid. Phase tran-

sitions with full compressibility of both phases have been discussed by Menikoff

and Plohr [36] with the transition zone treated as the macroscopic mixture of

the two phases at equilibrium. More recently, Welch [45] studied the two-phase

flows including interface tracking with mass transfer while the phase interface

was assumed to exist in thermal and chemical (Gibbs potential) equilibrium.

Juric and Tryggvason [29] simulated the boiling flows in incompressible fluids

using the non-equilibrium phase transition model with a parameter called ki-

netic mobility whose value was measured experimentally. Hao and Prosperetti

[24] investigated the dynamics of bubbles in acoustic pressure fields assuming

the vapor was saturated. Matsumoto and Takemura [35] studied numerically

the influence of internal phenomena on gas bubble motion with complete mass,

momentum and energy conservation laws for compressible fluids and the in-

terfacial dynamics of phase transitions, in which they referred to the value

0.4 for the evaporation coefficient measured by Hatamiya and Tanaka [25].

Later Preston, Colonius and Brennen [2], in the development of simpler and

more efficient bubble dynamic models that capture the important aspects of

the diffusion precesses, computed the growth and collapse of a vapor bubble

under pressure waves in incompressible liquid with the interfacial dynamics of

5



phase transitions using a Chebychev spectral method to solve the temperature

equation for the bubble.

The equations of the conservation laws and the interfacial dynamics of

phase transitions have been studied numerically by the authors listed above.

Hao and Prosperetti also investigated the linear theory of bubble oscillation

in acoustic waves. However, the system of non-equilibrium phase transitions,

as far as we know, has not been studied as a problem with Riemann data.

As a contrast, the Riemann problem for reacting gas has been studied exten-

sively [43]. For combustion flows, the energy difference between the phases

(burnt and unburnt) is a fixed constant, namely, the heat released or absorbed

in the chemical reaction, so the Riemann problem has not been changed by

much. While for phase transitions, there is complicated interfacial dynamics

involving the latent heat and Clausius-Clapeyron equation. Furthermore, the

heat conduction makes the conservational laws no longer purely hyperbolic,

thus the solution to the problem with Riemann data does not have the self

similarity in the classical Riemann solution. In the adiabatic limit (thermal

conductivity goes to zero), according to the theory of viscous profile, the so-

lution should approach the Riemann solution, which we will show is correct

for nonlinear equations but not for linearized equations. The theory of viscous

profile usually deals with a hyperbolic field coupled to its own parabolic equa-

tion, while for Euler equations with thermal conduction the hyperbolic fields

(pressure and velocity) are coupled to a different parabolic field (temperature),

which complicates the problem by allowing jump discontinuity in certain fields

while disallowing in others. The qualitative and quantitative properties of the
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solution to the phase transition problem with Riemann data are our main sub-

jects. The simpler case of two immiscible thermal conductive fluids was also

investigated, in which the interface between the two fluids was a contact with

thermal flux, or the so called thermal contact.

In Chapter 4 we analyzed the interfacial dynamics of phase transitions

and the wave equations for immiscible fluids. The phase transition rate is

associated by the kinetic theory with the deviation of the vapor pressure from

the saturated pressure. Analytical solutions to the linearized equations have

been explored. The adiabatic and the isothermal limits have been investigated

for both the linearized and the nonlinear equations, for latter the method of

travelling wave solutions has been used. The wave structure of the solution to

the problem with Riemann data has been discussed.

In Chapter 5 we implemented a numerical scheme for solving the Euler

equations with thermal conduction and phase transitions in the frame of front

tracking. Heat conduction has been added to the interior state update with

second order accuracy. Phase boundary propagation has been handled accord-

ing to the interfacial dynamics. A numerical technique has been introduced

to account for the thermal layer thinner than a grid cell. The algorithm has

been validated and applied to sample physical problems.
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Chapter 2

Direct Numerical Simulation of Bubbly Flows

In Section 2.1, we give a brief review of the theory and the experiments on

bubbly flows. Section 2.2 is the description of the numerical method. Section

2.3 lists the results of the direct numerical simulations on linear and shock

wave propagations in bubbly fluids along with the comparison to the theory

and the experiments.

2.1 Theory and Experiments on Bubbly Flows

2.1.1 Wave Equations

The theory on bubbly flows is based on the homogenized model, in which

the fluid and the bubbles are treated a single mixed phase, as opposed to

the two separated phases in the direct numerical simulations. In compressible

fluids with gas bubbles, the conservation of mass and momentum in one spatial
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dimension give

1

ρfc2
f

∂p

∂t
+

∂u

∂x
=

∂β

∂t
,

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= 0,

where β is the bubble volume fraction, and ρ is the averaged density of the

mixed phase that equals ρf (1 − β) + ρgβ. The bubble oscillation in weakly

compressible fluids is governed by the Keller equation [31, 32, 39],

(1− 1

cf

dR

dt
)R

d2R

dt2
+

3

2
(1− 1

3cf

dR

dt
)(

dR

dt
)2 =

1

ρf

(1+
1

cf

dR

dt
+

R

cf

d

dt
)(pB−p). (2.1)

The bubble pressure pg is approximately uniform except for sound waves of

frequency far above the resonance. For bubbles of diameter 0.1mm and above,

the thermal diffusivity ν << ωR2 except for sound waves of frequency far

below resonance. Therefore the bubbles are almost adiabatic for near-resonant

sound waves. For bubbles consisting of γ-law gases,

pgR
3γ = constant.

Neglecting the viscosity, the difference between pg and pB, the liquid pressure

at the bubble surface, is from the surface tension,

pg = pB +
2σ

R
.
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2.1.2 Linear Waves

The following dispersion relation for linear sound waves in bubbly fluids

was derived from the wave equations [46].

k2

ω2
=

1

c2
f

+
1

c2

1

1− iδ ω
ωB
− ω2

ω2
B

, (2.2)

where ωB is the resonant frequency of single bubble oscillation, δ is the damp-

ing coefficient accounting for the various dissipation mechanisms. cf is the

sound speed in bubble free fluid and c is the sound speed in the low-frequency

limit, which is given by

1

c2
= (βρg + (1− β)ρf )(

β

ρgc2
g

+
1− β

ρgc2
f

),

where ρg and ρf are the densities of the gas and the fluid, cg and cf are the

sound speeds of the two phases. For adiabatic bubbles,

c =

√
γp

βρf

,

ωB =
1

R

√
3γp

ρf

. (2.3)

Chapman and Plesset [8] formulated δ as the sum of the acoustic, viscous

and thermal contributions. It has been pointed out by Prosperetti et. al.

[38, 12] that δ depends on the frequency of the sound wave. Nevertheless, Eq.

(2.2) has been widely used for the dispersion relation. The dispersion relation

for near-resonant sound waves measured in different experiments [16, 34, 42]
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agreed with the theoretical predictions.

2.1.3 Shock Waves

The shock profile in the bubbly fluid evolves into a smooth steady form in

contrast to the sharp discontinuity in the pure fluid. The steady state shock

speed was obtained from the Rankine-Hugoniot relation [44],

1

U2
=

1

c2
f

+ ρf
βb − βa

Pa − Pb

where subscripts a and b stand for ahead and behind the shock front. The

steady state reaches thermal equilibrium, so for ideal gas bubbles with surface

tension neglected, Paβa = Pbβb. Therefore

1

U2
=

1

c2
f

+ ρf
βa

Pb

(2.4)

The evolution into a steady wave can take very long time and distance, and

the unsteady waves move at higher velocities [44]. The shock profiles were

measured for various gas bubbles by Beylich and Gülhan [4].

2.2 Numerical Method

We have been studying bubbly fluids as a system of one-phase domains

separated by free interfaces using FronTier, a front tracking compressible hy-

drodynamics code. Front tracking is an adaptive computational method in

which a lower dimensional moving grid is fit to and follows distinguished waves

11



in a flow. The front propagates according to the dynamics around it (i.e. La-

grangian) while the regular spatial grid is fixed in time (i.e. Eulerian). The

discontinuities across the interfaces are kept sharp so as to eliminate the inter-

facial numerical diffusion which plagues traditional finite difference schemes.

In each time step, the front is first propagated then the interior states are

updated. For the front propagation, the interfaces are first propagated in the

normal direction for each point on the fronts and the states on either side evolve

according to the solution of non-local Riemann problems. The hyperbolic

solver has three steps: slope reconstruction, prediction using local Riemann

solver, and correction by nonlocal solver. Then the states on the propagated

fronts are updated in the tangential direction while the fronts are fixed. After

that the fronts are tested for intersection and then untangled or redistributed

if necessary to resolve the topological change or the clustering/sparsity of grid

points on the interfaces due to front contract/expand.

For the subsequent interior state update, FronTier uses high resolution

shock-capturing hyperbolic schemes on a spatial grid. Among the various

shock capturing methods currently implemented in FronTier, a second order

monotone upwind scheme for conservation laws (MUSCL) scheme developed

by Van Leer and adapted for FronTier by I-L. Chern was used for the sim-

ulation here. MUSCL scheme is similar to the piecewise parabolic method

described in [11], and a detailed description can be found in [10]. The two-

pass implementation currently being used in FronTier, namely, first regular

cells then irregular cells update, is well documented in [21]. Different equation

of state models are used for gas/vapor bubbles and the ambient fluid.
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Incident acoustic or shock wave Computational domain

Tracked surface bubblesLiquid

Figure 2.1: Schematic of the numerical experiments on the propagation of
linear and shock waves in bubbly fluids.

FronTier can handle multidimensional wave interactions in both two- [20]

and three- [19] dimensional spaces. Although computationally intensive, front

tracking is potentially very accurate in treating many physical effects in bubbly

flows, such as the compressibility of the fluid, surface tension and viscosity.

Since the FronTier code is capable of tracking simultaneously a large num-

ber of interfaces and resolving their topological changes, many effects that

are difficult to handle in mathematical models for bubbly flows are now nat-

urally included in the simulations, e.g. the bubbles’ deviation from spheric-

ity, bubble-fluid relative motion, bubble merge/fissure and bubble size/spatial

distribution. This approach has numerous potential advantages for modelling

the phase transitions in boiling and cavitation flows. We have implemented

a model for the phase transitions induced mass transfer across free interfaces

[22]. FronTier is implemented for distributed memory parallel computers.

For the application of FronTier to the simulation of bubbly flows, the
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region around a long column of bubbles (tens to hundreds) has been chosen as

the computational domain, as shown in Figure 2.1. Two approximations were

used in the simulations. The flow inside the column was assumed to be ax-

isymmetric and the influence from the neighboring bubbles was approximated

by the Neumann boundary condition on the domain wall. Thus the wave

propagation in bubbly flows was reduced to an axisymmetric two-dimensional

problem. An extensive introduction to the FronTier code for axisymmetric

flows can be found in [21].

The axisymmetric flow approximation is crude although it is exact for

the scattering of the planar wave by an isolated column of bubbles that are

initially spherical. The Neumann boundary condition between adjacent bub-

bles is also too strong because the scattered pressure wave is only partially

reflected. As a contrast, the scattering theory, on which the Keller equation is

based, completely neglects the reflection between bubbles and the secondary

scattering. Therefore the scattering theory only holds for the case of small β

such that bubble interaction is negligible. For moderate β, the secondary scat-

tering can not be neglected, and the Neumann boundary condition between

adjacent bubbles is a better approximation.

2.3 Simulation Results on Bubbly Flows

In this section, we present the results of the DNS on the linear and shock

wave propagations in bubbly fluids. The dispersion relation measured from the

simulations were compared to the theory in Section 2.3.1. The shock speeds

measured from the simulations were compared to the steady-state values, and
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the shock profiles for various gas bubbles were compared to the experiments

[4] in Section 2.3.2.

2.3.1 Linear Waves

To compare the simulation results with the theory we measured the dis-

persion relation. Writing down the complex wave number k in Eq. (2.2) as

k = k1 + ik2, we have

ei(kx−ωt) = e−k2xei(k1x−ωt),

from which the phase velocity of the sound wave is defined as

V =
ω

k1

, (2.5)

and the attenuation coefficient α in dB per unit length defined as

α = 20 log10 e · k2. (2.6)

The bubble radius in the simulation was R = 0.06mm. From Eq. (2.3), we

have

fB =
ωB

2π
=

1

2πR

√
3γp

ρf

= 54.4 KHz.

We simulated the sound waves of frequencies ranging from 30 to 300 KHz.

The volume fraction β = 0.02%. The amplitude of the pressure wave was

chosen to be 0.1 bar, one tenth of the ambient pressure. The linearity was

ensured by comparison with sound waves of half amplitude, from which the

dispersion relation measured was virtually the same. For each frequency, the
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λ(cm) f(KHz) V (cm/ms) Vth(cm/ms) α(dB/cm) αth(dB/cm)
0.5 290 155 153 2.2 0.9
1.0 145 183 194 5.7 5.0
1.5 96.7 220 274 18.4 20.7
2.0 72.5 160 173 28.5 30.9
2.5 58.0 100 100 21.8 29.4
2.75 52.7 75 84 18.9 25.2
3.0 48.3 68 75 17.8 20.4
4.0 36.3 62 68 10.7 8.5
5.0 29.0 66 69 3.9 4.4

Table 2.1: Phase velocities(V ) and attenuation coefficients(α) from the sim-
ulation and the theory. λ is the wavelength in pure water. V and α are the
simulation results, Vth and αth are the theoretical predictions from Eq. (2.2)
with δ = 0.7. R = 0.06mm, β = 0.02%.

sound wave of up to 8 wavelengths was propagated from the pure fluid into the

bubbly region. The cross sectional averaged pressure in the bubbly region was

recorded at selected times and positions, from which the phase velocity and

the attenuation coefficient were measured. The phase velocity was obtained

by measuring the propagation speed of the first pressure node in the bubbly

region. The envelope of the oscillating pressure wave was plotted and the

attenuation coefficient was measured in the 1cm-long bubbly fluid region next

to the incident plane by fitting the envelope to an exponential curve. A shorter

region was used for the frequency with the strongest attenuation (λ = 2cm).

The phase velocities and attenuation coefficients measured from the simu-

lations were listed in Table 2.1 along with the theoretical predictions. For the

theoretical prediction 0.7 was used for the damping coefficient δ in Eq. (2.2).

The measured dispersion relation was compared to the theoretical curves in

Figure 2.2. It can be seen that the simulation agrees well with the theory.
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Figure 2.2: Comparison of the dispersion relation between the simulation and
the theory. R = 0.06mm, β = 0.02%. (a) is the phase velocity, (b) is the
attenuation coefficient. In both figures, the crosses are the simulation data
and the solid line is the theoretical prediction from Eq. (2.2) with δ = 0.7.
The horizontal line in figure (a) is the sound speed in pure water.
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Figure 2.3: The pressure profile in bubbly water 23 µs after the incidence
of the sound wave with wavelength 1 cm in pure water. The default res-
olution used in the simulations was 100 grid/mm, under which the bubble
radius R = 0.06mm corresponds to 6 grids. Symbols: solid line is the default
resolution 100 grid/mm, dash-dotted line is 50 grid/mm, dashed line is 200
grid/mm.

However, the point in Figure 2.2(a) with frequency about 100 KHz has large

deviation from the theoretical value. Most likely it is because the measure-

ment of the sound speed was inaccurate in the presence of strong attenuation,

which is a phenomenon also observed in the experiment [16].

The grid resolution for most of our simulations on linear wave propaga-

tions was 100 grids per millimeter. To ensure the accuracy of the simulation

results, a mesh refinement check has been carried out. Figure 2.3 shows a
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typical result. It can be seen that the results were reasonably accurate at the

default grid resolution (100 grid/mm). It has also been noticed that near the

resonant frequency fB the resolution requirement is higher. More specifically,

higher resolution would give larger attenuation coefficients, which explains in

part why the points in the Figure 2.2(b) are all below the theoretical curve

near the peak. Another important reason for the deviation is, as pointed out

by Prosperetti et. al. [38, 12], the dependence of δ on the frequency. The sim-

plification used in the simulation, such as axisymmetric approximation and

Neumann boundary condition, also contributed to the error.

2.3.2 Shock Waves

Beylich and Gülhan [4] studied the propagation of shock waves in glycerol

filled with bubbles of various gases. We carried out the numerical simulations

using their experimental settings. We have also varied the sound speed in the

pure fluid to measure the corresponding shock speeds and compares them to

the steady-state values given by Eq. (2.4). In the simulations, the pressure

behind the shock was either fixed at the boundary or set as the initial pressure

in an air layer next to the bubbly fluid. The results from the two methods

have been compared and found to be very close.

The measured shock speeds are listed in Table 2.2. The speeds were

measured about 10 cm away from the shock incident plane. It is seen from the

table that the measured shock speeds differ from the steady state values by

no more than 10% and in general the measured values are larger. The reason

for the deviation is that the shock waves in the simulations had not reached
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gas(γ) cf (m/s) βa(%) Pb(bar) U(m/s) Uth(m/s)
SF6(1.09) 1450 0.25 1.9 26.20 24.60
SF6(1.09) 458 0.25 1.9 22.52 21.92
SF6(1.09) 145 0.25 1.9 13.47 12.54
N2(1.4) 1450 0.25 1.7 25.56 23.30
N2(1.4) 458 0.25 1.7 22.21 20.98
N2(1.4) 145 0.25 1.7 12.29 12.36
He(1.67) 1450 0.25 1.9 25.68 24.60
He(1.67) 458 0.25 1.9 22.69 21.92
He(1.67) 145 0.25 1.9 13.52 12.54
SF6(1.09) 1450 2.17 1.8 8.72 8.23
SF6(1.09) 458 2.17 1.8 8.04 8.12
SF6(1.09) 145 2.17 1.8 7.10 7.17
N2(1.4) 1312 2.17 1.8 8.60 8.23
N2(1.4) 458 2.17 1.8 9.09 8.12
N2(1.4) 145 2.17 1.8 7.80 7.17
He(1.67) 1450 1.04 1.9 13.92 12.19
He(1.67) 458 1.04 1.9 12.70 11.82
He(1.67) 145 1.04 1.9 9.70 9.35

Table 2.2: Shock speeds measured from the simulations are compared to the
steady state values. βa is the bubble volume fraction ahead of the shock, Pb

is the pressure behind the shock, U and Uth are the measured shock speed
and corresponding steady-state value given by Eq. (2.4). pa = 1.11bar,
ρf = 1.22g/cm3, Ra = 1.15mm.
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the steady state, and the unsteady shock speeds were higher than the steady

state values (cf. Section 2.1.3).

We have also plotted the shock profiles with bubbles of different content

in Figure 2.4. The results were compared to those measured in the experiment

of Beylich et. al. [4]. The profiles were measured at 50 cm away from the

shock incident plane. From the figures we noticed the pressure in the bubbly

fluid oscillates after the passage of the shock front. The oscillation amplitude

was smaller for gas with larger polytropic index γ, which agrees with the

experiment. The period of the oscillation differed from experimental data by

10 to 20 percent, while the amplitude was much smaller in the simulations.

There were several sources of error that could be responsible for the devi-

ation. The main source of error is numerical dissipation at the bubble surface.

The default grid resolution for the simulations on shock wave propagation was

50 grids per centimeter, the bubble radius was also 6-grid wide. It has been

found that increasing resolution did increase the oscillation amplitude but not

drastically. Other sources of error include the axisymmetric approximation

and the Neumann boundary condition on the domain wall. As a summary,

the shock velocity measurement agreed well with the theory, while the shock

profiles agreed with the experiment qualitatively and partly quantitatively.
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Figure 2.4: The shock profiles in bubbly glycerol. The parameters in the
simulations were from the experiments [4]. pa = 1.11 bar, ρf = 1.22 g/cm3,
Ra = 1.15mm. Left figures are from the simulations, right ones are from the
experiments. (a) He(γ = 1.67), β = 0.27%, Pb = 1.9bar. (b) N2(γ = 1.4),
β = 0.25%, Pb = 1.7bar. (c) SF6(γ = 1.09), β = 0.25%, Pb = 1.9bar. The
curves in the experimental figures are the author’s original fitting with artificial
turbulent viscosity.
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Chapter 3

Application of Bubbly Flows to Cavitation

Mitigation

Having validated to some extent the FronTier code for the direct nu-

merical simulation of bubbly flows, we applied it to the cavitation mitigation

problem in the Spallation Neutron Source. In Section 3.1 the design of the SNS

target and associated fluid dynamical issue were described. The description

of the method we used to estimate the collapse pressure of cavitation bubbles

was given in Section 3.2. Section 3.3 listed the results of the simulations using

the front tracking method on the pressure wave propagation in the pure mer-

cury and the mercury injected with non-condensable gas bubbles. In Section

3.4 the collapse pressure of cavitation bubbles was calculated by solving the

Keller equation in the ambient pressure whose profile was obtained from the

simulations. Finally, in Section 3.5 the average collapse pressure with and

without injected bubbles were compared to estimate the cavitation mitigation

efficiency.
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3.1 Spallation Neutron Source

The Spallation Neutron Source (SNS) is an accelerator-based neutron

source being built at Oak Ridge National Lab. The SNS will provide the most

intense pulsed neutron beam in the world for scientific research and industrial

development. In SNS, 800MeV proton beams bombarding the mercury target

in a steel container deposit totally 2.1 kJ of energy per pulse in less than

300ns which results in the rapid pressure increase in the mercury (see Figure

3.1). The peak deposited energy density is 19 J/cc, corresponding to 500 bar

in mercury. The subsequent pressure waves induces severe cavitation on the

container, so much so that the lifetime of the container was only two weeks

with 1MW proton pulses at the frequency of 60Hz [1]. In order to mitigate

the cavitation erosion, research is being done on the evaluation of cavitation-

resistant materials and coatings. It has also been suggested that the injection

of non-dissolvable gas bubbles into the container could absorb the energy of

the pressure wave. Our goal is to estimate the efficiency of the cavitation

mitigation by the bubble injection method.

The SNS target prototype tested at the Los Alamos National Laboratory

was a cylinder of 10 cm diameter and 30 cm length [1]. The initial pressure rise

occurred essentially instantaneously compared to acoustic time scales. The

pressure distribution, as shown in Figure 3.1, has a Gaussian profile in the

transverse direction with σ = 1.0 cm and an exponential attenuation along

the axis. The pressure profile can be described by

P0(r, z) = 500e−r2−0.1z bar, (3.1)
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Figure 3.1: The pressure distribution right after a pulse of proton beams
in the mercury target of the Spallation Neutron Source. Courtesy of SNS
experimental facilities, Oak Ridge National Lab.
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where r and z are in cm, and the origin of z axis is the window where proton

beams enter.

3.2 Method of Approach

Before we compare the cavitation erosion in pure and bubbly mercury,

a brief introduction to the mechanism of cavitation damage and the method

we used to quantify it is given in this section. Cavitation is the process in

which a bubble, consisting of vapor and non-condensable gas, expands and

collapses according to the surrounding pressure which decreases and increases

rapidly. Vapor bubbles are formed in the fluid when the pressure falls below

the saturated vapor pressure of the fluid at the ambient temperature. They

implode when the fluid pressure rises back above the saturated vapor pressure

or when the bubbles move into a region with higher pressure. If the bubble is

close to the container wall, the shock wave from the rebound of the collapse

erodes the wall as in the SNS target container.

The attenuation of the pressure wave during the rebound phase of the

cavitation bubbles was studied carefully in [26]. The pressure of the rebounded

wave that hits the container wall is an indicator of the cavitation erosion. Since

it is proportional to the first collapse pressure of cavitation bubbles, for the

estimation of the cavitation mitigation efficiency we only need to compare the

average collapse pressure in the pure mercury and the bubbly mercury. In

order to calculate the collapse pressure, we need to know how the cavitation

bubbles grow and collapse under the pressure wave in the container. Since the

collapsed bubble size (< 0.1µm) is less than a millionth of the container size

26



(10cm), it is difficult to simulate directly the evolution of cavitation bubbles

in the entire container. Instead we did it in two steps.

First, we simulated the propagation of the pressure wave in the container

with the initial distribution given by Eq. (3.1). The simulation was carried

out for both the pure mercury and the mercury injected with non-dissolvable

gas bubbles. For the simulation of the bubbly mercury, the bubble surfaces

were tracked explicitly via the front tracking method that we have described.

The pressure relaxation caused by the cavitation was ignored in the simulation

of pressure waves in the container. We assumed that the growth and collapse

of cavitation bubbles is uncorrelated, namely that the far field liquid pressure

for a cavitation bubble is not significantly perturbed by relaxation waves from

neighboring cavitation bubbles. Since the distribution of cavitation centers is

unknown for mercury under such conditions, accounting for pressure relaxation

processes would contain a large amount of uncertainty.

In the second step, the collapse pressure of cavitation bubbles was cal-

culated by solving the Keller equation (Eq. (2.1)) under the liquid pressure

whose profile was obtained in the first step. A cavitation bubble consists of

vapor and non-condensable gas. The partial pressure of the vapor in the bub-

bles remains negligible compared to the pressure wave in the SNS, while the

partial pressure of the gas (typically air) changes violently. As a result, for

the estimation of the collapse pressure it suffices to calculate the growth and

collapse of the cavitation bubbles that consist of air only.
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3.3 Pressure Wave Propagation in the Container

Inferred from Eq. (3.1) for the initial pressure distribution, the strongest

pressure oscillation and consequently the most severe cavitation might be lo-

cated at the center of the entrance window, which was confirmed by the sim-

ulation. Therefore we compared the pressure profile at the spot in the pure

and the bubbly mercury. The pressure profile in the pure mercury is shown in

Figure 3.2, while the pressure profile in the mercury filled with air bubbles is

shown in Figure 3.3. It is readily seen that the pressure decayed much faster

with bubble injected as expected, since the bubbles absorbed the energy from

the pressure wave and spread it away from the entrance window. The pres-

sure oscillation in bubbly mercury was also more rapid due to the reflections

between bubbles. Both profiles can be approximately described by the formula

Pw(t) = Pw0e
− t

τ cos(
2πt

T
), (3.2)

where Pw0 is the pressure oscillation amplitude on the window right after

the bombard of the proton pulse, τ is the inverse of the attenuation rate,

and T is the oscillation period. From Figure 3.2 we found Pw0 = 500 bar,

τ = 0.94ms, T = 70µs for pure mercury. From Figure 3.3 we found Pw0 = 600

bar, τ = 50µs, T = 12µs for mercury filled with air bubbles of radius 1.0mm

and volume fraction 2.5%.
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Figure 3.2: The pressure profile at the center of the entrance window in the
pure mercury.
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Figure 3.3: The pressure profile at the center of the entrance window in the
mercury filled with air bubbles. Bubble radii are 1.0mm and the volume
fraction is 2.5%.
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3.4 Collapse Pressure of Cavitation Bubbles

The second step is the calculation of the collapse pressure of cavitation

bubbles. The Keller equation for the bubble growth and collapse in the weakly

compressible liquid was used for that purpose. With the ambient liquid pres-

sure obtained in the first step, the closed system of equations is

(1− 1

cf

dR

dt
)R

d2R

dt2
+

3

2
(1− 1

3cf

dR

dt
)(

dR

dt
)2 =

1

ρf

(1 +
1

cf

dR

dt
+

R

cf

d

dt
)(pB − p),

pg = pB +
2σ

R
,

pgR
3 = pg0R

3
0.

The p in the equation above is the difference between the ambient pressure

and the vapor pressure of mercury in the bubble, however the latter is much

smaller in our case and can be neglected. In the last equation, the gas pressure

in the bubble is associated with the bubble radius by the isothermal relation,

which is valid for the cavitation bubbles in SNS with R0 < 1µm.

To verify that R0 < 1µm for the majority of the cavitation bubbles, recall

that the cavitation bubble grows from a nucleus whose radius is bounded below

by the surface tension condition

2σ

R0

< −p.

For liquid mercury, σ = 0.48kg/s2, in SNS a typical tension of 100 bar gives

R0 > 0.1µm. So it is reasonable to assume the R0 of most cavitation bubbles

are between 0.1µm and 1µm.
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The pressure waves in both the pure mercury and the bubbly mercury

take on an attenuating sinusoidal form. Since the attenuation is slower than

the oscillation, to obtain the overall collapse pressure of cavitation bubbles we

could calculate it in the purely sinusoidal pressure wave and add it up over the

periods with an attenuating amplitude. The purely sinusoidal pressure wave

has the following form,

p(t) = P sin(
2πt

T
+ φ0), (3.3)

where φ0 is the initial phase angle when the cavitation bubble starts to grow

from a nucleus. φ0 must be within [-π,0] because for the bubbles to grow

the initial pressure must be below the saturated pressure of mercury, which is

almost 0 compared the the pressure wave in the SNS.

The typical bubble size evolutions with various φ0 are shown in Figure

3.4. It’s interesting to notice that the bubble does not always collapse – the

bubbles beginning to grow at φ0 < −0.8π continues to grow after a period.

Although they may collapse after two or more periods according to the Keller

equation, the associated collapse pressure is smaller since the ambient pressure

has attenuated. On the other hand, for φ0 within [-0.8π,0] the bubble collapses

to a small bubble within about a period. We are only interested in the first

collapse because it has the largest pressure and after that the bubble often

fissures into a cloud of tiny bubbles (cf. [5]) and the Keller equation no longer

applies. Figure 3.5 shows the dependence of the first collapse pressure Pc

on φ0. It is seen that the collapse pressure is highest for φ0 around −0.63π,

32



0 0.25 0.5 0.75 1 1.25 1.5
0

50

100

150

200

250

t / T

R
 (

 µ
m

 )

φ
0
 = − 0.9π 

φ
0
 = − 0.7π 

φ
0
 = − 0.5π 

φ
0
 = − 0.3π 

φ
0
 = − 0.1π 

Figure 3.4: Bubble size evolution with different φ0. R0 = 1.0µm, pg0 = 0.01
bar, P = 100 bar, T = 20µs.
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Figure 3.5: The first collapse pressure Pc vs. φ0 under the sinusoidal pressure
waves with different amplitude P and period T . The solid line and the dashed
line correspond to the pure mercury, the dotted line and the dash-dotted line
correspond to the mercury filled with air bubbles of radii 1.0mm and volume
fraction 2.5%.

and the average collapse pressure Pc is roughly one half of the peak value at

φ0 = −0.63π.

Neglecting the surface tension and the viscosity, which is justified by the

high pressure wave in the liquid, the Keller equation becomes a purely acoustic

equation so that Pc is a function of R0/cfT . On the other hand, so long

as pg0 ¿ |p|, the bubble grows before the first collapse to a maximum size

that depends only on the gas content pg0R
3
0 and the ambient pressure wave.

Therefore Pc is determined by the gas content pg0R
3
0 of the cavitation bubble
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rather than by R0 and pg0 independently. Combining the two observations,

we see that Pc is a function of P and pg0(R0/cfT )3. In fact, in the range of

P < 10 Kbar and T < 1ms, an empirical formula for Pc with P, T as variables

and pg0, R0 as parameters was obtained,

Pc(P, T )
.
=

1

2
Pc(P, T, φ0 = −0.63π)

.
=

93.0

2
(

P

ρfc2
f

)1.25(
pg0

ρfc2
f

(
R0

cfT
)3)−0.50 Kbar, (3.4)

with error less than 1%. The result agreed with the fact that the higher the

rate of stressing the fluid is experiencing, the higher tension can be sustained.

In the bubble injection regime, the period of pressure oscillation T decreases

which in turn reduces the cavitation bubble collapse pressure.

3.5 Efficiency of Cavitation Damage Mitigation

Our goal was to evaluate the mitigation of the cavitation damage by

the bubble injection, i.e. to find the ratio between the overall impact on

the container from the collapses of cavitation bubbles in the pure mercury

and the mercury with non-dissolvable gas bubbles. As mentioned in Section

3.2, we needed only to compare the average collapse pressure Pc. It’s worth

pointing out that, according to Eq. (3.4), Pc can be factored into two parts,

one depending on P and T, and the other one on pg0, R0. This implies that the

ratio between the two cases (with and without bubble injection) is independent

of the size of the initial nucleus and amount of gas in it as long as pg0 ¿ P .

To estimate quantitatively the efficiency of the cavitation mitigation on
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the entrance window by bubble injection, we found the average collapse pres-

sure in each period and took the sum over all the periods of the attenuating

sinusoidal pressure wave given in Eq. (3.2). In other words, we defined

S =
∞∑

n=0

Pc(Pw(nT ), T ) =
∞∑

n=0

Pc(Pw0e
−nT

τ , T ), (3.5)

where the summand is the average collapse pressure in the n’th period. The

overall cavitation damage is proportional to S. The ratio of S in pure mercury

and S in bubbly mercury was defined to be the mitigation efficiency, i.e.

E(β,R) =
S(β = 0)

S(β, R)
, (3.6)

where β and R are the volume fraction and mean radius of the injected bubbles.

Combining Eqs. (3.4) and (3.5), we obtain

S
.
= KP 1.25

w0 T 1.50

∞∑
n=0

e−1.25nT
τ = K

P 1.25
w0 T 1.50

1− e−1.25T
τ

, (3.7)

where K is a coefficient depending only on the cavitation nucleus and cancels

in E.

Using the data in the paragraph following Eq. (3.2), we found that

E(β = 2.5%, R = 1.0mm) = 32.7, which means the overall cavitation bub-

ble collapse pressure is reduced by more than 32 times. Varying β and R in

the simulation of pressure wave propagation we can easily measure the cor-

responding efficiency. For example, when β = 0.53% and R = 0.5mm, we

found Pw0 = 450 bar, τ = 44 µs, T = 16 µs. From Eqs. (3.6) and (3.7),
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E(0.53%, 0.5mm) = 42.9.

As a conclusion, we have confirmed the mitigation of cavitation by the

injection of non-dissolvable bubbles. More specifically, we have found that

the injection of bubbles with the volume fraction of order 1% reduces the

cavitation erosion by more than order of magnitude. At the same time, bubbles

absorb/disperse the energy and rapidly attenuate the pressure on the entrance

window of the SNS target so that the cavitation lasts for much shorter time.
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Chapter 4

Interfacial Dynamics of Phase Transitions

In Section 4.1 the governing equations and boundary conditions are listed.

Section 4.2 gives the alternative forms of the equations. In Section 4.3 and

Section 4.4 we present the analytical solutions to the problem with Riemann

data for the linearized equations with the temperature field decoupled, for

immiscible fluids and phase transitions respectively. In Section 4.5 we explored

the linearized equations with the pressure field decoupled. For both cases, the

solutions to the problem with Riemann data in the two limits κ → 0 and t → 0

are discussed. In Section 4.6 the problem with Riemann data for the nonlinear

equations are solved in both limits. The convergence of the solution to the

classical Riemann solution are analyzed using the method of travelling wave

solutions. Finally the wave structure of the solution are discussed.

4.1 Governing Equations and Boundary Conditions

The governing equations and boundary conditions at the vapor-liquid or

gas-liquid interface are described in detail in [27] and [35]. Away from the in-
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terface the governing equation is the Navier-Stokes equations for compressible

fluids with body force term. Since the thermal effect is normally dominant

over the viscous effect in bubbly flows [12] and phase transitions [29], viscosity

is neglected in our equations and the numerical algorithm. In the following

equations subscript i = v stands for vapor phase and i = l for liquid phase.

4.1.1 Governing Equations

The conservation equation of mass is

∂ρi

∂t
+∇ · (ρiui) = 0, (4.1)

where ρi is the density and ui is the velocity. The conservation equation of

momentum is

∂(ρiui)

∂t
+∇ · (ρiuiui) +∇pi = −ρi∇φ, (4.2)

where pi is the pressure, φ the time-independent specific potential of conserv-

ative force, e.g. φ = −g · r for constant gravitational force. The conservation

equation of energy is

∂(ρiEi)

∂t
+∇ · ((ρiEi + pi)ui) = −∇ · qi, (4.3)

where Ei is the specific total energy

E =
u2

2
+ φ + specific internal energy,
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and qi is the heat flux, which satisfies Fourier’s law of thermal conduction,

q = −κ∇T,

where T is the temperature and κ is the thermal conductivity.

The gas is considered as the ideal gas with γ-law property. The equation

of state for the liquid is of the stiffened polytropic (SPOLY) type, whose

parameters are chosen to fit the thermodynamical quantities at the specific

temperature and pressure. More details are given in Appendix A.

4.1.2 Boundary Conditions at Material Interface

Denote the mass flux across the interface from left to right by M and the

flux from liquid to vapor by Mev. Mev > 0 means evaporation and Mev < 0

means condensation. If the liquid is on the left side then M = Mev, otherwise

M = −Mev. In the following equations subscript n and τ stands for normal

and tangential respectively, ∆ denotes right side minus left side, bar stands

for arithmetic average between the two sides.

The boundary conditions for mass conservation is

∆un = M∆
1

ρ
= M∆V, (4.4)

where the positive direction of un points from left to right, and V stands for

the specific volume, i.e. the reciprocal of ρ. For the momentum conservation
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at boundary, Eq. (4.2) should be modified to include the surface tension

∂(ρiui)

∂t
+∇ · (ρiuiui) +∇pi +

∫

Γ

psδ(r− rs)nds = −ρi∇φ,

where Γ is the interface and ps is the pressure jump due to surface tension

that equals

ps = σ(κ1 + κ2),

where σ is the surface tension, while κ1 and κ2 are the principal curvatures of

the interface, which are positive when interface is convex toward the positive

n direction. Integrating the equation in an infinitesimally thin slice co-moving

with the interface, we can find the boundary condition for the momentum

conservation to be

∆p + ps + M∆un = 0, (4.5)

M∆uτ = 0, (4.6)

The energy conservation at boundary should also contain the surface energy

as following

∂(ρiEi)

∂t
+∇ · ((ρiEi + pi)ui) +

∫

Γ

ūnpsδ(r− rs)ds = ∇ · (κi∇Ti).

Integrating again, we have the boundary condition for the energy conservation

M(∆H − V̄ ∆p) + ∆qn = 0, (4.7)
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where H stands for the specific enthalpy

H = specific internal energy + pV.

Due to the thermal conduction, the temperature is continuous across the in-

terface, so

∆T = 0. (4.8)

Thermal contact

If the interface is the contact between two immiscible fluids, then by

definition there is no mass flux across the interface (yet the thermal conduction

is allowed, hence the name ”thermal contact”).

M = 0, (4.9)

so the quantity ∆H − V̄ ∆p on the left side of Eq. (4.7) is arbitrary. The

governing equations combined with the boundary conditions listed above Eqs.

(4.1)–(4.9) are closed. The normal velocity of the two phases are equal at the

contact, and also equal to the normal velocity of the interface.

Uph = un.

The interface is propagated at such velocity in the computation.
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Phase boundary

In case of phase transitions, M 6= 0 so the value of ∆H − V̄ ∆p plays an

important role in the interfacial dynamics. At equilibrium ∆H is defined as the

latent heat L. In some literatures, e.g. [35], ∆H is fixed to a constant, though

in reality L is not a constant. A better approximation of ∆H is obtained by

linearization near the ambient temperature as in [29], which gives

∆H(T ) = L(Tamb) + (T − Tamb)∆cp(Tamb),

where cp(Tamb) is evaluated at ambient temperature on the phase coexistence

curve. In fact, when the mass flux M is nonzero, the states on both sides of the

phase boundary are not on the phase coexistence curve simultaneously, and so

∆H deviates from the value at equilibrium. Strictly speaking, the value of ∆H

should be calculated from the EOS of the medium. Since our implementation

has complete EOS’s, specifically the SPOLY EOS for the liquid, we can embed

the latent heat into the EOS parameters such that ∆H can be evaluated during

phase transition at the correct pressure and temperature rather than on phase

coexistence curve. The details are given in Appendix A. The correction over

a constant ∆H may be small, but the energy is conserved exactly at least

formally. In practice if the variation of interface temperature is so large that

the latent heat cannot be regarded as a constant or directly embedded into the

EOS parameters, both the latent heat and the phase coexistence curve should

be tabulated and coded into the EOS as extra parameters.

Since the value of M is unknown, we need one more equation to close the
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system. The kinetic theory of evaporation gives the evaporation rate with a

coefficient determined experimentally. The derivation below follows Alty and

Mackay [3].

Under certain temperature T and pressure p, the molecular velocity of the

vapor, which is treated as ideal gas, has Maxwell distribution. So the number

density

n(u) ∝ exp(− mu2

2kBT
),

where m is the molecular mass and kB the Boltzman constant. The total mass

flux of vapor molecules hitting an interface is

m

∫ ∫ ∫

ux>0

duxduyduzn(u)ux

=
mN

2
ūx =

mN

4
ū =

p√
2πRT

,

where N is the total number of molecules per unit volume and R = kB/m.

Not all molecules hitting the phase boundary condense into liquid. The ratio

of molecules condensing into liquid over the total number hitting the phase

boundary is called evaporation coefficient or sometimes condensation coeffi-

cient and denoted by α, which is a number between 0 and 1. Then the mass

flux of the condensing vapor is

α
p√

2πRT

at equilibrium. Since the net mass flux cancels at equilibrium, so the mass

flux of evaporating liquid is the same as that of condensing vapor. Denote
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the equilibrium pressure at temperature T by psat(T ), then the mass flux of

evaporating liquid is

α
psat(T )√
2πRT

.

If the temperature is sufficiently lower than the critical temperature of the

material, the rate at which molecules leave the liquid is not affected appreciably

by the presence of surrounding vapor, so that the mass flux of evaporating

liquid is still as above even when the liquid is not at equilibrium with the

vapor. Therefore, the net mass flux of evaporation is

Mev = α
psat(T )− pv√

2πRT
. (4.10)

The measurement of α is difficult and values ranges from 0.04 [3] and

below [9, 17] to 0.4 [35] and above [23]. A nice review on the experiments and

theories on the evaporation coefficient can be found in [23].

To implement Eq. (4.10) in the computation we need to know the func-

tion psat(T ), which can be derived from the well-known Clausius-Clapeyron

equation

dP

dT
=

∆S

∆V
=

L

T (Vv − Vl)
,

where S stands for specific entropy. Provided the exact EOS for both phases

with latent heat embedded, the phase coexistence curve can be determined

exactly from the EOS’s as the (p, T ) pairs at which the specific Gibbs energy

G = H − TS of both phases equal. In practice, the phase coexistence curve is

often tabulated. For temperature outside the tabulated range, we can extrap-
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olate the curve by integrating the Clausius-Clapeyron equation with a fixed

L, which gives

psat(T ) = psat(T0) exp(
L

Rv

(
1

T0

− 1

T
)).

Eqs. (4.1)–(4.10) is a closed system of equations. The normal velocity of

two phases are not equal at the phase boundary. An equivalent form of the

boundary condition for mass conservation Eq. (4.4) gives the normal velocity

of the phase boundary,

Uph =
∆(ρun)

∆ρ
.

The interface is propagated at such velocity in the computation.

4.2 Alternative Forms of the Conservation Laws

4.2.1 Conservation Laws with Rotational Symmetry

When the physical problem has geometrical symmetry it is often more

efficient to reduce the dimension of the system by working in cylindrical or

spherical geometry. The conservation laws Eqs. (4.1)–(4.3) in planar or rota-

tional symmetric coordinates are

∂ρ

∂t
+

∂ρu

∂xi

+ αi
ρu

xi

= 0,

∂ρu

∂t
+

∂(ρu2 + p)

∂xi

+ αi
ρu2

xi

= −ρ
∂φ

∂xi

,

∂ρu′

∂t
+

∂ρuu′

∂xi

+ αi
ρuu′

xi

= 0,

∂ρE

∂t
+

∂(ρE + p)u

∂xi

+ αi
(ρE + p)u

xi

= − ∂q

∂xi

− αi
q

xi

, (4.11)
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where u and u′ are the velocities along xi and perpendicular to xi respectively,

q is the heat flux along xi. αi is the geometrical constant, which is nonzero only

in rotational symmetry and when xi is the first coordinate, i.e. r in cylindrical

or spherical coordinates. In those two cases, α = 1 for cylindrical geometry

while α = 2 for spherical geometry. Please be aware that this geometrical

constant α has nothing to do with the evaporation coefficient in Eq. (4.10),

which is usually also denoted by α.

4.2.2 Conservation Laws on the Interface

The conservation laws projected into the normal direction of the interface

are

∂ρ

∂t
+

∂ρu

∂n
+ αN0

ρu

r
= 0,

∂ρu

∂t
+

∂(ρu2 + p)

∂n
+ αN0

ρu2

r
= −ρ

∂φ

∂n
,

∂ρu′

∂t
+

∂ρuu′

∂n
+ αN0

ρuu′

r
= 0,

∂ρE

∂t
+

∂(ρE + p)u

∂n
+ αN0

(ρE + p)u

r
= − ∂q

∂n
− αN0

q

r
,

where n is the normal direction of the interface, u and u′ the normal and

tangential velocity respectively, q is the normal heat flux. N0 is the x compo-

nent of the n. ∂
∂n

is the directional derivative in the direction n. The above

equations are similar to those given in [21] except for the thermal conduction
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terms. The noncharacteristic version of the above equations is

Dρ

Dt
+ ρ(

∂u

∂n
+ αN0

u

r
) = 0,

Du

Dt
+

1

ρ

∂p

∂n
= −∂φ

∂n
,

Du′

Dt
= 0,

De

Dt
+ p

DV

Dt
= −1

ρ
(
∂q

∂n
+ αN0

q

r
),

where e and V are the specific internal energy and specific volume, while D
Dt

is the Lagrangian derivative

D

Dt
=

∂

∂t
+ u

∂

∂n
.

A convenient form of the conservation laws at the interface for numerical

algorithms is the characteristic form.

dp

dλ+

+ αN0
ρc2u

r
+ ρc

du

dλ+

= −ρc
∂φ

∂n
− Γ(

∂q

∂n
+ αN0

q

r
), (4.12)

dp

dλ−
+ αN0

ρc2u

r
− ρc

du

dλ−
= ρc

∂φ

∂n
− Γ(

∂q

∂n
+ αN0

q

r
), (4.13)

du′

dλ0

= 0, (4.14)

de

dλ0

+ p
dV

dλ0

= −1

ρ
(
∂q

∂n
+ αN0

q

r
). (4.15)

where

c =

√(
∂p

∂ρ

)

S

is the sound speed and S is the specific entropy. Γ is the Gruneisen coefficient
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[36]

Γ = V

(
∂p

∂e

)

V

=
V

T

(
∂p

∂S

)

V

.

For both POLY and SPOLY EOS’s, Γ = γ−1, where γ is the polytropic index.

The characteristic derivatives λ± and λ0 are defined by

d

dλ±
=

∂

∂t
+ (u± c)

∂

∂n
,

d

dλ0

=
∂

∂t
+ u

∂

∂n
. (4.16)

Notice the important difference in the characteristic equations that the entropy

S is no longer conserved.

From the second law of thermodynamics, TdS = de + pdV , Eqs. (4.12)

and (4.13) can be verified as following,

dp

dλ±
+ αN0

ρc2u

r
± ρc

du

dλ±

=
Dp

Dt
± c

∂p

∂n
+ αN0

ρc2u

r
± ρc(

Du

Dt
± c

∂u

∂n
)

=
Dp

Dt
+ ρc2(

∂u

∂n
+ αN0

u

r
)± c(ρ

Du

Dt
+

∂p

∂n
)

=
Dp

Dt
− c2 Dρ

Dt
∓ ρc

∂φ

∂n

=
Dp

Dt
−

(
∂p

∂ρ

)

S

Dρ

Dt
∓ ρc

∂φ

∂n

=

(
∂p

∂S

)

ρ

DS

Dt
∓ ρc

∂φ

∂n

= −
(

∂p

∂S

)

V

· V

T
(
∂q

∂n
+ αN0

q

r
)∓ ρc

∂φ

∂n

= −Γ(
∂q

∂n
+ αN0

q

r
)∓ ρc

∂φ

∂n
.
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An equivalent form of Eq. (4.15) is

−(
∂q

∂n
+ αN0

q

r
) = ρ(

de

dλ0

+ p
dV

dλ0

)

= ρ
DH

Dt
− Dp

Dt

= ρcp
DT

Dt
+ (ρ

(
∂H

∂p

)

T

− 1)
Dp

Dt

= ρcp
DT

Dt
− βT

Dp

Dt
, (4.17)

where β is the coefficient of thermal expansion [36],

β =
1

V

(
∂V

∂T

)

p

.

For ideal gas βT ≡ 1. For liquid, e.g. water in room temperature, βT ¿ 1.

If the heat flux satisfies Fourier’s law of thermal conduction, i.e. q =

−κ∇T , then the Eqs. (4.12)–(4.15) is a parabolic system. The problem with

Riemann data does not have the classical self-similar solution.

To have a flavor of the solution, let us investigate the linearized equations

without gravity in one-dimensional planar geometry. For clarity the equations

are listed below, in which Eq. (4.17) has been substituted for Eq. (4.15).

∂(p + mu)

∂t
+ c

∂(p + mu)

∂x
= Γκ

∂2T

∂x2
,

∂(p−mu)

∂t
− c

∂(p−mu)

∂x
= Γκ

∂2T

∂x2
,

ρcp
∂T

∂t
− βT

∂p

∂t
= κ

∂2T

∂x2
,

where m = ρc and all other coefficients c, κ, Γ, ρcp and βT are taken to be
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constants. If βT 6= 0 and Γ 6= 0, the equations above are coupled and hard to

solve analytically. On the other hand, if βT is neglected, which is justified for

most liquids, the system is decoupled. We can solve the temperature equation

analytically and substitute the solution for the right-hand-side of the other two

equations. In this case the parabolic (temperature) field revises the hyperbolic

(pressure and velocity) fields. On the other hand, if Γ is taken to be zero, then

the pressure and velocity can be solved directly and substituted for the ∂p
∂t

term

in the thermal equation. Here the hyperbolic fields revise the parabolic field. If

neither βT nor Γ vanishes, the two types of fields closely interact. Closed form

solution hasn’t been derived even for linearized equations. However, from the

observation on the solution in the two special cases mentioned above, aspects

of the solution in certain limits can be derived. The following is the detail.

4.3 Analytical Solution for Immiscible Fluids: Temper-

ature Field Decoupled

First let us consider the case that βT vanishes. The temperature field

is decoupled from the hyperbolic fields, and the isentropes coincide with the

isotherms. Since the thermal contact is simpler than phase boundary, we will

begin with thermal contact. Assume the two phases to the left and right of

the origin satisfy the linearized equations with different coefficients, and the

Cauchy data in each phase is constant as in the Riemann problem. More
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clearly,

∂(pl + mlul)

∂t
+ cl

∂(pl + mlul)

∂x
= Γlκl

∂2Tl

∂x2
, (4.18)

∂(pl −mlul)

∂t
− cl

∂(pl −mlul)

∂x
= Γlκl

∂2Tl

∂x2
, (4.19)

(ρcp)l
∂Tl

∂t
= κl

∂2Tl

∂x2
, (4.20)

∂(pr + mrur)

∂t
+ cr

∂(pr + mrur)

∂x
= Γrκr

∂2Tr

∂x2
, (4.21)

∂(pr −mrur)

∂t
− cr

∂(pr −mrur)

∂x
= Γrκr

∂2Tr

∂x2
, (4.22)

(ρcp)r
∂Tr

∂t
= κr

∂2Tr

∂x2
, (4.23)

with Cauchy data

(pl, ul, Tl)(t = 0) = (pl0, ul0, Tl0)

(pr, ur, Tr)(t = 0) = (pr0, ur0, Tr0).

The condition at the interface is

pl(x = 0) = pr(x = 0) (4.24)

ul(x = 0) = ur(x = 0) (4.25)

Tl(x = 0) = Tr(x = 0) (4.26)

κl

(
∂Tl

∂x

)

x=0

= κr

(
∂Tr

∂x

)

x=0

. (4.27)
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4.3.1 Analytical Solution

Temperature

From Eqs. (4.20), (4.23), (4.26), (4.27) and the Cauchy data we can derive

the analytical solution for the temperature field.

Tl(t, x) = Tm − (Tl0 − Tm)erf(
x√
4νlt

), (4.28)

Tr(t, x) = Tm + (Tr0 − Tm)erf(
x√
4νrt

), (4.29)

where

Tm =
Tl0

√
(ρcpκ)l + Tr0

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

, (4.30)

and ν = κ/(ρcp). Erf is the error function defined as

erf(x) =
2√
π

∫ x

0

e−y2

dy.

From Eqs. (4.28) and (4.29) we know

∂2Tl

∂x2
(t, x) = (Tl0 − Tm)

x

νlt
√

4πνlt
e
− x2

4νlt ,

∂2Tr

∂x2
(t, x) = −(Tr0 − Tm)

x

νrt
√

4πνrt
e−

x2

4νrt .
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Figure 4.1: The characteristics of the linearized equations for two-phase flows.

Incoming waves

Substituting the equations into the right-hand-side of Eq. (4.18), integra-

tion along the characteristic λl+ as shown in Figure 4.1, we have

(pl + mlul)(t, x)

= (pl + mlul)(0, x− clt) + Γlκl

∫ t

0

∂2Tl

∂x2
(τ, x + cl(τ − t))dτ

= pl0 + mlul0 + Γlκl(Tl0 − Tm)

∫ t

0

x + cl(τ − t)

νlτ
√

4πνlτ
e
− (x+cl(τ−t))2

4νlτ dτ,

which is valid for x < 0.

Similarly, integrating Eq. (4.22) along the characteristic λr− in Figure
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4.1, we have

(pr −mrur)(t, x)

= (pr −mrur)(0, x + crt) + Γrκr

∫ t

0

∂2Tr

∂x2
(τ, x− cr(τ − t))dτ

= pr0 −mrur0 − Γrκr(Tr0 − Tm)

∫ t

0

x− cr(τ − t)

νrτ
√

4πνrτ
e−

(x−cr(τ−t))2

4νrτ dτ,

which is valid for x > 0.

Outgoing waves

For points below the left dashed line in Figure 4.1, i.e. x < −clt, we can

integrate Eq. (4.19) along the characteristic λl− to obtain

(pl −mlul)(t, x)

= (pl −mlul)(0, x + clt) + Γlκl

∫ t

0

∂2Tl

∂x2
(τ, x− cl(τ − t))dτ

= pl0 −mlul0 + Γlκl(Tl0 − Tm)

∫ t

0

x− cl(τ − t)

νlτ
√

4πνlτ
e
− (x−cl(τ−t))2

4νlτ dτ.

On the other hand, for points in the left half space and above the left dashed

line, i.e. −clt < x < 0, we need to integrate from the interface, where the

state is determined by the information coming along characteristics λl+ and

λr− and boundary conditions Eqs. (4.24) and (4.25). At the interface x = 0,

p(t, 0) =
mr(pl + mlul)(t, 0) + ml(pr −mrur)(t, 0)

mr + ml

,

u(t, 0) =
(pl + mlul)(t, 0)− (pr −mrur)(t, 0)

mr + ml

.

55



So for −clt < x < 0 we have

(pl −mlul)(t, x)

= (pl −mlul)(t +
x

cl

, 0) + Γlκl

∫ t

t+ x
cl

∂2Tl

∂x2
(τ, x− cl(τ − t))dτ

= p(t +
x

cl

, 0)−mlu(t +
x

cl

, 0) +

Γlκl(Tl0 − Tm)

∫ t

t+ x
cl

x− cl(τ − t)

νlτ
√

4πνlτ
e
− (x−cl(τ−t))2

4νlτ dτ.

Similarly for points below the right dashed line in Figure 4.1, i.e. x > crt,

we can integrate Eq. (4.21) along the characteristic λr+ to obtain

(pr + mrur)(t, x)

= (pr + mrur)(0, x− crt) + Γrκr

∫ t

0

∂2Tr

∂x2
(τ, x + cr(τ − t))dτ

= pr0 + mrur0 − Γrκr(Tr0 − Tm)

∫ t

0

x + cr(τ − t)

νrτ
√

4πνrτ
e−

(x+cr(τ−t))2

4νrτ dτ.

And for 0 < x < crt,

(pr + mrur)(t, x)

= (pr + mrur)(t− x

cr

, 0) + Γrκr

∫ t

t− x
cr

∂2Tr

∂x2
(τ, x + cr(τ − t))dτ

= p(t− x

cr

, 0) + mru(t− x

cr

, 0)−

Γrκr(Tr0 − Tm)

∫ t

t− x
cr

x + cr(τ − t)

νrτ
√

4πνrτ
e−

(x+cr(τ−t))2

4νrτ dτ.

From pl ±mlul and pr ±mrur we can readily calculate pl, ul, pr and ur, thus

the analytic solution of the state has been given for all space-time points.
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4.3.2 Example

To visualize the pressure and velocity distribution let us consider the

following special case.

(pl0, ul0, Tl0) = (0, 0, 1),

(pr0, ur0, Tr0) = (0, 0, 0). (4.31)

and

(Γ, κ, ρcp, c,m)l = (1, 1, 1, 1, 1),

(Γ, κ, ρcp, c, m)r = (
1

2
,
1

2
,
1

2
,
1

2
, 1). (4.32)

Figure 4.2 shows the plots of pressure and velocity at specific times. The

pressure and velocity waves propagates at sound speed cl to the left and cr to

the right. The wave is purely due to thermal conduction because initially the

left and right side have the same pressure and are both at rest. The physical

explanation for the pressure wave is simple – Tl0 > Tr0 so there is heat flux from

left to right, the pressure on the right side rises along with the temperature

while the pressure on the left side decreases, which in turn induces a leftward

flow. It agrees with the common sense that heat difference causes the air flow.

From Figure 4.2(a) and Figure 4.2(b) we can see that the solution is

nowhere constant as contrast to the classical Riemann solution. Since the

wave is propagating leftward, the left wave is shock while the right one is

rarefaction. At the contact, which is fixed at origin in this case, T , p and u
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Figure 4.2: Pressure and velocity fields with initial conditions and parameters
given in Eqs. (4.31) and (4.32). (a) is p(x), (b) is u(x). In both figures, dotted
line is for t = 0+, dashed line is for t = 0.1, solid line is for t = 1.
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are all conserved, though density and energy can have discontinuity as usual.

The ”mid state” is varying with both time and space, so it is not well-defined

in the classical sense. However, we can investigate two limit cases, namely,

t →∞ and t → 0.

4.3.3 Asymptotic Solution in the Adiabatic Limit

First let us consider the case that t → ∞. By scaling the conservation

laws, it is easy to see that the limit κ → 0 is equivalent to the limit that t →∞
and x → ∞ simultaneously while keeping x/t unchanged. Therefore this is

the limit of vanishing thermal conductivity, in other words, the adiabatic limit.

We might expect the problem to be reduced to the classical Riemann problem

in this limit, however it is not quite true due to the condition of temperature

continuity that is absent in the classical Riemann problem. Figure 4.3 shows

the plots of pressure and velocity with decreasing thermal conductivity κ. It

is seen that the amplitude of the pressure and velocity wave does not vanish in

the limit of κ → 0, yet the width of the pressure and velocity peak approaches

0. Next we will prove it rigorously and derive the limit peak values of the

pressure and velocity waves.

Thermal effect

The effect of the thermal conduction can be understood as a linear su-

perposition onto the classical Riemann solution. If the thermal conduction

is absent, then the characteristics λl+ and λr− intersect at the interface and

determine the mid state and thus the global piecewise constant solution struc-
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Figure 4.3: Pressure and velocity fields with various thermal conductivity.
(pl0, ul0, Tl0) = (0, 0, 1), (pr0, ur0, Tr0) = (0, 0, 0). (Γ, ρcp, c, m)l = (1, 1, 1, 1),
(Γ, ρcp, c, m)r = (0.5, 0.5, 0.5, 1). (a) is p(x) at t = 1, (b) is u(x) at t = 1. In
both figures, dotted line is for κl = 1 and κr = 0.5, dashed line is for κl = 0.1
and κr = 0.05, solid line is for κl = 0.01 and κr = 0.005.
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ture. Here we are interested in the addition to the pressure and velocity waves

from the effect of thermal conduction, denoted by ∆Th. For example,

∆Th(pl + mlul)(t, x) = Γlκl(Tl0 − Tm)

∫ t

0

x + cl(τ − t)

νlτ
√

4πνlτ
e
− (x+cl(τ−t))2

4νlτ dτ.

and

∆Thp(t, 0) =
mr∆Th(pl + mlul)(t, 0) + ml∆Th(pr −mrur)(t, 0)

mr + ml

.

Limit solution

First we prove the thermal conduction has no effect away from the shock

front or rarefaction in the limit of vanishing thermal conductivity. For the

waves outside the fronts (|x| > ct), two lemmas are proven below for the left

and right going characteristics.

Lemma 4.3.1 If x > 0 then

lim
ν→0

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ = 0
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Proof:

| lim
ν→0

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ |

≤ lim
ν→0

∫ t

0

x + ct

τ
√

4πντ
exp(− x2

4ντ
)dτ

= (x + ct) lim
ν→0

∫ νt

0

ds

s
√

4πs
e−

x2

4s

=
x + ct

x
lim
ν→0

2√
π

∫ ∞

x
2
√

νt

e−y2

dy

=
x + ct

x
lim
ν→0

(1− erf(
x

2
√

νt
))

= 0.

Lemma 4.3.2 If ε = x− ct > 0, then

lim
ν→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 0

Proof:

lim
ν→0

lim
ε→0+

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

= lim
ν→0

lim
ε→0+

∫ t

0

ε + cτ

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

= lim
ν→0

lim
ε→0+

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

+ lim
ν→0

lim
ε→0+

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ
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The first term

lim
ν→0

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

e−
cε
2ν

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy

= 0,

since the last integral is bounded and

lim
ν→0

e−
cε
2ν = 0.

Similarly, the second term

lim
ν→0

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

e−
cε
2ν

∫ c
2

√
t
ν

0

e−y2

exp(−(
cε

4νy
)2)dy

= 0.

For x > crt, from Lemma 4.3.1

lim
ν→0

∆Th(pr −mrur) = 0,

and from Lemma 4.3.2

lim
ν→0

∆Th(pr + mrur) = 0,
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so limν→0 ∆Th(pr) = 0 and limν→0 ∆Th(ur) = 0. The case of x < clt is similar.

For the waves inside the fronts (|x| < ct), two more lemmas are needed.

Lemma 4.3.3 For x = 0,

lim
t→∞

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ = 0

Proof:

lim
t→∞

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ

= lim
t→∞

∫ t

0

c(t− τ)

τ
√

4πντ
exp(−c2(t− τ)2

4ντ
)dτ

=
2√
π

lim
t→∞

∫ ∞

c
2

√
t
ν

(1− c2t

4νy2
) exp(−y2(1− c2t

4νy2
)2)dy

=
2√
π

lim
α= c

2

√
t
ν
→∞

∫ ∞

α

(1− (
α

y
)2) exp(−y2(1− (

α

y
)2)2)dy

= lim
α→∞

2√
π

∫ α+ 3√α

α

(1− (
α

y
)2) exp(−y2(1− (

α

y
)2)2)dy

+ lim
α→∞

2√
π

∫ ∞

α+ 3√α

(1− (
α

y
)2) exp(−y2(1− (

α

y
)2)2)dy

≤ 2√
π

lim
α→∞

[

∫ α+ 3√α

α

(1− (
α

α + 3
√

α
)2)dy +

∫ ∞

α+ 3√α

exp(−(y − α2

α + 3
√

α
)2)dy]

≤ lim
α→∞

[
2√
π

2
3
√

α
+ 1− erf( 3

√
α)]

= 0.

Lemma 4.3.4 If 0 < x < ct, then

lim
ν→0

∫ t

t−x
c

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 0
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Proof: Denote ε = ct− x, we have

lim
ν→0

∫ t

t−x
c

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

=
2√
π

lim
ν→0

∫ 1
2

√
cx
ν

0

dy(1 +
εc

4νy2
)−

3
2 exp(− y2

1 + εc
4νy2

).

Obviously it is nonnegative. Since y ≤ 1
2

√
cx
ν
, 1 + εc

4νy2 ≤ εc
4νy2 (1 + x

ε
), and so

2√
π

lim
ν→0

∫ 1
2

√
cx
ν

0

dy(1 +
εc

4νy2
)−

3
2 exp(− y2

1 + εc
4νy2

).

≤ 2√
π

lim
ν→0

∫ 1
2

√
cx
ν

0

dy(
εc

4νy2
)−

3
2 exp(− y2

εc
4νy2 (1 + x

ε
)
).

= lim
ν→0

ε + x

ε

√
ν

πεc
(1− exp(− c

4ν

x2

ε + x
))

= 0.

For 0 < x < crt, first applying Lemma 4.3.3 on both sides (along λl+

and λr−) we see limν→0 ∆Th(pbd) = 0 and limν→0 ∆Th(ubd) = 0, where pbd and

ubd stand for the pressure and velocity on the interface. Then from Lemma

4.3.1 and Lemma 4.3.4 we draw the same conclusion as for x > crt. The

case of −clt < x < 0 is similar. As a summary, away from the shock front

or rarefaction, the thermal conduction has no effect in the limit of vanishing

thermal conductivity. However it is not so at the front. Again we consider

waves outside the fronts first.
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Lemma 4.3.5 If x = ct then

lim
ν→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 1

Proof:

lim
ν→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

= lim
ν→0

∫ t

0

c√
4πντ

e−
c2

4ν
τdτ

=
2√
π

lim
ν→0

∫ c
2

√
t
ν

0

e−y2

dy

= lim
ν→0

erf(
c

2

√
t

ν
)

= 1.

Lemma 4.3.6 Define ε = x− ct, then

lim
ν→0

lim
ε→0+

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 2

Proof: As the proof of Lemma 4.3.2, the integral can be written as the sum of
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two terms. Now the first term

lim
ν→0

lim
ε→0+

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

lim
ε→0+

∫ ∞

ε√
4νt

exp(−(y +
cε

4νy
)2)dy

=
2√
π

lim
ν→0

lim
ε→0+

e−
cε
2ν

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy

=
2√
π

lim
ν→0

lim
ε→0+

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy.

It is bounded from above by erf(∞) = 1. We can show it is also bounded from

below by 1. Indeed,

2√
π

lim
ν→0

lim
ε→0+

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy.

≥ 2√
π

lim
ν→0

lim
ε→0+

∫ ∞

max( ε√
4νt

,
√

cε
4ν

)

e−y2

exp(−(
cε

4νy
)2)dy

≥ 2√
π

lim
ν→0

lim
ε→0+

e−
cε
4ν

∫ ∞

max( ε√
4νt

,
√

cε
4ν

)

e−y2

dy

= lim
ν→0

lim
ε→0+

e−
cε
4ν (1− erf(max(

ε√
4νt

,

√
cε

4ν
))

= 1.

Comparing the second term with Lemma 4.3.5 we can see that it is bounded
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from above by 1. Similarly it is also bounded from below by 1. Indeed,

lim
ν→0

lim
ε→0+

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

lim
ε→0+

∫ c
2

√
t
ν

0

exp(−(y +
cε

4νy
)2)dy

=
2√
π

lim
ν→0

lim
ε→0+

e−
cε
2ν

∫ c
2

√
t
ν

0

e−y2

exp(−(
cε

4νy
)2)dy

≥ 2√
π

lim
ν→0

lim
ε→0+

∫ c
2

√
t
ν

√
cε
4ν

e−y2

exp(−(
cε

4νy
)2)dy

≥ 2√
π

lim
ν→0

lim
ε→0+

e−
cε
4ν

∫ c
2

√
t
ν

√
cε
4ν

e−y2

dy

= lim
ν→0

lim
ε→0+

e−
cε
4ν (erf(

c

2

√
t

ν
)− erf(

√
cε

4ν
))

= 1.

First let x− crt → 0+ for the right wave. Lemma 4.3.1 gives

lim
ν→0

lim
x−crt→0+

∆Th(pr −mrur) = 0

as before. Yet Lemma 4.3.6 gives

lim
ν→0

lim
x−crt→0+

∆Th(pr + mrur) = 2Γr(ρcp)r(Tm − Tr0).
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Therefore

lim
ν→0

lim
x−crt→0+

∆Thpr = Γr(ρcp)r(Tm − Tr0)

= Γr(ρcp)r(Tl0 − Tr0)

√
(ρcpκ)l√

(ρcpκ)l +
√

(ρcpκ)r

lim
ν→0

lim
x−crt→0+

∆Thur =
1

mr

Γr(ρcp)r(Tm − Tr0)

=
1

mr

Γr(ρcp)r(Tl0 − Tr0)

√
(ρcpκ)l√

(ρcpκ)l +
√

(ρcpκ)r

.

Similarly for the left wave,

lim
ν→0

lim
x+clt→0−

∆Thpl = Γl(ρcp)l(Tr0 − Tl0)

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

lim
ν→0

lim
x+clt→0−

∆Thul = − 1

ml

Γl(ρcp)l(Tr0 − Tl0)

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

,

For the height of waves inside the fronts, two more lemmas are needed.

Lemma 4.3.7 For 0 < x < ct, denote ε = ct− x, we have

lim
ν→0

lim
ε→0+

∫ t

t−x
c

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 1
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Proof: Denote ε = ct− x, we have

lim
ν→0

lim
ε→0+

∫ t

t−x
c

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

=
2√
π

lim
ν→0

lim
ε→0+

∫ 1
2

√
cx
ν

0

dy(1 +
εc

4νy2
)−

3
2 exp(− y2

1 + εc
4νy2

)

=
2√
π

lim
ν→0

lim
ε→0+

∫ 3
√

εc
4ν

0

dy(1 +
εc

4νy2
)−

3
2 exp(− y2

1 + εc
4νy2

)

+
2√
π

lim
ν→0

lim
ε→0+

∫ 1
2

√
cx
ν

3
√

εc
4ν

dy(1 +
εc

4νy2
)−

3
2 exp(− y2

1 + εc
4νy2

).

The first term vanishes since the integral domain width vanishes in the limit

ε → 0. In the second term

ε

x
≤ εc

4νy2
≤ 3

√
εc

4ν
,

so the second term equals

2√
π

lim
ν→0

lim
ε→0+

∫ 1
2

√
cx
ν

3
√

εc
4ν

dye−y2

= 1.

Lemma 4.3.8 For x = 0,

lim
t→0

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ = 1
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Proof:

lim
t→0

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ

=
2√
π

lim
α= c

2

√
t
ν
→0

∫ ∞

α

(1− (
α

y
)2) exp(−y2(1− (

α

y
)2)2)dy.

As we have done several times the domain of the integral can be divided into

two subdomains, namely, [α,
√

α] and [
√

α,∞). The integral in the first sub-

domain vanishes in the limit of α → 0, while the one in the second subdomain

approaches limα→0 1− erf(α) = 1 since (α
y
)2 < α in the subdomain.

Note: In this lemma, the limit is taken at t → 0 unlike the limit of ν → 0

in all previous lemmas.

Let x − crt → 0− for the right wave. Lemma 4.3.8 applied on the right

side along λr− gives

lim
t→0

∆Th(pr −mrur)(t, 0) = Γr(ρcp)r(Tm − Tr0),

and applied on the left side along λl+ gives

lim
t→0

∆Th(pl + mlul)(t, 0) = Γl(ρcp)l(Tm − Tl0).

So

lim
t→0

∆Thp(t, 0) =
mrΓl(ρcp)l(Tm − Tl0) + mlΓr(ρcp)r(Tm − Tr0)

mr + ml

,

and

lim
t→0

∆Thu(t, 0) =
Γl(ρcp)l(Tm − Tl0)− Γr(ρcp)r(Tm − Tr0)

mr + ml

.
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Applying Lemma 4.3.7 we have

lim
ν→0

lim
x−crt→0−

∆Th(pr + mrur)

= lim
ν→0

[lim
t→0

∆Thp(t, 0) + mr lim
t→0

∆Thu(t, 0)] + Γr(ρcp)r(Tm − Tr0)

=
mrΓl(ρcp)l(Tm − Tl0) + mlΓr(ρcp)r(Tm − Tr0)

mr + ml

+mr
Γl(ρcp)l(Tm − Tl0)− Γr(ρcp)r(Tm − Tr0)

mr + ml

+ Γr(ρcp)r(Tm − Tr0)

= 2
mrΓl(ρcp)l(Tm − Tl0) + mlΓr(ρcp)r(Tm − Tr0)

mr + ml

.

Using Lemma 4.3.1 again we have

lim
ν→0

lim
x→crt−

∆Thpr =
mrΓl(ρcp)l(Tm − Tl0) + mlΓr(ρcp)r(Tm − Tr0)

mr + ml

=
Tr0 − Tl0

mr + ml

Γl(ρcp)lmr

√
(ρcpκ)r − Γr(ρcp)rml

√
(ρcpκ)l√

(ρcpκ)l +
√

(ρcpκ)r

lim
ν→0

lim
x→crt−

∆Thur =
Tr0 − Tl0

mr(mr + ml)

Γl(ρcp)lmr

√
(ρcpκ)r − Γr(ρcp)rml

√
(ρcpκ)l√

(ρcpκ)l +
√

(ρcpκ)r

.

Similarly for the left wave inside the front,

lim
ν→0

lim
x→−clt+

∆Thpl = lim
ν→0

lim
x→crt−

∆Thpr

=
Tr0 − Tl0

mr + ml

Γl(ρcp)lmr

√
(ρcpκ)r − Γr(ρcp)rml

√
(ρcpκ)l√

(ρcpκ)l +
√

(ρcpκ)r

lim
ν→0

lim
x→−clt+

∆Thul = − Tr0 − Tl0

ml(mr + ml)

Γl(ρcp)lmr

√
(ρcpκ)r−Γr(ρcp)rml

√
(ρcpκ)l√

(ρcpκ)l+
√

(ρcpκ)r

.

For visualization the schematic of the eight lemmas is shown in Figure 4.4.

Each line corresponds to a lemma. The number on each line is the normalized
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Figure 4.4: Schematic of the eight lemmas. Each line corresponds to a lemma.
The number on each line is the normalized integral of Txx along the charac-
teristic, or equivalently, the normalized ∆Th of the Riemann invariants.

integral of Txx along the line, representing the thermal contribution to the

change of the Riemann invariants.

We can compare the results listed above with the example given in Section

4.3.2. From Figure 4.3 it is clear that the width of the pressure and velocity

peaks approaches zero in the adiabatic limit. The peak values given in the
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previous formulas are

lim
ν→0

lim
x−crt→0+

∆Thpr =
1

6
, lim

ν→0
lim

x−crt→0+
∆Thur =

1

6
;

lim
ν→0

lim
x−crt→0−

∆Thpr = − 1

12
, lim

ν→0
lim

x−crt→0−
∆Thur = − 1

12
;

lim
ν→0

lim
x+clt→0−

∆Thpl = −1

3
, lim

ν→0
lim

x+clt→0−
∆Thul =

1

3
;

lim
ν→0

lim
x+clt→0+

∆Thpl = − 1

12
, lim

ν→0
lim

x+clt→0+
∆Thul =

1

12
.

They all agree with the solutions shown in Figure 4.3. The peak on the mid

side of the left shock front is invisible because it has the same sign as the peak

value on the other side of the front.

We can further investigate the profile of the pressure peak in the adi-

abatic limit. We prove below that the width of the pressure peaks in the

adiabatic limit is ν/c rather than
√

νt, which is the width of the thermal layer

at interface.

Lemma 4.3.9 If x > ct and ε = x− ct = k ν
c
, then

lim
ν→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 2e−k.

Proof: As in Lemma 4.3.6,

lim
ν→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

= lim
ν→0

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ + lim

ν→0

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ
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The first term

lim
ν→0

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

e−
cε
2ν

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy

=
2√
π

lim
ν→0

e−
k
2

∫ ∞

k
c

√
ν
4t

e−y2

exp(−(
k

4y
)2)dy

= e−
k
2

2√
π

∫ ∞

0

e−y2

exp(−(
k

4y
)2)dy.

We can do the integration as following. Let

I(k) =
2√
π

∫ ∞

0

e−y2

exp(−(
k

4y
)2)dy.

We know I(0) = erf(∞) = 1, and

I ′(k) =
2√
π

∫ ∞

0

e−y2

exp(−(
k

4y
)2)(− k

8y2
)dy

= − 2√
π

∫ ∞

0

exp(−(
k

4z
)2)e−z2 dz

2

= −1

2
I(k).

So I(k) = exp(−k
2
) and the first term is e−k.
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Similarly, the second term

lim
ν→0

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
ν→0

e−
cε
2ν

∫ c
2

√
t
ν

0

e−y2

exp(−(
cε

4νy
)2)dy

= e−
k
2 I(k)

= e−k.

From Lemma 4.3.1 and 4.3.9 we know for x > crt and (x−crt)cr

νr
fixed,

lim
ν→0

∆Thpr(t, x) = Γr(ρcp)r(Tm − Tr0) exp(− cr

νr

(x− crt)),

lim
ν→0

∆Thpr(t, x) =
1

mr

Γr(ρcp)r(Tm − Tr0) exp(− cr

νr

(x− crt)).

Similar formula can be written for the left waves. The profiles of pressure

and velocity peaks on the mid state side are more complicated integral forms

rather than exponential function, yet the width of the peaks are also of the

order of ν/c.

To summarize it, in the limit of vanishing thermal conductivity, the pres-

sure and velocity waves are the same as in the classical Riemann solution

except near the wave fronts, where the peak values can be calculated directly

from the initial conditions and thermodynamic parameters for the linearized

system, and the widths of the peaks are of order ν/c.

76



4.3.4 Asymptotic Solution in the Isothermal Limit

Next let us investigate the asymptotic solution as t → 0 while all para-

meters are fixed. It is equivalent to the limit of ν → ∞ after certain scaling,

so it can also be called the isothermal limit. In our linearized system, we are

looking for limt→0 T (t, 0), limt→0 p(t, 0) and limt→0 u(t, 0) with piecewise con-

stant initial conditions. Although it seems like the classical Riemann problem,

the intrinsic non-localness of parabolic equation (propagation speed is infinity)

changes the solution quite a bit. Without heat conduction the mid state of

the Riemann problem gives continuous pressure and velocity but discontinu-

ous temperature at the contact, while with heat conduction the temperature is

forced to be continuous at the contact, whose value is given in Eq. (4.30). The

subsequent temperature wave shifts the contact pressure and velocity from the

classical mid state. The difference is the ∆Th of the corresponding quantity,

whose values are actually already given in the previous section.

lim
t→0

T (t, 0) = Tm =
Tl0

√
(ρcpκ)l + Tr0

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

,

lim
t→0

∆Thp(t, 0) =
mrΓl(ρcp)l(Tm − Tl0) + mlΓr(ρcp)r(Tm − Tr0)

mr + ml

= (Tr0 − Tl0)
mrΓl(ρcp)l

√
(ρcpκ)r −mlΓr(ρcp)r

√
(ρcpκ)l

(mr + ml)(
√

(ρcpκ)l +
√

(ρcpκ)r)
,

lim
t→0

∆Thu(t, 0) =
Γl(ρcp)l(Tm − Tl0)− Γr(ρcp)r(Tm − Tr0)

mr + ml

= (Tr0 − Tl0)
Γl(ρcp)l

√
(ρcpκ)r + Γr(ρcp)r

√
(ρcpκ)l

(mr + ml)(
√

(ρcpκ)l +
√

(ρcpκ)r)
. (4.33)

We can compare these results with the example given in Section 4.3.2.
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The formulas above predicts

lim
t→0

T (t, 0) =
2

3
,

lim
t→0

∆Thp(t, 0) = − 1

12
,

lim
t→0

∆Thu(t, 0) = −1

4
,

which agree with the t = 0 curves in Figure 4.2.

We can also investigate the profile of the pressure wave in the limit of

t → 0. At time t the width of the pressure and velocity waves at the origin is

of order
√

νt, and the wave front has moved by ct ¿ √
νt, so the wave profile

is dominated by the thermal conduction. We can derive the exact profile as

following.

Lemma 4.3.10 For x = k
√

νt,

lim
t→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ = 1− erf(

k

2
).

Proof: Denote x− ct by ε as usual,

lim
t→0

∫ t

0

x + c(τ − t)

τ
√

4πντ
exp(−(x + c(τ − t))2

4ντ
)dτ

= lim
t→0

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ + lim

t→0

∫ t

0

c√
4πντ

exp(−(ε + cτ)2

4ντ
)dτ
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The first term

lim
t→0

∫ t

0

ε

τ
√

4πντ
exp(−(ε + cτ)2

4ντ
)dτ

=
2√
π

lim
t→0

e−
cε
2ν

∫ ∞

ε√
4νt

e−y2

exp(−(
cε

4νy
)2)dy

=
2√
π

∫ ∞

k
2

e−y2

dy

= 1− erf(
k

2
).

Similarly, the second term is zero.

Since the lemma is independent of c, for x = k
√

νt we also have

lim
t→0

∫ t

0

x− c(τ − t)

τ
√

4πντ
exp(−(x− c(τ − t))2

4ντ
)dτ = 1− erf(

k

2
).

Therefore, as x/
√

νrt is fixed,

lim
t→0

∆Thpr(t, x) = Γr(ρcp)r(Tm − Tr0)(1− erf(
x

2
√

νrt
)),

lim
t→0

∆Thur(t, x) = 0.

The pressure and velocity between −clt and crt are given in Eq. (4.33).

Figure 4.5 shows the plots of pressure and velocity as t → 0. The initial

conditions and parameters are given in Eqs. (4.31) and (4.32). In the figures ν

is inversely proportional to t such that the length scale of diffusion
√

νt is fixed

for direct comparison. As t → 0, the pressure profile approaches the formulas

given above (the curve of the formulas, if plotted, would be indistinguishable
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Figure 4.5: Pressure and velocity fields as t → 0. Initial conditions and
parameters except κl and κr are given in Eqs. (4.31) and (4.32). (a) is p(x),
(b) is u(x). In both figures, dotted line is at t = 1 for κl = 1 and κr = 0.5,
dashed line is at t = 0.2 for κl = 5 and κr = 2.5, solid line is at t = 0.01 for
κl = 100 and κr = 50.
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from the solid line). And the instantaneous mid state does agrees with Eq.

(4.33).

Finally, it should be pointed out that the contact is moving together with

the flow. In the linearized model, i.e. up to the first order of the perturbation,

the contact is moving with the velocity u(t, 0) obtained above.

4.4 Analytical Solution for Phase Transitions: Temper-

ature Field Decoupled

During phase transitions, the mass flux across the phase boundary de-

pends on the interface temperature and the vapor pressure, so the tempera-

ture is coupled to the pressure at the interface even though it is assumed to be

decoupled in both phases. Hence the linearized Euler equations are not readily

solvable as for the contact, yet with certain approximations we can still obtain

the analytical solutions for the special cases.

First, since the heat capacity of the liquid is much larger than that of

the vapor, the interfacial temperature is almost the same as the liquid tem-

perature, which is widely assumed in literatures on bubbly flows [12]. With

this assumption the equation on the temperature field in the vapor is sep-

arated from the pressure field and can be solved analytically. It is a good

approximation for short time, but not for longer time. As we will see later for

nonlinear equations, the interface temperature gradually approaches the sat-

uration temperature of the vapor pressure. Secondly, since the vapor velocity

relative to the phase boundary is much larger than the liquid velocity relative
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to the boundary due to their large density ratio, we can approximately take

the velocity of the phase boundary, denoted by σ, to be 0 if we only solve the

equations for the vapor.

Assume the vapor is on the right side. For clarity the equations for the

vapor in the characteristic form are rewritten below. Since the equations are

on the vapor side only, the subscripts have been dropped. All thermodynamic

parameters are for the vapor.

∂(p + mu)

∂t
+ c

∂(p + mu)

∂x
= Γκ

∂2T

∂x2
,

∂(p−mu)

∂t
− c

∂(p−mu)

∂x
= Γκ

∂2T

∂x2
,

ρcp
∂T

∂t
= κ

∂2T

∂x2
,

with Cauchy data

(p, u, T )(t = 0) = (p0, u0, T0).

The condition at the phase boundary is

T (t, x = 0) = Tl,

and from Eq. (4.10),

Mev = ρubd = α
psat(Tl)− pv√

2πRT
,
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or equivalently,

µmu(t, 0) = µρ
√

γRTu(t, 0) = psat(Tl)− p(t, 0), (4.34)

where µ = 1
α

√
2π
γ

is a dimensionless constant.

4.4.1 Analytical Solution

Similarly we can write down the analytical solution.

T (t, x) = Tl + (T0 − Tl)erf(
x√
4νt

),

(p−mu)(t, x) = p0 −mu0 − Γκ(T0 − Tl)

∫ t

0

x− c(τ − t)

ντ
√

4πντ
e−

(x−c(τ−t))2

4ντ dτ,

(p + mu)(t, x)|x>ct = p0 + mu0 − Γκ(T0 − Tl)

∫ t

0

x + c(τ − t)

ντ
√

4πντ
e−

(x+c(τ−t))2

4ντ dτ.

(p + mu)(t, x)|x<ct = p(t− x

c
, 0) + mu(t− x

c
, 0)

−Γκ(T0 − Tl)

∫ t

t−x
c

x + c(τ − t)

ντ
√

4πντ
e−

(x+c(τ−t))2

4ντ dτ.

And

p(t, 0) =
µpct(t) + psat(Tl)

µ + 1

u(t, 0) =
psat(Tl)− pct(t)

(µ + 1)m
, (4.35)

where

pct(t) = p0 −mu0 − Γκ(T0 − Tl)

∫ t

0

−c(τ − t)

ντ
√

4πντ
e−

(c(τ−t))2

4ντ dτ
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is the pressure on the phase boundary if it were a contact without mass flux.

The corresponding uct would be 0 under the second approximation used for

the phase transitions. The solution depends on two more parameters than the

contact case, namely, psat(Tl) and µ.

4.4.2 Example

Again for visualization let us consider the following special case.

(p0, u0, T0) = (0, 0, 0),

(Tl, psat(Tl)) = (1, 1),

(Γ, κ, ρcp, c, m) = (1, 1, 1, 1, 1),

µ = 5. (4.36)

Figure 4.6 shows the temperature, pressure and velocity fields as functions

of the space and the time.

4.4.3 Asymptotic Solutions

Similar to the contact case, we can derive the states as t → 0,

lim
t→0

∆Thp(t, 0) =
µΓρcp(Tl − T0) + psat(Tl)− (p0 −mu0)

µ + 1
,

lim
t→0

∆Thu(t, 0) =
psat(Tl)− (p0 −mu0)− Γρcp(Tl − T0)

(µ + 1)m
.

In the limit t → 0, the pressure and velocity of the vapor at the interface differ

from the values in the contact case as shown in Eq. (4.35). Yet the pressure
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(a) (b)

(c)

Figure 4.6: Analytical solution with initial condition and parameters given in
Eq. (4.36). (a) is T (t, x), (b) is p(t, x), and (c) is u(t, x).
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has the same profile of width
√

νt as in the contact case. On the other hand,

in the adiabatic limit,

lim
ν→0

lim
x−ct→0+

∆Thp = Γρcp(Tl − T0),

lim
ν→0

lim
x−ct→0+

∆Thu =
1

m
Γρcp(Tl − T0),

lim
ν→0

lim
x−ct→0−

∆Thp =
µΓρcp(Tl − T0) + psat(Tl)− (p0 −mu0)

µ + 1
,

lim
ν→0

lim
x−crt→0−

∆Thu =
µΓρcp(Tl − T0) + psat(Tl)− (p0 −mu0)

(µ + 1)m
.

For x > ct the ∆Thp and ∆Thu vanish in the adiabatic limit as in the contact

case, but for 0 < x < ct it is not so. In particular, for x = 0,

lim
ν→0

∆Thp(t, 0) =
psat(Tl)− (p0 −mu0)

µ + 1
,

lim
ν→0

∆Thu(t, 0) =
psat(Tl)− (p0 −mu0)

(µ + 1)m
.

Distinct from the contact case, the pressure and velocity on the phase bound-

ary do not reduce to the classical Riemann solution in the adiabatic limit. This

result is based on the assumption that the interface temperature is constant.

If the assumption is violated, the interface pressure in the adiabatic limit could

agree with the classical Riemann solution. All the states listed above in the

two limits have been verified for the given example as we did for the contact

case.

Now let us discuss the effect of the parameter µ. Since µ is inversely pro-

portional to the evaporation coefficient, µ → ∞ means no evaporation, thus

reduces to case of contact with thermal conduction, as reflected in Eq. (4.35).
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On the other hand, if µ → 0, then the vapor pressure is forced to be at equi-

librium with the saturation pressure at the interfacial temperature to induce

a finite evaporation/condensation rate. It is a crude model of evaporation,

which is used literatures such as [24]. In reality, µ is a finite number and its

effect is between these two limit cases.

4.5 Analytical Solutions: Hyperbolic Fields Decoupled

4.5.1 Immiscible Fluids

Next we consider the case that Γ vanishes, again for contact with thermal

conduction first. The linearized equations are

∂(pi + miui)

∂t
+ ci

∂(pi + miui)

∂x
= 0,

∂(pi −miui)

∂t
− ci

∂(pi −miui)

∂x
= 0,

(ρcp)i
∂Ti

∂t
− (βT )i

∂pi

∂t
= κi

∂2Ti

∂x2
,

where i = l or r. Initial conditions are

(pl, ul, Tl)(t = 0) = (pl0, ul0, Tl0)

(pr, ur, Tr)(t = 0) = (pr0, ur0, Tr0).

Analytical solution

The pressure and velocity fields are exactly the same as the classical Rie-

mann solution. For x > crt, (p, u) = (pr0, ur0). For x < −crt, (p, u) = (pl0, ul0).
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And for −clt < x < crt, (p, u) = (pm, um), where

pm =
mlpr0 + mrpl0

ml + mr

+
mlmr

ml + mr

(ul0 − ur0),

um =
mlul0 + mrur0

ml + mr

+
pl0 − pr0

ml + mr

.

For the temperature field, we could only give the exact solution in the

special case that (ρcpκ)l = (ρcpκ)r, because then the continuity of temperature

and heat flux at the contact is easily satisfied. Indeed, the temperature field

satisfies the equations

(ρcp)l
∂Tl

∂t
− κl

∂2Tl

∂x2
= (βT )l(pm − pl0)δ(t +

x

cl

),

(ρcp)r
∂Tr

∂t
− κr

∂2Tr

∂x2
= (βT )r(pm − pr0)δ(t− x

cr

),

Tl(t, 0) = Tr(t, 0),

κl
∂Tl

∂x
(t, 0) = κr

∂Tr

∂x
(t, 0).

and the solution is

Tl(t, x) =
Tl0 + Tr0

2
+

Tr0 − Tl0

2
erf(

x√
4νlt

)

+
(βT )l

(ρcp)l

(pm − pl0)cl

∫ t

0

dτ√
4πνlτ

exp(−(x− cl(τ − t))2

4νlτ
)

+
(βT )r

(ρcp)r

(pm − pr0)cr

∫ t

0

dτ√
4πνrτ

exp(−
(κr

κl
x + cr(τ − t))2

4νrτ
),
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and

Tr(t, x) =
Tl0 + Tr0

2
+

Tr0 − Tl0

2
erf(

x√
4νrt

)

+
(βT )l

(ρcp)l

(pm − pl0)cl

∫ t

0

dτ√
4πνlτ

exp(−( κl

κr
x− cl(τ − t))2

4νlτ
)

+
(βT )r

(ρcp)r

(pm − pr0)cr

∫ t

0

dτ√
4πνrτ

exp(−(x + cr(τ − t))2

4νrτ
).

Example

Take the following parameters as an example.

(pl0, ul0, Tl0) = (0, 0, 1),

(pr0, ur0, Tr0) = (1, 0, 0).

and

(βT, κ, ρcp, c, m)l = (1, 1, 1, 1, 1),

(βT, κ, ρcp, c, m)r = (1, 2,
1

2
,
1

2
, 1).

Figure 4.7(a) shows the plots of pressure and velocity at t = 1, which is

independent of the temperature field. Figure 4.7(a) shows the temperature

field at the same time with different κ’s. It is seen that in the adiabatic limit,

T becomes a step function. We can prove it using the following lemma.
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Figure 4.7: Hyperbolic and parabolic fields with various thermal conductivity.
(pl0, ul0, Tl0) = (0, 0, 1), (pr0, ur0, Tr0) = (1, 0, 0). (βT, ρcp, c, m)l = (1, 1, 1, 1),
(βT, ρcp, c, m)r = (1, 0.5, 0.5, 1). (a) is p(x) and u(x) at t = 1, independent of
κ’s. Solid line is p, dashes line is u. (b) is T (x) at t = 1. Dotted line is for
κl = 1 and κr = 2, dashed line is for for κl = 0.01 and κr = 0.02, solid line is
for for κl = 0.0001 and κr = 0.0002.
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Lemma 4.5.1 For 0 < a < 1,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − a

N2

z
)2) = 1,

while for a < 0 and a > 1,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − a

N2

z
)2) = 0.

Proof: For 0 < a < 1, let a = k2 with 0 < k < 1,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − (kN)2

z
)2)

= lim
N→∞

1√
π

∫ (1−k)N

−kN

dy exp(−y2(
kN + y

2

kN + y
)2)

= lim
N→∞

1√
π

∫ √
kN

−
√

kN

dy exp(−y2(
kN + y

2

kN + y
)2)

+ lim
N→∞

1√
π

∫ −
√

kN

−kN

dy exp(−y2(
kN + y

2

kN + y
)2)

+ lim
N→∞

1√
π

∫ (1−k)N

√
kN

dy exp(−y2(
kN + y

2

kN + y
)2).

The first integral equals

1√
π

∫ ∞

−∞
dye−y2

= 1,

and the other two vanish.
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For a < 0,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − a

N2

z
)2)

= lim
N→∞

1√
π

e
a
2
N2

∫ N

0

dz exp(−1

4
(z2 + (a

N2

z
)2)

≤ lim
N→∞

1√
π

e
a
2
N2

∫ N

0

dze−
z2

4

= 0.

For a > 1,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − a

N2

z
)2)

≤ lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
((a− 1)N)2)

= lim
N→∞

N√
π

exp(−1

4
((a− 1)N)2)

= 0.

Limit solutions

Using the lemma above with N2 = c2t
ν

and a = 1− |x|
ct

, it is straightforward

to show that in the adiabatic limit, the temperature field is

T (t, x < −clt) = Tl0,

T (t,−clt < x < 0) = Tl0 +
(βT )l

(ρcp)l

(pm − pl0),

T (t, 0 < x < crt) = Tr0 +
(βT )r

(ρcp)r

(pm − pr0),

T (t, crt < x) = Tr0.
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Compared with the equation on temperature, the formulas above indicate that

the entropy in each phase doesn’t change across the wavefront in the adiabatic

limit, which agree with the classical Riemann solution (for linearized EOS

the entropy jump across the shock front is 0 because the sound speed is a

constant). A refined version of Lemma 4.5.1 would reveal that the transition

layers in terms of a have width of order 1/N and 1/N2 at a = 1 and a = 0,

respectively. For example, it can be proven that for k → 1 while N(1 − k) is

fixed,

lim
N→∞

1√
π

∫ N

0

dz exp(−1

4
(z − a

N2

z
)2) =

1

2
(1 + erf(N(1− k))).

Transformed to the hyperbolic-parabolic system, it means the width of the

left and right propagating temperature jumps are of order ν/c while the jump

width at contact is of order
√

νt. This result is the same as the case where βT

is neglected. It is also observed that in the adiabatic limit, the contribution to

the temperature field around the contact from the pressure field has the same

profile as that from the thermal diffusion, namely

T = TM + ∆T erf(
x√
4νt

), (4.37)

where TM and ∆T are the contact temperature and temperature jump on

either side.

We can also check the isothermal limit, i.e. t → 0. Figure 4.8 shows the

temperature field in the decreasing times with νt fixed. It is easy to see that
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Figure 4.8: Temperature field as t → 0. Parameters and initial conditions are
the same as in Figure 4.7. Dotted line is at t = 2 for κl = 0.5 and κr = 1,
dashed line is at t = 0.5 for κl = 2 and κr = 4, solid line is at t = 0.1 for
κl = 10 and κr = 20.

the limit temperature field is

lim
t→0

Tl(t, x) =
Tl0 + Tr0

2
+

Tr0 − Tl0

2
erf(

x√
4νlt

),

lim
t→0

Tr(t, x) =
Tl0 + Tr0

2
+

Tr0 − Tl0

2
erf(

x√
4νrt

).

In other words, the hyperbolic fields does not affect the temperature field in

the isothermal limit.

4.5.2 Phase Transitions

As in Section 4.4 we need certain approximation to decouple the temper-

ature field from the hyperbolic fields in the boundary condition on the phase
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boundary. The equation is in the vapor side only, and the approximation is

T (t, 0) = Tl and σ = 0. For clarity, we rewrite the equations here.

∂(p + mu)

∂t
+ c

∂(p + mu)

∂x
= 0,

∂(p−mu)

∂t
− c

∂(p−mu)

∂x
= 0,

ρcp
∂T

∂t
− βT

∂p

∂t
= κ

∂2T

∂x2
,

with Cauchy data and boundary conditions

(p, u, T )(t = 0) = (p0, u0, T0),

T (t, x = 0) = Tl,

µmu(t, 0) = psat(Tl)− p(t, 0),

where µ = 1
α

√
2π
γ

is a dimensionless constant.

Analytical Solution

The hyperbolic fields are piecewise constant,

p(t, x > ct) = p0,

u(t, x > ct) = u0,

p(t, x < ct) = pm =
µ(p0 −mu0) + psat(Tl)

µ + 1
,

u(t, x < ct) = um =
psat(Tl)− (p0 −mu0)

(µ + 1)m
,
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which agree with Eq. (4.35) derived in the β = 0 case. The temperature is

T (t, x) = Tl + (T0 − Tl)erf(
x√
4νt

)

+
βT

ρcp

(pm − p0)c

∫ t

0

dτ√
4πντ

exp(−(x + c(τ − t))2

4ντ
)

− βT

ρcp

(pm − p0)c

∫ t

0

dτ√
4πντ

exp(−(x− c(τ − t))2

4ντ
).

Limit solutions

The limit solutions are nothing but special cases of the previous section

on the contact. In the isothermal limit (t → 0),

lim
t→0

T (t, x) = Tl + (T0 − Tl)erf(
x√
4νt

).

In the adiabatic limit,

T (t, x < ct) = T0 +
βT

ρcp

(pm − p0),

T (t, x > ct) = T0.

As for the contact case, the formulas indicate that the entropy is continuous

across the wavefront. Notice that the parameters µ and psat(Tl) play no role

in the T field in both limits, although they do affect the pressure and velocity.

Once again, the deviation of the pressure and velocity distributions from the

Riemann solution in the adiabatic limit comes from the assumption that Tl is

a constant.
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4.6 Full Nonlinear Equations

Having discussed the two exactly solvable cases of linearized equations,

we change gear to the nonlinear equations. The followings are the observations

from the linearized equations.

• In the isothermal limit for immiscible fluids, the thermal effect dom-

inates. The hyperbolic layer (ct) is much narrower than the thermal

layer (
√

νt). The pressure has accumulated from the thermal wave an

instantaneous change at each side of the hyperbolic layer, and the mid

state is determined by these modified pressures. The velocity field has

not changed. Both the temperature and the pressure fields in the thermal

layer have width
√

νt.

• In the adiabatic limit for immiscible fluids, the solution to the problem

with Riemann data converges to the classical Riemann solution in gen-

eral. The temperature field has jump width of order
√

νt at the material

interface and jump width of order ν/c at the propagating shock fronts or

rarefactions. Pressure and velocity fields have spikes at the wave fronts

with width of order ν/c.

• The behavior of the vapor in phase transitions in the isothermal limit

is similar to that for the immiscible fluids but the interface pressure

and velocity are different. At the early stage of phase transitions, the

interface temperature is close to the liquid temperature, but later it

changes slowly toward the saturated temperature at the vapor pressure.
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As we will see, the solution to the problem with Riemann data also

converges to the classical Riemann solution.

4.6.1 Local Riemann Problem

Next we will give the procedure to solve the full nonlinear local Riemann

problem, being full meaning neither βT nor Γ vanishes. For clearness we

rewrite the equations here.

dp

dλ±
± ρc

du

dλ±
= Γκ

∂2T

∂x2
,

ρcp
dT

dλ0

− βT
dp

dλ0

= κ
∂2T

∂x2
. (4.38)

For each phase there is different set of initial conditions and EOS. Subscript

will be added when necessary. Continuity of temperature at the interface

requires an interfacial temperature in the limit t → 0, denoted by Tm. The

procedure is to find the Tm first, then use it to determine the mid state.

The derivation in this section is more heuristic than rigorous compared to the

previous sections.

Temperature field

In the limit of t → 0, the system is predominantly parabolic, so all the

first order spatial derivatives can be neglected. The conservation of mass and
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momentum gives

∂ρ

∂t
= 0, (4.39)

∂(ρu)

∂t
= 0, (4.40)

which indicates the density and velocity are unchanged. The energy conserva-

tion law gives

ρcp
∂T

∂t
= (1 + ΓβT )κ

∂2T

∂x2
.

Recalling the thermodynamic identity

cp

cv

=
KT

KS

=
c2

c2
T

= 1 + ΓβT,

where cv is the specific heat with constant volume, cT is the ”isothermal sound

speed”, KT and KS are the isothermal and isentropic compressibility. The

temperature equation can be simplified to

ρcv
∂T

∂t
= κ

∂2T

∂x2
. (4.41)

With Eq. (4.39) in mind, the coefficients in Eq. (4.41) are evaluated

along the isovolumes and thus functions of the only variable T . Therefore it is

a nonlinear equation of T . At the interface T is continuous, and the heat flux

satisfies

κr
∂Tr

∂x
− κl

∂Tl

∂x
= 0 (4.42)
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for contact, and

κr
∂Tr

∂x
− κl

∂Tl

∂x
= MevL (4.43)

for phase boundary. In case Tl0 = Tr0, we would have Tm = Tl0 = Tr0,

otherwise since the temperature gradient is infinite at the interface as t → 0,

the left side of the Eqs. (4.42) and (4.43) are actually ∞−∞, therefore the

limit temperature field with the boundary condition Eq. (4.43) would have

the same Tm as that with boundary condition Eq. (4.42). In other words, for

the purpose of finding Tm in the limit t → 0, we can always use Eq. (4.42)

instead of Eq. (4.43).

If the coefficients in Eq. (4.41) do not vary much, it suffices to solve the

linearized version. The solution is

Tm =
Tl0

√
(ρcvκ)l + Tr0

√
(ρcvκ)r√

(ρcvκ)l +
√

(ρcvκ)r

, (4.44)

Tl(t, x) = Tm + (Tm − Tl0)erf(
x√
4ν∗l t

),

Tr(t, x) = Tm + (Tr0 − Tm)erf(
x√
4ν∗r t

),

where ν∗ =
√

κ/(ρcv).

Pressure and velocity fields

From the temperature field and Eqs. (4.40) and (4.39), the pressure and

velocity fields outside the hyperbolic layer (x < −clt and x > crt) in the limit
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t → 0 are

pl(t, x) = Pl(Tl(t, x), ρl0),

pr(t, x) = Pr(Tr(t, x), ρl0),

ul(t, x) = ul0,

ur(t, x) = ur0,

where Pl and Pr are thermodynamic functions depending on the EOS on each

side. Now let us find the mid state in the hyperbolic layer−clt < x < crt. Since

hyperbolic system propagates at finite speed, the local initial value pl(0+, 0−),

ul(0+, 0−), pr(0+, 0+) and ur(0+, 0+) solely determine the instantaneous mid

state. Since the thermal layer is much wider than the hyperbolic layer, the

temperature in the hyperbolic layer is Tm. Therefore the last step is to solve

a Riemann problem with the modification from isentropic to isothermal. The

equations are

∂ρi

∂t
+

∂ρiui

∂x
= 0,

∂ρiui

∂t
+

∂ρiu
2
i + pi

∂x
= 0,

Ti = Tm,

where subscript i is l or r. The initial conditions are

(ρ, p, u)l(t = 0) = (ρl0, Pl(Tm, ρl0), ul0),

(ρ, p, u)r(t = 0) = (ρr0, Pr(Tm, ρr0), ur0).
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Tm is from the solution to Eq. (4.41) with boundary condition Eq. (4.42).

Approximate value of Tm is given above.

The other conditions at the interface are the Rankine-Hugoniot conditions

for contact

∆p = 0,

∆u = 0,

or Rankine-Hugoniot conditions plus the one from kinetic theory for phase

boundary

∆p = −M∆u, (4.45)

∆u = M∆V, (4.46)

Mev =
α√

2πRTm

(psat(Tm)− pv). (4.47)

Here ∆ stands for the difference between left and right side.

Now that the equations are purely hyperbolic, we can find its character-

istics and corresponding ”Riemann” invariants. It it not difficult to show that

the 2 by 2 systems has two characteristics, namely, λ± = u ± cT , where cT is

the isothermal sound speed. The corresponding invariants are du ± dp
ρcT

. The

solution has self-similarity as in the Riemann problem, so we can construct

the mid state analogously. In Figure 4.9, the curve for left shock wave and

rarefaction passes the (p∗l0, ul0) point in the p−u plane, and the curve for right

shock wave and rarefaction passes the (p∗r0, ur0) point. Here p∗l0 and p∗r0 are
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Figure 4.9: Construction of the mid state and the wave structure for the
isothermal Riemann problem. The curves passing point L is the left shock
curve (upper part) and rarefaction (lower part). The curves passing point R
is the right shock curve (upper part) and rarefaction (lower part). The inter-
section is the instantaneous mid state for contact with thermal conduction.

the initial pressures for the current isothermal Riemann problem. Along the

left(right) rarefaction, dT = 0 and

du± dp

ρcT

= 0.

Along the left(right) shock curve, ur < ul and

∆V ∆p = −(∆u)2,

∆T = 0.

For the contact, all we need is to find the intersection of the two curves.

The mere existence of cT guarantee the monotonicity of the rarefaction and
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shock curves and thus the uniqueness of the intersection. The mid state is

then determined and the local wave has the same structure as in the Rie-

mann solution, namely, a left shock wave or rarefaction, a right shock wave or

rarefaction, and a contact in between.

Phase transition

For phase transitions, in order to find the left and right mid states we need

to go through the following procedure. For simplicity the vapor is assumed to

be on the right side, the opposite case can be treated similarly.

1. Find the intersection, which is shown as point I in Figure 4.9, of the

curves for left and right waves in p − u plane, just as for the contact.

Denote the mid state by (p∗m, u∗m). If psat(Tm) = p∗m, then from Eq.

(4.47) Mev = 0 and it reduces to the contact without mass flux. If

psat(Tm) 6= p∗m, then go to step 2.

2. We will treat the case psat(Tm) > p∗m, the opposite case can be handled

similarly. For simplicity we will write ps instead of psat(Tm) in this para-

graph. If pv = p∗m, then the vapor is unsaturated, and Eq. (4.47) also

indicates that Mev > 0, so the vapor pressure will increases from the

evaporation. Therefore the actual pv should be between p∗m and ps. We

are going to show that there is a unique pv and associated mid state

satisfying Eqs. (4.45)–(4.47).

For each pv between p∗m and ps we can determine the M = Mev by Eq.

(4.47). The pv also determines uv since (pv, uv), which is point A in
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Figure 4.9, in one the curve for right wave. Using Eq. (4.45) we can

draw a line with slope −M passing point A. The line would intersect the

curve for left wave so long as M is smaller than the absolute slope of the

curve. Since the latter is approximately ρlcl, it requires

α√
2πRTm

(psat(Tm)− pv) < ρlcl,

or equivalently,

α

√
γ

2π
(psat(Tm)− pv) < ρlclcv,

where γ is the polytropic index of the vapor and cv is vapor sound speed

at temperature Tm. In practice ps is of the same order as pv, and the

inequality above is always satisfied. For example, for water not too far

from saturation in temperature from 20oC to 100oC, the left side of the

inequality is no more than 1 atmosphere, while the right side is more

than 5000 atmosphere. The intersection of the line with the curve is

denoted by point B in Figure 4.9. Now that we know the temporary mid

state on both sides, we can check the last jump condition Eq. (4.46).

Let

f(pv) = ∆u−M∆V.

All quantities on the right side are continuous functions of pv. We need

to find the zero of f for p∗m ≤ pv ≤ ps. Next we will prove the existence

of such a zero point. First, at pv = p∗m, M > 0 by Eq. (4.47) and point
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A coincides with point B so ∆u = 0, therefore

f(p∗m) = −M(Vv − Vl) < 0,

where we have set the ∆ to be right side minus left side. Second, at

pv = ps, M = 0 by Eq. (4.47) and point B is to the left of point A, so

f(ps) = ∆u = uA − uB > 0.

From fundamental calculus we know f must have a zero between p∗m and

ps. It is easy to verify that f is a monotonely increasing function of pv,

therefore the zero of f is unique. Similar conclusion can be drawn for the

case that ps < p∗m. In that case, Mev < 0 and ps < pv < p∗m. Numerically

the value of pv can be found by iteration. Upon linearization, the Mev

so obtained agrees with the results in Section 4.4.

4.6.2 Travelling Wave Solutions

We sought the solution in the adiabatic limit using the method of trav-

elling wave solutions. The travelling wave solution is a useful tool in the

investigation of nonlinear properties of hyperbolic systems with terms involv-

ing higher order spatial derivatives such as viscosity and thermal conduction

[14, 33]. In this section we studied the travelling wave solutions to the Euler

equations with heat conduction and phase transitions. The equations are Eqs.

(4.1)–(4.3) and the interface conditions are Eqs. (4.4)–(4.10). We first found
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the travelling wave solutions with the discontinuity at the phase boundary,

then the solutions with the discontinuity in a single phase. Discontinuities

still exist as a contrast to usual travelling wave solutions because here only

the temperature is continuous everywhere while the pressure and velocity are

still allowed to be discontinuous.

Travelling waves across the phase boundary

In the reference frame of the phase boundary, the travelling wave solution

is a steady state. So we only need to find all the steady states. From Eqs.

(4.1)–(4.3), it is easy to write down the solution,

ρu = M,

ρu2 + p = Mu + p = B,

(ρE + p)u− κTx = M(H +
u2

2
)− κTx = C,

where M , B and C are three constants. The Rankine-Hugoniot conditions

dictates that M , B and C are equal for both left and right states. Since the

interface is at rest, M coincides with the usual notation for mass flux. Using

the remaining two boundary conditions, namely, the continuity of temperature

and Eq. (4.10), the solution is uniquely determined by the pressure, tempera-

ture and temperature gradient of the vapor at the interface. The procedure is

as following. First the M is determined by Eq. (4.10), then the liquid state on

the interface is determined by the continuity of T and the Rankine-Hugoniot
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condition

∆p = −M2∆V.

The liquid state is illustrated as the intersection of two curves in Figure 4.10.

The velocities of both phases at the interface are ul = MVl and uv = MVv. The

temperature gradient of the vapor at the interface determined the constant C.

The state away from the interface on each side is determined by the EOS and

the following equations,

kTx = M(H +
u2

2
)− C = M(H +

M2

2
V 2)− C, (4.48)

p− ps = −M2(V − Vs),

where ps and Vs are from the state on the interface. Given the EOS, the ODE

can be integrated to find the thermodynamic state for all x, while the velocity

is again determined by u = MV .

With the EOS and the second equation above in mind, the term H+ M2

2
V 2

in Eq. (4.48) can be regarded as a function of T . In general the function is

complicated, but we will show for slow phase transitions the term can be

approximated by cpT up to a constant. Indeed, denote the mach number us/c
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Figure 4.10: Schematic of interface states for travelling wave solutions of the
Euler equations with phase transitions. The states stay on the line connecting
the liquid and vapor states at the interface.

by n, the differential of H + M2

2
V 2 is

d(H +
M2

2
V 2)

= cpdT + V (1− βT )dp + M2V dV

= cpdT + βTM2V dV

= cpdT (1 + n2Γ
T

V

dV

dT
)

= cpdT (1 + n2ΓβT (1− n2γ)),

where Γ is the Gruneisen coefficient, γ is the ratio of specific heat, and β is the

thermal expansion coefficient. For both POLY and SPOLY EOS’s, Γ = γ− 1.

βT = 1 for ideal gas, while it is much smaller than 1 for liquid. Since γ and

Γ are of order 1, it is clear H + M2

2
V 2 .

= cpT up to a constant for small mach
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number.

With the approximation for slow phase transitions, Eq. (4.48) involves

temperature only, so it can be integrated to give

T (x) = Ts +
(κTx)s

cpM
(exp(

Mcpx

κ
)− 1).

The equation above is unbounded for x → ∞ if M > 0 or for x → −∞
if M < 0, unless (κTx)s = 0. Therefore, if we require the temperature to

be bounded in the entire space, the ”product” of phase transitions (vapor in

evaporation, liquid in condensation) must be constant state. On the other

hand, if the problem is on a finite domain with certain boundary conditions

to guarantee a steady state solution, both phases can be nonuniform.

To understand the solution, let us take the example of evaporation (M >

0) with constant vapor state. The latent heat for the phase transition is totally

provided by the liquid, i.e.

−(κTx)s = ML.

So the liquid temperature field is

T (x) = Ts +
L

cp

(1− exp(
Mcpx

κ
)). (4.49)

The temperature of the liquid at −∞ is TL = Ts + L
cp

. The interpretation is

clear – the heat released by the liquid whose temperature dropped from TL

to Ts is cp(TL − Ts) = L, which is exact the latent heat needed for the phase
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transition. Nevertheless, this solution is not physical. The reason is that dur-

ing evaporation, the liquid state on the interface is metastable, and the liquid

state in the above solution has higher temperature but lower pressure than

interface state, which deviates further from the phase coexistence curve and is

metastable or unstable more strongly, so the solution cannot exist physically.

In other word, the physical travelling wave solution can only exist on finite

domain and the ”product” phase cannot be uniform. On the contrary, it is

the ”product” phase that provides the latent heat in evaporation and absorbs

the heat emitted in condensation.

Travelling waves in a single phase

In the reference frame of the pressure jump or equivalently the shock front,

the travelling wave solution is a steady state. The equations are still

ρu = M,

ρu2 + p = Mu + p = B,

(ρE + p)u− κTx = M(H +
u2

2
)− κTx = C. (4.50)

But now the EOS on both sides of the shock front are the same, and the mach

numbers are bigger than 1 on one side and smaller than 1 on the other. Since

the mach numbers behind the shock is less than 1, the differential of the term

H + M2

2
V 2 has the same sign as cpdT . Because the temperature is required

to be bounded in the entire space for a shock wave to exist in the adiabatic

limit, similar to the travelling wave solutions across the phase boundary, we
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Figure 4.11: Schematic of the travelling wave solution to the Euler equations
with heat conduction for the left shock wave.

conclude that the state behind the shock must be constant.

Let’s take the left shock (M > 0) to illustrate the travelling wave solution.

The schematic is shown in Figure 4.11. The right side is behind the shock so

it has to be a constant state. The temperature at the left side of the interface

equals TR, so the left state at the shock front could be either R or L∗ in

the figure. However, the left front state must be L∗ unless L = R because

otherwise Tx ≡ 0 by Eq. (4.50) which implies L = R. The states to the left of

the front stay on the segment connecting L and L∗ in the p− V diagram and

gradually changes from one end to the other. If TR > TL as for the point L1,

then pL∗ > pL. If TR < TL as for the point L2, then pL∗ < pL and the pressure

profile appears as a spike. In both cases, the decay length of the left pressure

profile is of order ν/c.
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4.6.3 Adiabatic Limit

In the adiabatic limit, the hyperbolic layer is much wider than the thermal

layers and the solution to the problem with Riemann data essentially has the

same structure as the classical Riemann solution. First we consider the left

and right propagating waves, which are either rarefactions or shock waves. For

rarefactions, the perturbation from the thermal effect approaches zero in the

adiabatic limit because the width of the rarefactions is proportional to t and

much wider than the thermal layers. However for shock waves the perturbation

from the thermal effect does not approach zero everywhere. In fact, from the

travelling wave solutions in a single phase, we see that the pressure wave

deviate from the classical Riemann solution in a region of width about ν/c

and the amount of deviation is nonzero in the adiabatic limit. Next we turn

to the central wave which depends on the interfacial property.

Contact

First we consider the simpler case without phase transition. In the purely

hyperbolic system, the temperature is discontinuous at the contact and the

solution around the contact can be considered as the simplest travelling wave

that has no mass flux. With thermal conduction, however, the temperature

profile at contact is smoothed out to the width of order
√

νt, so that the

solution is not a travelling wave solution. The interfacial temperature is de-

termined by temperature on its two sides and the continuity condition of heat

flux. The following is the detail.

The left and right mid states have the same pressure and velocity but
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different temperature, denoted by TML and TMR. Since the pressure around

the contact is not changing as t →∞, the equations for the temperature are

(ρcp)l(
∂Tl

∂t
+ ul

∂Tl

∂x
) = κl

∂2Tl

∂x2
,

(ρcp)r(
∂Tr

∂t
+ ur

∂Tr

∂x
) = κr

∂2Tr

∂x2
.

And at contact

Tl = Tr,

κl
∂Tl

∂x
= κr

∂Tr

∂x
.

Also, the temperature at the far left end and the far right end are TML and

TMR respectively. Since the contact is moving together with the fluid, it is

straightforward to show that the temperature at the contact Tct as t →∞ is

Tct =
TML

√
(ρcpκ)l + TMR

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

.

Phase transition

The interfacial temperature is more important for phase transitions be-

cause the transition rate is related to the saturation pressure at the interfacial

temperature. First we exclude the possibility in most cases that the solution

converges to a steady state solution across the phase boundary with nonzero

transition rate. Too see that we assume on the contrary that the solution

does converge to a steady state solution with nonzero mass flux, then as we
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have pointed out, the ”product” phase must be a constant state, and far from

the phase boundary the ”source” phase has temperature L/cp above/below

the interface temperature for evaporation/condensation, which is unphysical –

e.g. for the phase transition in room temperature between the water and the

water vapor, it requires the source phase to be either the water hotter than

500oC or the vapor colder than −1000oC.

Then we demonstrate that the transition rate decreases to zero as t →
∞ and thus the solution is not a travelling wave solution either. The limit

temperature at the phase boundary Tph is determined by

psat(Tph) = pv = pM ,

where pM is the pressure on the contact if there were no phase transition. Again

we assume the vapor is on the right side. Denote the interfacial temperature

by Ts (whose limit as t → ∞ is Tph). The equations for temperature are the

same as for the contact, but the boundary conditions change to

Tl = Tr,

κr
∂Tr

∂x
− κl

∂Tl

∂x
= MevL =

αL√
2πRTs

(psat(Ts)− pv). (4.51)

For the moment we assume pv = pM to neglect the interference of the left and

right propagating hyperbolic waves with the thermal wave at phase boundary.

Then using the Tph defined above, the last equation can be rewritten as

κr
∂Tr

∂x
− κl

∂Tl

∂x
=

αL√
2πRTs

(psat(Ts)− psat(Tph)).
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For the asymptotic analysis, we can linearize the equation to be

κr
∂Tr

∂x
− κl

∂Tl

∂x
= [

αL√
2πRTs

dpsat

dT
|Tph

](Ts − Tph),

where the quantity in the square bracket can be regarded as a constant, which

we denote by K.

The linearized thermal equation

(ρcp)l
∂Tl

∂t
= κl

∂2Tl

∂x2
,

(ρcp)r
∂Tr

∂t
= κr

∂2Tr

∂x2
,

with boundary condition

Tl(t, x = 0) = Tr(t, x = 0),

(κr
∂Tr

∂x
− κl

∂Tl

∂x
)(t, x = 0) = K(Ts(t)− Tph), (4.52)

and initial condition (Tl, Tr)(t = 0) = (TML, TMR) is solved numerically.

Figure 4.12 shows the solution to the normalized equation. All coefficients

– (ρcp)l, (ρcp)r, κl, κr and K are set to 1. TML = 1, TMR = 0. For Tph = 0.25

between TML and TMR, the interfacial temperature gradually decreases from

Tct = 0.5 to Tph, as shown in Figure 4.12(a). It is interesting to note that even

if Tph = −0.25 is outside the range between TML and TMR, Ts still evolves

from Tct to Tph. It is also noted that the time needed for Ts to reach Tph is

infinitely long.

This result can be understood as following. As t → ∞, the temperature
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Figure 4.12: Solution to the linearized equation for large-time temperature in
phase transitions. (ρcp)l = (ρcp)r = 1, κl = κr = 1. K = 1 in Eq. (4.52).
TML = 1, TMR = 0. (a) is the temperature distribution with Tph = 0.25, (b) is
the temperature with Tph = −0.25. In both figures, dotted line is for t = 0.1,
dashes line is for t = 10, and solid line is for t = 1000. For both settings the
interfacial temperature Ts gradually approaches Tph as time grows.
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gradient on both sides of the interface approaches zero because the width of the

thermal layer,
√

νt, grows unbounded. Therefore, the left side of Eq. (4.52)

vanishes as t → ∞, and so the right side vanishes, which means Ts(∞) =

Tph. It also agrees with the physical picture. In out example, Tph < Tct,

which is equivalent to pv < psat(Tct). The vapor is unsaturated, so the the

liquid evaporates. The vapor pressure increases, meanwhile the interfacial

temperature decrease due to the absorption of latent heat. As we will soon

see, the change of vapor pressure doesn’t play a crucial role. It is the decreasing

interfacial temperature that slows down the evaporation. As t goes to infinity,

the evaporation rate goes to zero, though it is always positive.

Lastly we show that the change of vapor pressure does not change the

whole picture as we promised. Suppose the pv in Eq. (4.51) is varying due

to the interaction of the hyperbolic waves with the thermal wave at phase

boundary. Figure 4.13 is the visualization of the discussion below. In the

figure, points L and R are the left and right initial state. Vapor is supposed to

be on the right side. The curve passing either point is the isentrope connected

to the shock curve. The intersection point I is the mid state for contact.

Without interaction, pv stays at pM and both left and right states stay at

point I.

To the maximum extent of interaction, the vapor pressure would follow

the mass flux to a new point on the curve passing R, for example, point A in

Figure 4.13. Accordingly, the state at the liquid side of the phase boundary

would shift to point B such that the pair (A,B) satisfies the Rankine-Hugoniot

condition with the mass flux due to the deviation from Clausius-Clapeyron
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Figure 4.13: Schematic of the interaction between hyperbolic waves and
the thermal wave at phase boundary. In the figure psat(Tct) > pM , which
causes evaporation. The maximum hyperbolic effect would increase pv by
δpv ≈ Mevcv.

curve. The difference of point A and B from I is denoted by δp and δu in

Figure 4.13. Since the slope of the curve is approximately ρc,

δpv ≈ ρvcvδuv.

where cv is the vapor sound speed. Taking into account that (ρc)l À (ρc)v,

Rankine-Hugoniot condition ∆u = M∆V gives

δuv ≈ δuv + δul = M(Vv − Vl) ≈ MVv.

Combine the two equations we have

δpv ≈ ρvcvMVv = Mcv.

119



On the other hand, by Eq. (4.34)

µcvM = psat(Ts)− pv = psat(Ts)− pM − δpv,

where µ = 1
α

√
2π
γ

is a dimensionless constant. The last two equation together

gives

cvM =
psat(Ts)− pM

µ + 1
.

Substituting the equation for M , Eq. (4.51) becomes

κr
∂Tr

∂x
− κl

∂Tl

∂x
= MevL =

L

(µ + 1)cv

(psat(Ts)− pM).

The only difference from the original equation with pv fixed is that µ is replaces

by µ + 1. Therefore, the effect of hyperbolic waves is no more than a reduced

coefficient K. If the hyperbolic interaction is weaker, then the increment from

µ would be less than 1. All in all, a smaller K only slows down the evolution

of Ts to some extent, yet the conclusion that Ts approaches Tph steadily is

sustained. Furthermore, since δpv is proportional to Mev, it also goes to zero

as Mev → 0, which means pv → pM . Therefore the limit state is the same as

without hyperbolic interaction too.

It is worth mentioning that this conclusion shows that the liquid temper-

ature cannot be held to be constant for all time as in Section 4.4. Finally it

should be pointed out that Tph is allowed to be outside the range from TML

to TMR because the waves are propagating in an infinite domain. If the liquid

and vapor, for example, are in an insulated container, then thermal equilibrium

120



will be reached after certain time. In general, the thermal effect eventually

dominates over the hyperbolic effect in isolated systems.

4.6.4 Wave Structure

Now that we have investigated both the short time behavior (isothermal

limit) and the large time behavior(adiabatic limit) of the Euler equations with

thermal conduction, we will discuss the global wave structure at all times. For

t much smaller than the characteristic time ν/c2, thermal effect dominates

and the system is essentially isothermal. For t much larger than that, the

hyperbolic effect dominate and the system is essentially adiabatic. For time

in between, both effects are important.

• For t ¿ ν/c2, ct ¿ √
νt and the hyperbolic layer is an isothermal 3-wave

structure embedded in the much wider thermal layer. The left and right

waves propagate at the isothermal sound speeds, and they can be shocks

or rarefactions. The mid state depends on whether the interface is the

contact or the phase boundary. The isothermal waves propagate away

from the interface and determine the size of the spikes at the shock fronts

at later times.

• For t À ν/c2, ct À √
νt À ν/c and the hyperbolic layer evolves into

the 3-wave structure of the classical Riemann solution, left and right

waves propagating at the adiabatic sound speeds. If the wave is a shock,

there is a thermal layer of width about ν/c around the shock front, in

which the deviation from the classical Riemann solution can be nonzero
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in the limit of t → ∞. If the wave is a rarefaction, the thermal layer

can cover the entire rarefaction and the deviation vanishes in the limit of

t →∞. There is no mass flux across the interface at large times for both

the immiscible fluids and the phase transitions, and the thermal layer

around the interface has the width of order
√

νt. The only difference

between the two cases is in the interface temperature. For immiscible

fluids it is between the temperature on the two sides of the contact, for

phase transitions it is determined by the saturation condition.

• For intermediate times, ct ≈ √
νt ≈ ν/c and the hyperbolic layer still

have the 3-wave structure but it is neither isothermal nor adiabatic.

The left and right waves propagate at varying speeds, which gradually

shift from isothermal to adiabatic. As shown in Figure 4.2, the spikes

at the left and right wave fronts overlap with each other and also with

the thermal layer at the interface. As a result, the solution is far from

being piecewise constant or rarefactions. It is not clear yet whether extra

shocks could exist, good numerical algorithms may help to capture the

detailed wave structure.
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Chapter 5

Numerical Algorithm for the Simulation of

Phase Transitions

The numerical algorithm for the heat conduction and phase transitions

is based on the front tracking method. A key feature of front tracking is the

avoidance of finite differencing across discontinuities fronts and thus the elim-

ination of interfacial numerical diffusion. Phase boundary is tracked explicitly

by a codimension one grid immersed in a regular spatial grid. The front prop-

agates according to the dynamics around it (i.e. Lagrangian) while the regular

spatial grid is fixed in time (i.e. Eulerian). In each time step, the front is first

propagated with states on its two sides updated, then the interior states are

updated using finite difference scheme.

Section 5.1 is the algorithm for interface propagation and front states up-

date, and Section 5.2 describes the 2nd order finite difference update of the

interior states. The numerical algorithm has been implemented into the Fron-

Tier hydro code. In Section 5.3 we validated the numerical scheme by verifying

the convergence of the simulation results to the analytical solution through
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mesh refinement, we also illustrated the effectiveness of the thin thermal layer

method. Lastly the numerical method was applied to the one dimensional

condensation problem in Section 5.4.

5.1 Propagation of Phase Boundary

5.1.1 Normal Propagation

The phase boundary is first propagated in the normal direction. The

characteristic form of the equations at the phase boundary has been given in

Eqs. (4.12)–(4.15). Normal propagation solves a non-local Riemann problem.

The original hyperbolic solver has three steps: slope reconstruction, prediction

using a local Riemann solver, and correction by a nonlocal solver.

The first step in hyperbolic solver is kept. The second step has been

modified as following. At the very first time step (dt = 0) or the time step

when the phase boundary is dynamically created, the boundary states are set

as described in Section 4.6.1. If the temperature is continuous across the phase

boundary, nothing need to be done. Otherwise the interface temperature is

calculated by solving the nonlinear Eq. (4.41) or using the approximate value

in Eq. (4.44), while the density and velocity of the states on both sides of the

interface are kept unchanged (the pressure, from EOS, changes accordingly),

thus the left and right states become the point L and R in Figure 4.9. We

could go further to solve the adiabatic Riemann problem exactly as described

in Section 4.6.1, which requires extra iteration for phase transition. However,

the lengthy procedure is skipped. The reason is that if the left and right
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states were initialized as mid states in Figure 4.9 rather than the L and R

states, the exact value of L and R states wouldn’t be recovered in the finite

difference update in the subsequent time steps due to the singularity of the

temperature field at origin, thus the physical spikes at the shock fronts would

be severely reduced. In fact, the current implementation not only gives more

accurate height of the spikes, but also predicts the correct, though not exact,

mid states from the linearized solver in the subsequent time steps. For all

subsequent time steps, the interfacial pressure, velocity and temperature are

forced to satisfy the required boundary conditions such as Rankine-Hugoniot

condition and phase transition rate equation, so that the local Riemann solver

does not change the states on either side of the interface. Therefore, the normal

velocity of the phase boundary at the beginning of each time step is obtained

from the beginning states directly, and the sound speeds needed for the slopes

of characteristics are also directly from the beginning states on the two sides

of the interface.

In the step of nonlocal solver, a discrete version of the characteristic sys-

tem Eqs. (4.12)–(4.15) is solved. The phase boundary normal velocity ob-

tained at the end of the time step is averaged with the value at the beginning

of the time step and then used for the propagation of phase boundary.

To solve the characteristic system, the states at the feet of the traced back

characteristics are first obtained by interpolation, usually of the conservative

quantities, namely, mass, momentum and total energy density. The charac-

teristic λ± = u± c and λ0 = u, while the material interface move at σ = u for

contact and σ = ∆(ρu)/∆ρ for phase transition. For small time step ∆t, the

125



Figure 5.1: Five point stencil for the front normal propagation with thermal
conduction. In each time step, the new front states S∗l and S∗r are calculated,
and the front propagates normally.

characteristics are approximated by straight lines. Figure 5.1 is the schematic

of the traced back characteristics. The left foot is (cl + ul − σ)∆t away from

the interface, while the right foot is (cr − ur + σ)∆t away from the interface.

For contact the foot of characteristic λ0 coincides with the interface. But for

phase transition it differs from the interface position, it could be on either side

of the interface depending on the mass flux. However, since in most cases the

phase transition rate is small enough such that

|u− σ| ¿ c

on both sides of the interface, it doesn’t make much difference to use cl∆t

and cr∆t as the distance from the left and right feet to the interface. In the

numerical implementation, the foot of λ0 is also assumed to coincide with the

interface for phase transition. Once we obtained the states at the characteristic

feet by interpolation, we can integrate along the characteristics. Divided by
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ρc and then integrated from t to t + ∆t, Eqs. (4.12) and (4.13) become

∫ t+∆t

t

dp

dλ+

dλ+

ρc
+ (u∗l − uf ) + αN0

∫ t+∆t

t

cu

r
dλ+

= −
∫ t+∆t

t

∂φ

∂n
dλ+ −

∫ t+∆t

t

Γ

ρc
(
∂q

∂n
+ αN0

q

r
)dλ+,

∫ t+∆t

t

dp

dλ−

dλ−
ρc

− (u∗r − ub) + αN0

∫ t+∆t

t

cu

r
dλ−

=

∫ t+∆t

t

∂φ

∂n
dλ− −

∫ t+∆t

t

Γ

ρc
(
∂q

∂n
+ αN0

q

r
)dλ−. (5.1)

Neglecting the distance between the foot of the characteristic λ0 and the in-

terface, we have

u′∗l = u′0−,

u′∗r = u′0+,

where u′ is the tangential velocity. We can also integrate the energy equation,

however since it is a parabolic equation for temperature, the interface state

is preferably determined by boundary condition rather than integration along

λ0. The boundary conditions depends on the interfacial dynamics. The case

of contact is simpler, so we treat it first.
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Contact with thermal conduction

The boundary conditions are

∆u = 0,

∆p + ps = 0,

∆T = 0,

∆q = 0,

where ps is the pressure jump due to surface tension, which is determined

by the surface tension coefficient and the local curvature on the interface.

The discrete characteristic equation along with the boundary condition can be

solved in several ways. There are three methods implemented for the nonlo-

cal hyperbolic Riemann solver, namely, RIEMANN, MOC+RH and CHEAP

MOC+RH methods [21]. The RIEMANN method exploits the similarity be-

tween Eq. (5.1) and the local Riemann problem. It uses a local Riemann

solver with Sf and Sb as initial left and right states to solve for the mid state.

However it does not readily apply in our situation, because as pointed out in

Section 4.6.4 the nonlocal wave structure is much more complicated than the

local 3-wave structure. The other two methods approximate the the integrals

in Eq. (5.1) by finite differences in time. The only difference between the

them is that MOC+RH uses trapezoidal rule quadrature for the integration

while CHEAP MOC+RH uses backward difference quadrature. In view of

the various first order approximations already made at the interface, there

would be little difference between the two methods. The following procedure
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is analogous to the CHEAP MOC+RH method.

1. Starting from the usual five point stencil along the normal of the interface

as shown in Figure 5.1. Let the grid size be ∆n. First we determine the

interfacial temperature. The boundary conditions

T ∗
l = T ∗

r

κl
T ∗

l − T−1

∆n
= κr

T1 − T ∗
r

∆n

give

Ts := T ∗
l = T ∗

r =
κlT−1 + κrT1

κl + κr

. (5.2)

2. Next we seek S∗l and S∗r . The difference equations are

p∗l − pf

ρfcf

+ (u∗l − uf ) + αN0
cfuf

rf

∆t + (φ′n)f∆t

=
Γf

ρfcf

κl(
T−2 + T0− − 2T−1

∆n2
+ αN0

T0− − T−1

rf∆n
)∆t,

p∗r − pb

ρbcb

− (u∗r − ub) + αN0
cbub

rb

∆t− (φ′n)b∆t

=
Γb

ρbcb

κr(
T2 + T0+ − 2T1

∆n2
+ αN0

T1 − T0+

rb∆n
)∆t.

Combined with u∗l = u∗r and p∗l = p∗r +ps, the pressure and velocity of S∗l

and S∗r is readily solved. Finally the density of the states are determined

from their EOS’s with known pressure and temperature.

129



Phase transition

Next we treat the interfacial propagation for phase transition. The bound-

ary conditions are

∆u = M∆V, (5.3)

∆p + ps = −M2∆V, (5.4)

∆T = 0, (5.5)

∆q = −MevL, (5.6)

Mev =
α√

2πRTs

(psat(Ts)− pv). (5.7)

Since the interfacial temperature is coupled to the phase transition rate by

kinetic theory, the temperature cannot be determined directly. Iteration over

the vapor pressure pv and the difference of specific volumes ∆V has been used.

For clearness, we assume the vapor is on the right side.

1. Substituting the vapor pressure at S0+ for the pv in Eq. (5.7) and dis-

cretizing Eq. (5.6), we have two equation for the two variable Ts and

Mev. The equations are

MevL = κr
T1 − Ts

∆n
− κl

Ts − T−1

∆n
,

Mev =
α√

2πRTs

(psat(Ts)− pv).

The function psat is a nonlinear function, Newton’s iteration or similar

method is needed to solve the equations exactly. However, since this

step itself is in the iteration of pv and ∆V , we can linearize the Clausius-
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Clapeyron equation at a reference temperature Tr and solve for Ts and

Mev while preserving the convergence of S∗l and S∗r through the iteration.

For the first iteration step, Tr can be chosen to be the Ts at the beginning

of the time step if T0− = T0+, or their average, for example, (T0−+T0+)/2

if they are different. For subsequent iteration steps, Tr is simply the Ts

obtained in the last iteration. Upon linearization,

Ts =
κlT−1 + κrT1 + α√

2πRTr
L∆n(pv − psat(Tr) + dpsat

dT
(Tr)Tr)

κl + κr + α√
2πRTr

L∆ndpsat

dT
(Tr)

, (5.8)

and

Mev =
α√

2πRTr

(psat(Tr)− pv +
dpsat

dT
(Tr)(Ts − Tr)),

where dpsat

dT
(Tr) is the slope of phase coexistence curve at Tr, which by

Clausius-Clapeyron equation equals

dpsat

dT
(Tr) =

L

Tr(Vv(Tr, psat(Tr))− Vl(Tr, psat(Tr)))
.

2. Having obtained the temperature and mass flux, we can solve the char-

acteristic Eq. (5.1) with the Rankine-Hugoniot conditions Eqs. (5.3)

and (5.4). For the first iteration the ∆V in Eqs. (5.3) and (5.4) is set

to Vr0 − Vl0. Then same as the last step for contact, the density ρ∗l and

ρ∗r are determined from their EOS’s with the pressure and temperature

obtained in the iteration.

3. The last step in the iteration is to compare the newly obtained pv and

∆V with the values used in the iteration. If the differences are within
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the preset tolerance, then the iteration is over, otherwise update the pv

and ∆V for next iteration and go back to step 1.

In practice it is found that pv and ∆V usually has relative error below 10−6

after 4 iterations. The convergence of pv and ∆V guarantees the convergence

of Ts, thus justifies the linearization of the Clausius-Clapeyron equation used

in step 1.

5.1.2 Thin Thermal Layer Method

The method described above works well for fine grid, but when the grid is

coarse as required by the physical problem or the computational capability, we

have a numerical difficulty. For large ∆n, the interface temperature given in

Eq. (5.8) is approximately Tsat(pv), while in reality it should change gradually

from the Ts given in Eq. (5.2) to Tsat(pv). The wrong interface temperature

would in turn gives wrong temperature and pressure fields, especially in the

liquid. To make it worse, even Eq. (5.2) gives wrong temperature if the

thermal layer is narrower than the grid size, for which the correct interface

temperature is close to

Tm =
T−1

√
(ρcpκ)l + T1

√
(ρcpκ)r√

(ρcpκ)l +
√

(ρcpκ)r

.

To illustrate it, let us consider a practical situation. For two dimensional

simulation of bubbly water in a container of size 1cm, suppose the grid size is

dx = 1µm, which is already quite fine. The thermal layer in water is of width
√

νt where ν = κ/(ρcp) = 1.5× 10−6cm2/ms, and the time step restricted by
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CFL condition is dt = dx/c = 6.7× 10−7ms. So it requires

dx2

νdt
= 104

time steps for the thermal layer to expand to a grid cell. For all these time

steps, it is inappropriate to use simple finite difference for the temperature

gradient at the interface. More details are given in Section 5.3.

To solve the Euler equations with reasonable accuracy in a coarse grid,

we need to represent the thermal layer in certain way. A widely used method

is the spectral method [24, 30, 2], where the temperature field is spanned by

Chebychev polynomials and the evolution is solved by Galerkin method or

collocation method. However, spectral method has several drawback. First,

it has been only used for spherical problems where the temperature field can

be spanned by single variable polynomials, while our goal is to develop direct

numerical simulation scheme in arbitrary geometry. Moreover, the coordinate

of vapor in (0, Rbub] is normalized to (0, 1] for the variable in the polynomials,

while the coordinate of liquid is normalized from [Rbub,∞) to (0, 1], which

cannot be carried out for the multi bubble system we intend to simulate.

Secondly, for the spectral method the temperature field is always separated

from the pressure and velocity waves – in vapor uniform pressure is assumed,

and in liquid the thermal expansion coefficient is set to zero. The evolution

of the pressure field does not depend on temperature either – it is either the

Rayleigh-Plesset equation for incompressible fluid or the Keller equation for

weakly compressible fluid. So the temperature and pressure can be solved
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on different grids or in different solution spaces. As a contrast, for the fully

compressible fluid we simulate, they have to be solved simultaneously on a

common grid. Spectral method, even if it worked efficiently, would invoke

a difficult problem for mapping the temperature field from the polynomial

expansion form to the fixed grid while preserving the accuracy.

As a result, we hereby present a different method that incorporates the

thermal layer into the finite difference scheme when necessary. The idea is

simple. When the thermal layer is thinner than a grid cell, then the temper-

ature profile should take the form of Eq. (4.37). For clarity, we consider the

phase on the right side of the interface and rewrite the equation with slight

changes in notation,

T = TM + (TR − TM)erf(
x√
4νt

).

Since the thermal layer is thinner than the grid size dx, the temperature T1

one grid cell away from the interface should be approximately TR. Taking

derivative over x at the origin in the equation above, we have

(
∂T

∂x

)

0

= (TR − TM)
2√
π

1√
4νt

≈ T1 − TM√
πνt

.

Therefore the temperature gradient at the interface is better approximated by

(T1 − TM)/
√

πνt than (T1 − TM)/dx. Considering the approximate nature of

the argument, we used ε
√

νt instead of
√

πνt in the implementation, where

ε is a number of order 1 to be optimized by numerical experiment. When

ε
√

νt is larger than dx, the thermal layer can be regarded as wider than a
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grid cell, so we can revert to the usual finite difference approximation for

the temperature gradient. As a summary, the temperature gradient at the

interface is approximated by

(
∂T

∂x

)

0

≈ T1 − TM

dx∗
:=

T1 − TM

min(ε
√

νt, dx)
, (5.9)

where dx∗ is defined to min(ε
√

νt, dx). Numerical experiment found ε = 1 is a

good choice in general, so ε is set to 1 by default. Admittedly the uncertainty

of ε makes the method ad-hoc, however as we will see in Section 5.3 it works

quite well in spite of its simplicity. It should be emphasized that the t in the

formulas is the time since the interface in created rather than the global time

if the bubbles are created dynamically as in [22].

When the thin layer modification is applied to the normal front propa-

gation, all interfacial heat flux in the form of κ∆T/∆n should be replaced

by κ∆T/∆n∗ with the ν in the corresponding phase. For example, Eq. (5.2)

should be replaced by

Ts =

κl

∆n∗l
T−1 + κr

∆n∗r
T1

κl

∆n∗l
+ κr

∆n∗r

,

where ∆n∗l = min(ε
√

νlt, ∆n) and ∆n∗r = min(ε
√

νrt, ∆n). Eq. (5.8) changes

similarly, and so does the heat flux at interface in the characteristic equations.

Another point need to be mentioned is that throughout the analysis on thin

thermal layer, the temperature gradient away from the interface in either phase

has been assumed to be zero. In the general situation that the gradients don’t

vanish, the T1 in Eq. (5.9) for thin thermal layer is not close to TR (the

interface temperature with thermal conduction neglected). Rather, T1 in Eq.
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(5.9) should be replaced by the appropriate approximation of TR, which is

given by the extrapolation 2T1 − T2. The left side of the interface should

be handled accordingly to give the correct temperature and heat flux on the

interface. For example, the correct form of Eq. (5.2) is

Ts =

κl

∆n∗l
(2T−1 − T−2) + κl

∆n
(T−2 − T−1) + κr

∆n∗r
(2T1 − T2) + κr

∆n
(T2 − T1)

κl

∆n∗l
+ κr

∆n∗r

.

In the later sections, the numerical technique introduced here will be referred

to as the thin (thermal) layer method.

5.1.3 Tangential Propagation

The normal propagation of the front solves the Euler equations projected

onto the normal direction. After that the Euler equations projected onto the

tangent space are solved on both sides of the front. Along the tangential

direction(s),

∂ρ

∂t
+

∂ρu

∂τ
+ αN1

ρu

r
= 0,

∂ρu

∂t
+

∂(ρu2 + p)

∂τ
+ αN1

ρu2

r
= −ρ

∂φ

∂τ
,

∂ρu′

∂t
+

∂ρuu′

∂τ
+ αN1

ρuu′

r
= 0,

∂ρE

∂t
+

∂(ρE + p)u

∂τ
+ αN1

(ρE + p)u

r
= − ∂q

∂τ
− αN1

q

r
,

where τ is the tangential direction of the interface in two-dimensional problem

or one of the tangential directions in three-dimensional problem. u and u′ are

the tangential velocity along τ and the velocity components perpendicular to
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τ . q is the tangential heat flux. N1 is the x component of the τ .

The tangential equations are solved using the finite difference scheme

described in the next section. The only difference between tangential state

update and interior state update is that the N1 for interior update is either 0

or 1. After the tangential propagation, the states on the two sides of the front

are changed, so the Rankine-Hugoniot conditions, temperature continuity and

the equations about heat flux and phase transition rate could be violated. An

extra normal propagation with ∆t = 0 after the tangential propagation solves

the problem.

5.2 Finite Difference Update of Interior States

After the front propagation and update of front states, the interior states

on the spatial grid need to be time updated. Since the heat conduction does

not involve cross derivatives in space, we can still use directional splitting as

in the current implementation. The advantage of weaving the parabolic terms

into the hyperbolic step rather than after it is that the accuracy of the scheme

is boosted from 1st order to 2nd order in time.

The shock capturing methods currently implemented in FronTier for one-

dimensional sweeps include Lax-Wendroff method, Lax-Friedrichs method,

Collela piecewise linear method and a second order monotone upwind scheme

for conservation laws (MUSCL) scheme developed by Van Leer and adapted

for FronTier by I-L. Chern. MUSCL scheme is similar to the piecewise par-

abolic method described in [11], and a detailed description can be found in

[10]. The two-pass implementation currently being used in FronTier, namely,
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Figure 5.2: Finite difference update of interior state with thermal conduction.

first regular cells then irregular cells update, is well documented in [21]. Here

we will use MUSCL as an example to demonstrate the addition of parabolic

corrections. The emphasis is on the change from the original scheme.

In MUSCL, the gas states are first linearly reconstructed then propagated

for half time step by characteristic method. With heat conduction added,

the linear reconstruction step is the same while the changes of the Riemann

invariants along the characteristics have additional source terms from heat

conduction. The explicit formulas are

dp

dλ+

+ αi
ρc2u

xi

+ ρc
du

dλ+

= −ρc
∂φ

∂xi

− Γ(
∂q

∂xi

+ αi
q

xi

),

dp

dλ−
+ αi

ρc2u

xi

− ρc
du

dλ−
= ρc

∂φ

∂xi

− Γ(
∂q

∂xi

+ αi
q

xi

),

du′

dλ0

= 0,

de

dλ0

+ p
dV

dλ0

= −1

ρ
(
∂q

∂xi

+ αi
q

xi

).

To evaluate the thermal terms, centered finite difference scheme has been used

for the heat flux and its derivative.

As shown in Figure 5.2, during the half time step update of cell (n, j),
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the Riemann invariant along right-going characteristics to point (n + 1
2
, j + 1

2
)

and along left-going characteristics to point (n− 1
2
, j + 1

2
) both have thermal

source term proportional to

−(
∂q

∂xi

+ αi
q

xi

).

For medium satisfying Fourier’s Law of conductivity, q = −κ ∂T
∂xi

. We need

to estimate ∂2T
∂xi

2 and also ∂T
∂xi

in cylindrical or spherical geometry. They are

simply given by

∂2T

∂xi
2
(n, j) =

T (n + 1, j)− 2T (n, j) + T (n− 1, j)

dx2
,

∂T

∂xi

(n, j) =
T (n + 1, j)− T (n− 1, j)

2dx
,

where dx is the grid size.

After the Riemann solver step at half time step, finite volume method

is used to update the conservative quantities, namely, mass, momentum and

energy. Accordingly thermal source terms should also so added, and the terms

should be calculated using the states at half time step to guarantee 2nd order

accuracy in time. The thermal source term is nonzero only for the energy

conservation law in Eq. (4.11) and it is −( ∂q
∂xi

+ αi
q
xi

). The heat flux and its
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derivative are approximated by

q(n, j +
1

2
) = −κ

T (n + 1
2
, j + 1

2
)− T (n− 1

2
, j + 1

2
)

dx
,

∂q

∂xi

(n, j +
1

2
) =

q(n + 1
2
, j + 1

2
)− q(n− 1

2
, j + 1

2
)

dx
=

−κ
T (n + 3

2
, j + 1

2
)− T (n + 1

2
, j + 1

2
)− T (n− 1

2
, j + 1

2
) + T (n− 3

2
, j + 1

2
)

2dx2
.

Notice that in order to update on grid cell, four half time step states

are needed compared to the two states in original hyperbolic MUSCL scheme.

Therefore in the vectorized version of MUSCL, the half step need to be carried

out for two more points, one at each end.

Lastly it should be pointed out that because the scheme is forward in

time, the time step is subject to both the hyperbolic (CFL) restriction and

the parabolic restriction. The hyperbolic restriction is

∆t <
∆x

cmax

,

and the parabolic restriction is

∆t <
1

2

∆x2

νmax

=
1

2

∆x2

( κ
ρcv

)max

.

In fact, the time step should satisfy

2
∆t

∆x2
νmax +

∆t

∆x
cmax < 1.
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5.3 Validation

5.3.1 Comparison with Analytical Solutions

First we verified the convergence of the numerical solution to the an-

alytical solution in Section 4.3.2. The temperature field is decoupled from

the hyperbolic fields. The initial conditions and parameters are given in Eqs.

(4.31) and (4.32) respectively. The numerical scheme was linearized accord-

ingly. Figure 5.3 shows the comparison of the numerical solutions of grid size

0.1 and 0.01 with the analytical solutions. The convergence is clearly verified.

We also verified the convergence of numerical solution to the analytical

solution in Section 4.4, where the hyperbolic fields are decoupled from the

temperature field. Initial conditions and parameters are the same as in Figure

4.7 except that κl = 0.01 and κr = 0.02. Figure 5.4 compares the tempera-

ture field from linearized numerical scheme with grid size 0.1 and 0.01 to the

analytical solution. The convergence is verified again.

5.3.2 Thin Thermal Layer Method

In this section we demonstrate the effect of the thin thermal layer method

in a coarse grid. To understand whether a grid is regarded as fine or coarse,

we rewrite Eq. (5.8) using the thin layer method and the linearized Clausius-

Clapeyron equation,

Ts =

κl

∆n∗l
T−1 + κr

∆n∗r
T1 + α√

2πRTr
Ldpsat

dT
Tsat(pv)

κl

∆n∗l
+ κr

∆n∗r
+ α√

2πRTr
Ldpsat

dT

. (5.10)
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Figure 5.3: Convergence of the pressure and velocity fields obtained numeri-
cally to the analytical solutions for decoupled temperature field. Initial condi-
tions and parameters are given in Eqs. (4.31) and (4.32). (a) is p(x) at t = 1,
(b) is u(x) at t = 1. In both figures, dotted line is for grid size dx = 0.1,
dashed line is for dx = 0.01, solid line is the analytical solution.
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Figure 5.4: Convergence of the T field obtained numerically to the analyt-
ical solutions for decoupled hyperbolic fields. (βT, ρcp, c,m)l = (1, 1, 1, 1),
(βT, ρcp, c, m)r = (1, 0.5, 0.5, 1), κl = 0.01, κr = 0.02. Initial conditions are
(pl0, ul0, Tl0) = (0, 0, 1), (pr0, ur0, Tr0) = (1, 0, 0). Plotted is the T at t = 1.
Dotted line is for grid size dx = 0.1, dashed line is for dx = 0.01, solid line is
the analytical solution.
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The criterion for the fineness of the grid is that the ∆n∗ in the equation

above can be replaced by ∆n without making much difference. We focus on

the gas(vapor)-liquid interface. Since the thermal diffusivity of gas(vapor) is

usually much larger than that of liquid, the thermal layer in the gas(vapor) is

wider than a grid cell for most of the time.

First we consider gas-liquid interface without phase transition. To ob-

tain an accurate temperature field at earlier time such that
√

νlt ¿ ∆n, the

grid is coarse and thin layer method is needed, while for later time such that

√
νlt À ∆n, the grid is fine enough so that the thin layer method doesn’t make

much difference. On the other hand, the pressure field can be calculated with

reasonable precision without thin layer method even for earlier time. The rea-

son is that the heat flux on the vapor side can be calculated quite accurately

due to the thickness of the vapor thermal layer relative to the grid size, and the

heat flux is continuous across the contact, so that the pressure filed, mainly

dependent on the interface heat flux rather than interface temperature, can

be obtained accurately without an accurate temperature field.

Next we turn to the more complicated problem with phase transition.

Here we have an extra length scale from the interfacial dynamics. If

κliq

∆n
À α√

2πRT
L

dpsat

dT
,

Eq. (5.10), which clearly is an interpolation, wouldn’t change much if ∆n is

replaced by a smaller ∆∗. In other word, the criterion for the fineness of the
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grid is

∆n ¿ κliq

√
2πRT

αL

dTsat

dp
.
= κliq

√
2πRT

TVvap

αL2
.

For water at 20oC, using the thermodynamic coefficients listed in Appendix

A, the right hand side of the formula above is 4µm. If the criterion is not

satisfied, the grid is coarse for the calculation of both the temperature and

pressure fields at earlier time. The thin layer method improves the accuracy

of the simulation by a lot, as illustrated by the example below.

We consider the realistic phase transition between water and water vapor

at room temperature 20oC. The vapor is on the left side, and the EOS pa-

rameters are set as in Appendix A. Assume initially both phases are at rest,

and have the same temperature(20oC) and pressure. Initially, the vapor is

superheated by 1oC, which means

Tv − Tsat(pv) = 1oC.

The metastable liquid evaporates, which induces a couple of thermal and pres-

sure waves – the interface cools down and vapor heats up, the vapor pressure

increases, and there is a mass flux into the vapor, etc. The numerical solutions

at 5µs are plotted in Figure 5.5 and Figure 5.6. The solution from three simula-

tions are shown, namely, ∆n = 10µm, ∆n = 1µm and ∆n = 0.2µm. Recalling

the grid fineness criterion from interfacial dynamics, the case ∆n = 10µm can

be regarded as coarse grid, ∆n = 0.2µm the fine grid, while ∆n = 1µm is

intermediate. The phase boundary has moved negligible distance in 5µs.

Figure 5.5 is the numerical solution obtained without using the thin layer
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Figure 5.5: Numerical solution to the problem with Riemann data with phase
transition between water and water vapor. Initially conditions are T0 = 20oC,
Tsat(p0) = 19oC and u0 = 0, where both phases have the same T , p and u.
Plotted is the solution at 5µs from direct simulation without using thin layer
method. (a) is T (x), (b) is p(x), and (c) is u(x). In all figures, the dotted curve
is from the simulation with ∆n = 10µm, the dashed curve with ∆n = 1µm,
and the solid curve with ∆n = 0.2µm.
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Figure 5.6: Numerical solution to the problem with Riemann data with phase
transition between water and water vapor. Initial conditions are the same as
in Figure 5.5. Plotted is the solution at 5µs from direct simulation with thin
layer method. (a) is T (x), (b) is p(x), and (c) is u(x). In all figures, the
dotted curve is from the simulation with ∆n = 10µm, the dashed curve with
∆n = 1µm, and the solid curve with ∆n = 0.2µm.
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method, while Figure 5.6 is obtained with thin layer method. The solid curves

(∆n = 0.2µm) have been compared with the simulation of ∆n = 0.4µm and

the convergence was verified, so we can approximately take the solid curves

to be the exact solutions to which other numerical solutions should converge.

We notice the solid curves of the corresponding temperature, pressure and

velocity fields in both figures are almost the same, which is natural since the

liquid thermal layer is thin relative to the grid only for a period much short

than 5µs. It is easy to see that the fields obtained on coarser grids in Figure

5.5 deviate severely from the exact solution, though the convergence by mesh

refinement is also clear.

As a contrast, the solutions on coarser grid shown in Figure 5.6 is almost

the same as the exact solution. The only exception to the observation above is

the liquid pressure at intermediate grid size ∆n = 1µm. It maybe argued that

the liquid pressure of the dashed line in Figure 5.5(b) is closer to the exact

solution than that in Figure 5.6(b). However, it is more like a coincidence

since the convergence of the vapor pressure is just the opposite. Increasing

the ε in Eq. (5.9) could make the liquid pressure closer to the exact solution,

but meanwhile deviate the vapor pressure from the exact value. More delicate

numerical scheme might help to resolve the issue. As a summary, the thin

thermal layer method, in spite of its crudeness, boost the accuracy of the

numerical solution at coarse grid significantly.
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5.4 Application to One Dimensional Condensation

We used the numerical method to simulate the one dimensional conden-

sation problem. The early-stage build-up of the temperature field has been

demonstrated. The late-stage condensing flow was compared to the exact

steady states and the convergence was confirmed. The one-dimensional prob-

lem consists of a vertical tube containing a shallow layer of water with height

0.05mm. The bottom of the tube is in contact with colder material to sustain

a constant outgoing heat flux. The remaining space is filled with water vapor.

Initially the water and water vapor are at rest and in equilibrium at room

temperature – T0 = 20oC, p0 = 23.4mbar. The outgoing heat flux from water

gradually builds up a temperature gradient in the water and causes conden-

sation. For the boundary conditions at the opening of the tube, the vapor

pressure is assumed to be constant and the temperature gradient is assumed

to be zero. Mathematically, the equations for the liquid and vapor states

are the Euler equation with thermal conduction, and interface conditions is

the Rankine-Hugoniot conditions plus interfacial dynamics of phase transition

with evaporation coefficient set to 0.4. The boundary conditions are

(
∂T

∂x

)

x=0

= 0,

p(x = 0) = p0,(
∂T

∂x

)

x=D

= Tx0,

u(x = D) = 0,
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Figure 5.7: The position of phase boundary in the first 6ms. T0 = 20oC,
p0 = 23.4mbar, Tx0 = −2.5oC/µm. xph first increases due to the thermal
contraction and later decreases due to condensation. The solid line is from
the simulation with grid size 1µm, the dashed line is with grid size 2µm, the
dotted line is with grid size 4µm.

where D is the total length of the liquid and vapor in the calculation. Since

the vapor state is virtually uniform, the length of vapor layer doesn’t affect

the results. In the calculation D is chosen to be 0.1mm so that initially the

computational domain is half filled with water. x = D is the bottom of the

tube and x = 0 is vapor end. In the following example, Tx0 = −2.5oC/µm.

The EOS parameters and the thermal conductivities are set as in Appendix A

for room temperature.

5.4.1 Early Stage

The simulation was carried out using the numerical methods developed

in the previous sections. The grid resolution was 1µm. The position of the
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phase boundary xph calculated from the simulation was plotted against the

time 0 < t < 6ms in Figure 5.7. It shows that the phase boundary first

moves to the the right, then back to the left. In other words, before the liquid

volume increases due to the condensation, it first decreases for about 2.7ms.

The reason is that the liquid shrinks with the lowering temperature when the

heat flux required for the phase transition has not been built up. It is not

until about t = 4.8ms that the phase boundary moves back to the original

position. After that the phase transition dominates over thermal contraction

of the liquid and the phase boundary moves steadily to the left.

5.4.2 Late Stage

The liquid height increases during the condensation, while the thermal and

pressure waves in the tube gradually approaches the ”steady state” dictated

by the boundary conditions and liquid height. The ”steady state” is quoted

because it is not a single state, but rather a series of states depending on

the liquid height that is changing with time. The steady states can be found

as following. Since Tx(x = 0) = 0, the steady state of vapor is uniform.

Combined with the fact that the mach number of the phase transition in the

example is less than 0.1 for the vapor and even smaller for the liquid, the

steady temperature field in liquid is given by Eq. (4.49) except that the x

there should be replaced by x − xph, where xph is the location of the phase

boundary.

T (x) = Ts +
L

cp

(1− exp(
Mcp(x− xph)

κ
)). (5.11)
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At the bottom of the tube (x = D) the exponent Mcp(D − xph)/κ is about

0.2, which is small but not negligible. So ∂T
∂x

is not uniform, and the transition

rate M of the steady state should be obtained by solving

(
∂T

∂x

)

x=D

= −LM

κ
exp(

Mcp(D − xph)

κ
) = Tx0.

From M the interface temperature can be found from kinetic relation with

the known vapor pressure p0. The variation of the pressure in the liquid is

negligible compared to the pressure jump at the phase boundary. The steady

state liquid pressure is given by

pl = pv + M2∆V
.
= p0 + M2Vv.

The liquid velocity is 0 at x = D as dictated by the boundary condition, hence

the velocity of the phase boundary is

uph = −MVl|D .
= −MVl0(1 + β(T |D − T0)),

where the effect of pressure variation on density has been neglected. The vapor

velocity is

uv = MVv + uph
.
= MVv.

Since the phase boundary is moving, all the quantities above vary with time.

Table 5.1 is the comparison between the steady state quantities and the

corresponding ones in the evolving wave obtained from numerical simulation.

It can be seen from the table that the evolving state is closer to the steady
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t(ms) 10 20 30
xph(mm) 0.04874 0.04464 0.03991

state actual steady actual steady actual steady
M(10−5g/cm2 ·ms) 3.61 5.10 4.74 5.04 4.958 4.968

Ts(
oC) 14.09 11.65 12.24 11.75 11.880 11.865

pl(mbar) 23.48 23.56 23.535 23.552 23.5475 23.5481
uph(10−5cm/ms) -3.31 -4.97 -4.58 -4.90 -4.818 -4.822

uv(cm/ms) 2.16 3.06 2.84 3.02 2.975 2.981

Table 5.1: Comparison of the actual states from simulation with the corre-
sponding steady states at various times. The steady state depends on the
interface position at time t. The grid resolution of the simulation is 1µm.

state at later time. Figure 5.8 visualizes the evolution. From the figure we

see the pressure and velocity jumps at the phase boundary increase steadily

toward the values of steady states.

The temperature field plotted in Figure 5.8(a) is particularly interesting.

The temperature gradient is approximately constant in the steady state, so

the solid curve (t = 30ms) in Figure 5.8(a) should be roughly a straight line

as it is. However, if looked at carefully, one might notice it is not exactly

a straight line. In fact we can show the curvature of the temperature field

matches excellently with the nonlinearity revealed in Eq. (5.11). In order to

see the nonlinearity of the temperature distribution, define

y = ln(1 +
cp

L
(Ts − T )).

From Eq. (5.11), for steady state

yst =
Mcp

κ
(x− xph). (5.12)
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Figure 5.8: Late-stage condensing flow. T0 = 20oC, p0 = 23.4mbar,
Tx0 = −2.5oC/µm. (a) is T (x), (b) is p(x), and (c) is u(x). In all figures,
the dotted curve is for T = 10ms, the dashed curve for t = 20ms, and the
solid curve for t = 30ms. The grid size of the simulation was 1µm.
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Figure 5.9: Match of the nonlinearity between the temperature from simulation
at t = 30ms and the steady state temperature distribution. The solid line
is plot of yst in Eq. (5.12). The dots are the discretized values of y from
simulation. The dotted line line the plot of y if the temperature gradient were
constant. Obviously the actual T at t = 30 is much closer to Eq. (5.11) than
a linear distribution.

In the above two equations, thermodynamical parameters cp and κ are both for

the liquid. Using the Ts at t = 30, the discretized value of y from simulation

can be calculated. yst and the y from simulation are compared in Figure 5.9.

The match is almost perfect. It indicates the state at t = 30 is close to the

steady state not only in general profile but also in fine details.

Finally the mesh refinement check for the late-stage solutions is shown

in Figure 5.10. All the curves are very close to each other, the temperature

field obtained at the three grid resolutions are particularly indistinguishable

in Figure 5.10(a).
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Figure 5.10: Mesh refinement check for t = 20ms. (a) is T (x), (b) is p(x),
and (c) is u(x). In all figures, the dotted curve is from the simulation of grid
resolution 4µm, the dashed curve is of grid resolution 2µm, and the solid curve
is of grid resolution 1µm.
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Chapter 6

Conclusion

6.1 DNS of Bubbly Flows and Application

Through the comparison of numerical simulations with experiments and

theoretical predictions on the propagation of acoustic and shock waves in bub-

bly fluids, the direct approach to the simulation of bubbly flows using the

method of front tracking and the FronTier code has been validated. This

method is potentially very accurate in treating many physical effects in bubbly

flows, such as drag, surface tension, viscosity, and the phase transition induced

mass transfer. It has a variety of current and prospective applications, such

as Rayleigh-Taylor instability [18, 28] and cavitating flows.

The pressure wave relaxation in bubbly mercury in the SNS target has

been investigated numerically using the FronTier hydro code. The estimation

of cavitation bubble collapse pressure under periodic ambient pressure has

been carried out systematically. The efficiency of the mitigation of overall

cavitation damage by the injection of bubbles has been calculated. The overall

cavitation damage has been found to be reduced by more than an order of
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magnitude through the injection of gas bubbles with volume fraction of order

1%. Therefore the use of layers of non-dissolvable gas bubbles as a pressure

mitigation technique to reduce the cavitation erosion has been confirmed.

6.2 Interfacial Dynamics of Phase Transitions

The interfacial dynamics of phase transitions has been investigated along

with the case without mass flux. The rate of the non-equilibrium phase tran-

sitions is proportional to the deviation of vapor pressure from the Clausius-

Clapeyron equation. Analytical solutions to the linearized equations have been

explored. Physical spikes have been observed on the wavefronts, whose height

and width were calculated exactly for linearized equations. The spikes persist

for linearized equations but appear to vanish for nonlinear equations as time

increases. The 3-wave structure coupled to the thermal layers in the adiabatic

and isothermal limits has been clarified. The reason for the lack of a clear

wave structure in the intermediate time has also been discussed. The analyti-

cal travelling wave solutions have been found and shown to exist only on finite

domain dictated by the stability condition.

A numerical scheme for solving the Euler equations with thermal conduc-

tion and phase transitions has been implemented in the frame of front tracking.

Heat conduction has been added to the interior state update with second order

accuracy. Phase boundary propagation has been handled according to the in-

terfacial dynamics. A numerical technique has been introduced to account for

the thermal layer thinner than a grid cell. The algorithm and the thin layer

method have been validated by showing their convergence to the analytical
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solution (or fine grid solution if analytical solution is unknown) through mesh

refinement. The scheme has also been extended to multi-dimension, adapted

to cylindrical and spherical symmetry, and applied to sample physical prob-

lems such as the simulation of boiling and cavitating processes.
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Appendix A

Parameters for Stiffened Polytropic EOS

A.1 Thermodynamic Identities

Following is the definition of a few thermodynamic quantities.

cp := T

(
∂S

∂T

)

p

,

cv := T

(
∂S

∂T

)

V

,

KT := −ρ

(
∂V

∂p

)

T

,

KS := −ρ

(
∂V

∂p

)

S

,

β :=
1

V

(
∂V

∂T

)

p

,

c2 :=

(
∂p

∂ρ

)

S

,

where cp and cv are the specific heat with fixed pressure and fixed volume

respectively. KT and KS are the isothermal and isentropic compressibility.

β is the coefficient of thermal expansion and c is the adiabatic sound speed.
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There are several thermodynamic identities for them that will be used for the

setting of the EOS parameters.

cp =
βV

ΓKS

,

cv =
βV

ΓKT

,

cp − cv =
βV

KT

βT. (A.1)

Number of free parameters

Take Gibbs energy G as example. The second law of thermodynamics

gives

dG = V dp− SdT.

We are concerned about the specific Gibbs energy in the vicinity of a point

(p0, T0) in the p− T plane. Expand G in p and T up to second order,

G(p, T )
.
= G(p0, T0) + V (p− p0)− S(T − T0) +

1

2

(
∂V

∂p

)

T

(p− p0)2

+

(
∂V

∂T

)

p

(T − T0)(p− p0)− 1

2

(
∂S

∂T

)

p

(T − T0)2,

where V , S and all partial derivatives are evaluated at (p0, T0). The three

partial derivatives are related to KT , β and cp respectively. The value of G in

the vicinity of (p0, T0) is determined up to the second order by six quantities

– KT , β, cp, V , S and G at (p0, T0). The first four are well defined physically,

while the last two can be shifted by arbitrary constants. If the EOS’s of the

two phases are required to be consistent at the phase coexistence curve, then
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the specific Gibbs energy in both phases must be equal at the curve.

0 = ∆G = ∆E + p∆V − T∆S ⇒ ∆E = T∆S − p∆V = L− p∆V, (A.2)

where L = T∆S is the latent heat of phase transitions. Therefore, in order

for the EOS to be accurate up to the second order expansion near (p0, T0) and

consistent with phase transitions, four parameters associated with KT , β, cp,

V and one auxiliary parameter associated with L are needed. The Stiffened

Polytropic EOS introduced below has exactly five parameters to accommodate

the requirement.

As for the γ-law gas or the so-called POLY EOS implemented in FronTier,

KT = p−1, β = T−1, and the specific internal energy E has definite physical

meaning. So the five parameters reduce to two parameters, as there are in the

POLY EOS, namely, R and γ.

A.2 Liquid and Vapor EOS’s

Throughout the thesis the liquid is described by the stiffened polytropic

(SPOLY) EOS, while the vapor is considered as γ-law gas, or equivalently, the

polytropic (POLY) EOS. SPOLY EOS is a simple, analytical approximation

to an arbitrary EOS, obtained by local fitting pressure, density, temperature

and the first derivatives [36]. It has two defining equations,

p + γp∞ = (γ − 1)ρ(E + E∞),

RT = (p + p∞)V + (γ − 1)Etρ
γ−1.
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Other thermodynamic quantities such as entropy can be derived from them.

There are five parameters in the equations, namely, γ, R, p∞, E∞ and Et.

Since Et is usually negative, for convenience we will denote −Et by Q. And it

is easy to derive that

R = cv(γ − 1).

In the implementation, the five parameters are γ, cv, p∞, E∞ and Q. Us-

ing Eq. (A.1), it is straightforward to derive the following formulas for the

thermodynamic quantities KT , β, cp in terms of these parameters,

1

KT

= p + p∞ + (γ − 1)2QV −γ,

1

β
= T +

γ

cv

QV 1−γ,

cp = cv + βRT,

or inversely, the formulas for the EOS parameters in terms of the thermody-

namic quantities KT , β, cp and V at (p, T ),

cv = cp − β2V T

KT

,

γ = 1 +
βV

KT cv

,

Q = V γ−1 cv

γ

1− βT

β
,

p∞ =
1

KT

− (γ − 1)2QV −γ − p. (A.3)

If phase transitions are not involved, the auxiliary parameter E∞ can be
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set arbitrarily, for example,

E∞ = E0
∞ =

(p + γp∞)V

γ − 1
(A.4)

to make E vanish at (p, T ). Otherwise E should satisfy Eq. (A.2), so to be

consistent with the vapor EOS,

E∞ = Eph
∞ =

(p + γp∞)V

γ − 1
+ L− (Ev + p(Vv − Vl)). (A.5)

The POLY EOS has two parameters γv and Rv, and the equations are

E =
pV

γv − 1
,

RvT = pV.

The parameters are determined by the molecular mass (Rv) and structure (γv).

A.3 Numerical Examples

A.3.1 Single liquid phase

The thermodynamic quantities and SPOLY parameters for water at 20oC

and 100oC under 1 bar pressure are listed in the following table. The units

are cm, ms, g, bar, oC and their combinations. The thermodynamic quantities

are
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p(bar) T (oC) V (cm3/g) cp((cm/ms)2/K) k−1
T (103bar) β−1(103K)

1 20 1.002 41.8 21.8 4.79

1 100 1.043 42.2 20.1 1.32

the sound speeds in the two cases are 148 and 153 (cm/ms) respectively. All

quantities can be found in standard physical and chemical handbooks. Using

Eqs. (A.3) and (A.4), the appropriate SPOLY parameters for water are

γ cv((cm/ms)2/K) p∞(103bar) Q(103bar(cm3/g)γ) E0
∞(103(cm/ms)2)

1.11 41.5 19.8 168 200

1.42 37.7 15.8 25.6 55.7

A.3.2 Both phases near equilibrium

For water and water vapor near equilibrium at 20oC and 100oC, the ther-

modynamic quantities and EOS parameters are listed below. The saturation

pressure at those temperatures are 0.0234 and 1.013 bar respectively. The

thermodynamic quantities for water are virtually the same as those in the pre-

vious examples. So the only different parameter in the SPOLY EOS for water

is the E∞, which should be set to Eph
∞ as in Eq. (A.5). So we will only list

the two parameters of the POLY EOS for water vapor and the Eph
∞ for water.

The thermodynamic quantities are

T (oC) Psat(bar) L(103(cm/ms)2) Vv(103cm3/g)

20 0.0234 24.5 57.8

100 1.013 22.6 1.67

The EOS parameters are
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Rv((cm/ms)2/K) γv Eph
∞ (103(cm/ms)2)

4.61 1.33 219

4.54 1.33 71.5

The γv in the table is defined to be cp/cv of water vapor (for vapor at higher

temperature cv > R/(γ − 1)).

As a reference, the thermal conductivity throughout the thesis is 5.98 ×
10−5gcm4/(ms3K) for water and 1.82× 10−6gcm4/(ms3K) for water vapor.
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