Muon Collider/Neutrino Factory Collaboration Meeting May 26 – 28, CERN, Geneva

Target Simulations

Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu

Center for Data Intensive Computing Brookhaven National Laboratory U.S. Department of Energy

rosamu@bnl.gov

The system of equations of compressible magnetohydrodynamics:

an example of a coupled hyperbolic – parabolic/elliptic subsystems

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{u})$$

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla P + \mu \Delta \mathbf{u} + \frac{1}{c} (\mathbf{J} \times \mathbf{B})$$

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) e = -P\nabla \cdot \mathbf{u} + \frac{1}{\sigma} \mathbf{J}^{2}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times \left(\frac{c^{2}}{4\pi\sigma} \nabla \times \mathbf{B} \right)$$

$$P = P(\rho, e), \qquad \nabla \cdot \mathbf{B} = 0$$

Constant in time magnetic field approximation (low magnetic Reynolds number)

- The diffusion time of the magnetic field is of order 10 microseconds
- The eddy current induced magnetic field is negligible
- Therefore, the time evolution of B field can be neglected and the distribution of currents can be found by solving Poisson's equation:

$$\mathbf{J} = \sigma \left(-\nabla \phi + \frac{1}{c} \mathbf{u} \times \mathbf{B} \right)$$

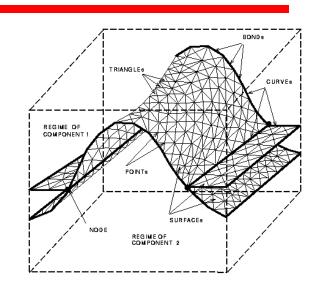
$$\Delta \phi = \frac{1}{c} \nabla \cdot (\mathbf{u} \times \mathbf{B}),$$
with $\frac{\partial \phi}{\partial \mathbf{n}} \Big|_{\Gamma} = \frac{1}{c} (\mathbf{u} \times \mathbf{B}) \cdot \mathbf{n}$

Numerical methods for the hyperbolic subsystem inmplemented in the *FronTier Code*

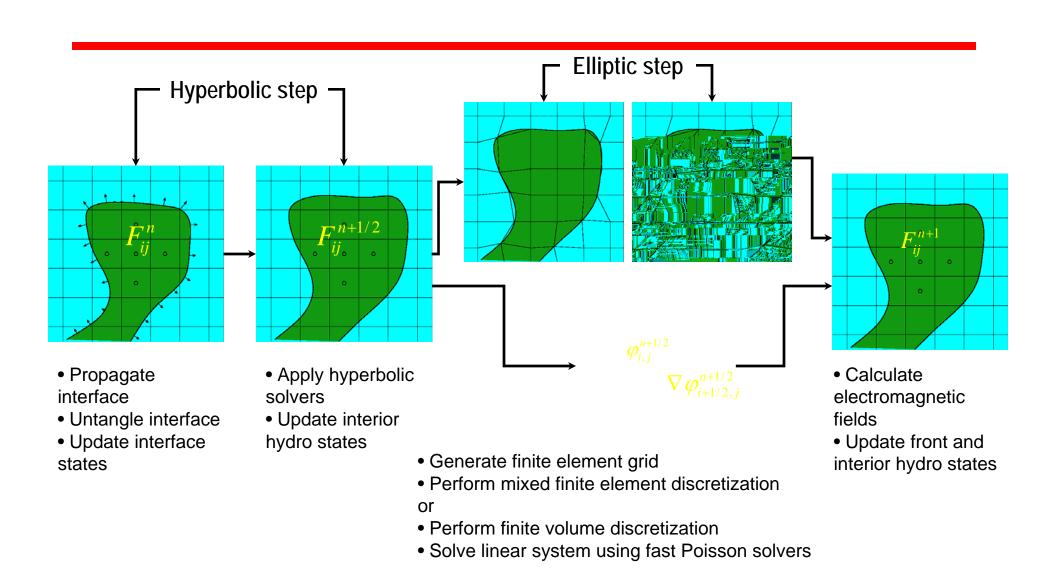
- The FronTier code is based on front tracking. Conservative scheme.
- Front tracking features include the absence of the numerical diffusion across interfaces. It is ideal for problems with strong discontinuities.
- Away from interfaces, FronTier uses high resolution (shock capturing) methods
- FronTier uses realistic EOS models:
 - SESAME
 - Phase transition support

(a) (b) (c)

Brookhaven Science Associates U.S. Department of Energy



FronTier-MHD numerical scheme



Low resolution run with dynamic cavitation. Energy deposition is 80 J/g

Initial density

Density at 3.5 microseconds

Initial pressure is 16 Kbar

Pressure at 3.5 microseconds

Density at 620 microseconds

Analysis of previous simulations

Positive features

- Qualitatively correct evolution of the jet surface due to the proton energy deposition
- Stabilizing effect of the magnetic field

Negative features

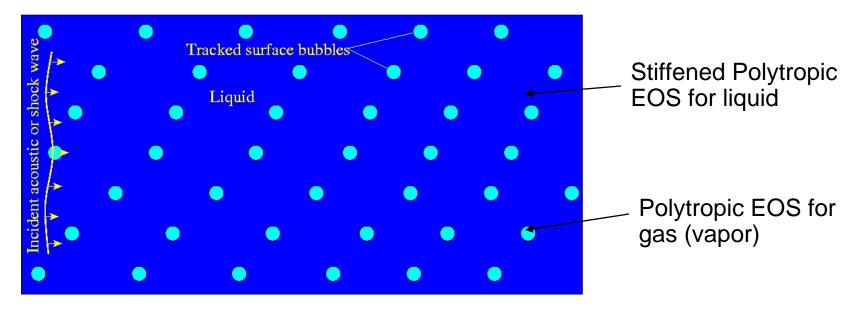
- Discrepancy of the time scale with experiments
- Absence of cavitation in mercury
- The growth of surface instabilities due to **unphysical** oscillations of the jet surface interacting with shock waves
- 2D MHD simulations do not explain the behavior of azimuthal modes

Conclusion

- Cavitation is very important in the process of jet disintegration
- There is a need for cavitation models/libraries for the FronTier code
- 3D MHD simulations are necessary

We have developed two approaches for cavitating and bubbly fluids

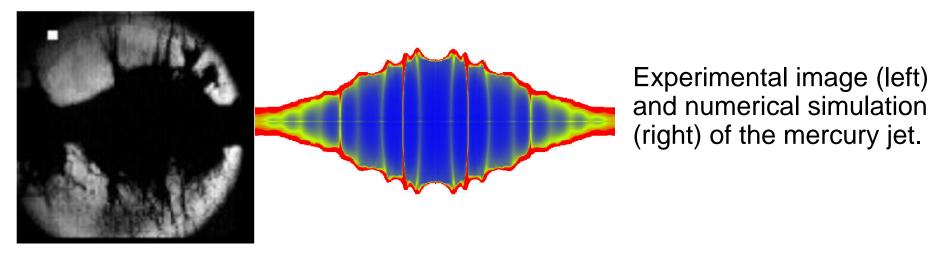
 Direct numerical simulation method: Each individual bubble is explicitly resolved using FronTier interface tracking technique.



■ Homogeneous EOS model. Suitable average properties are determined and the mixture is treated as a pseudofluid that obeys an equation of single-component flow.

Homogeneous two phase EOS model

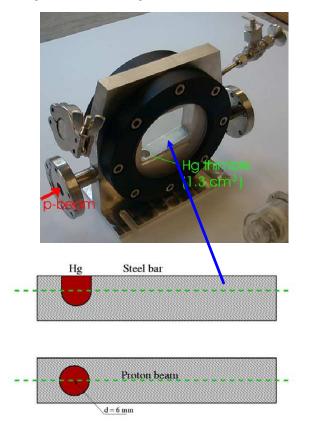
- Applicable to problems which do not require resolving of spatial scales comparable to the distance between bubbles.
- ■Accurate (in the domain of applicability) and computationally less expensive.
- Correct dependence of the sound speed on the density (void fraction).
- Enough input parameters to fit the sound speed to experimental data.

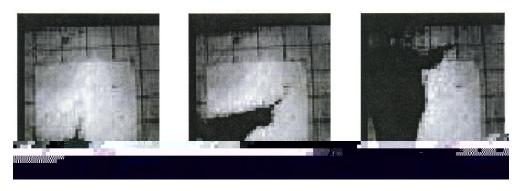


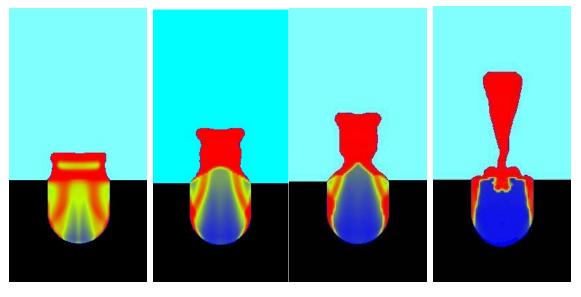
- Mercury splash is a combined effect of the expansion of the two-phase domain and the growth of Richtmyer-Meshkov (RM) surface instabilities.
- Homogeneous EOS model does not resolve small scales (RM instabilities)

Numerical simulation of mercury thimble experiments

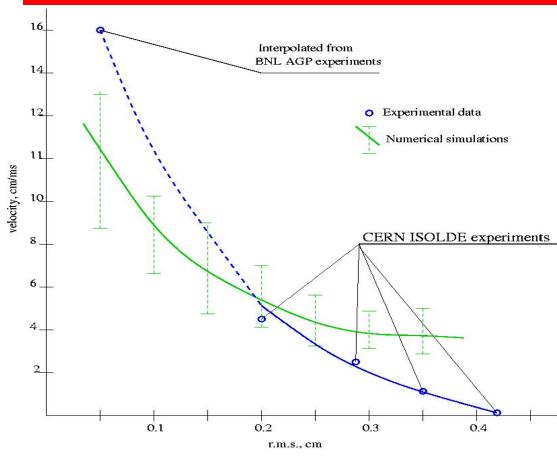
Evolution of the mercury splash due to the interaction with a proton beam (beam parameters: 24 GeV, 3.7*10¹² protons). Top: experimental device and images of the mercury splash at 0.88 ms, 1.25 ms, and 7 ms. Bottom: numerical simulations using the FronTier code and analytical isentropic two phase equation of state for mercury.







Velocity as a function of the r.m.s. spot size



Experimental data: insufficient optical resolution to observe fine structure of RM instabilities. But RM instabilities are present.

- RM instabilities depend on the strength of the shock; the pressure wave has higher gradient at low r.m.s. (more like shock).
- Numerical data: mercury splash is due to the expansion of the two-phase domain.

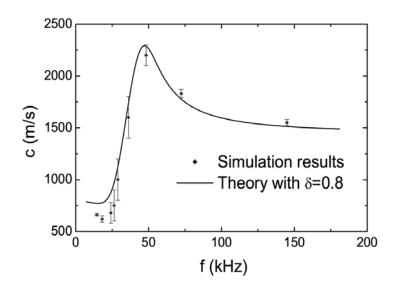
Homogeneous EOS model does not resolve small spatial scales (RM instabilities).

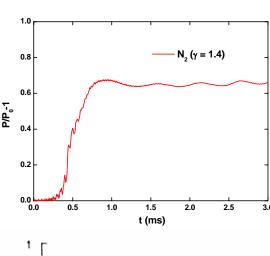
Features of the Direct Method

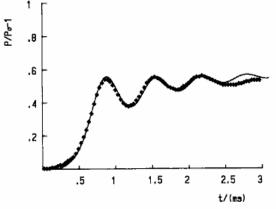
- Accurate description of multiphase systems limited only to numerical errors.
- Resolves small spatial scales of the multiphase system
- Accurate treatment of drag, surface tension, viscous, and thermal effects.
- Accurate treatment of the mass transfer due to phase transition (implementation in progress).
- Models some non-equilibrium phenomena (critical tension in fluids)

Validation of the direct method: linear waves and shock waves in bubbly fluids

- Good agreement with experiments (Beylich & Gülhan, sound waves in bubbly water) and theoretical predictions of the dispersion and attenuations of sound waves in bubbly fluids
- Simulations were performed for small void fractions (difficult from numerical point of view)
- Very good agreement with experiments of the shock speed
- Correct dependence on the polytropic index

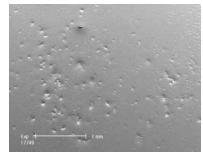


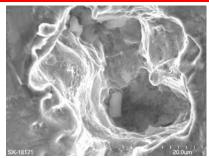




Application to SNS target problem



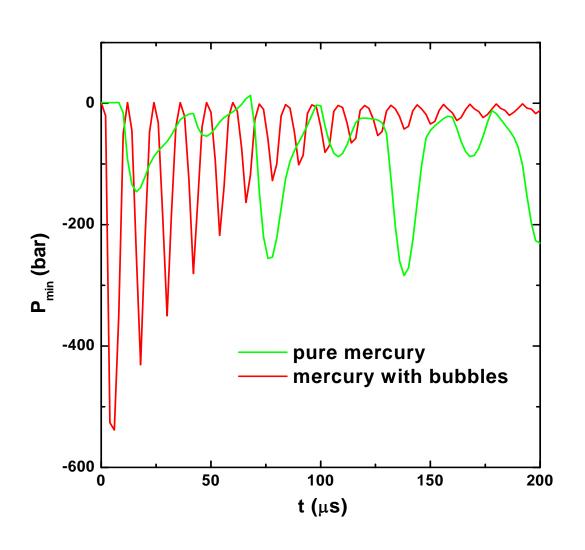




Left: pressure distribution in the SNS target prototype. Right: Cavitation induced pitting of the target flange (Los Alamos experiments)

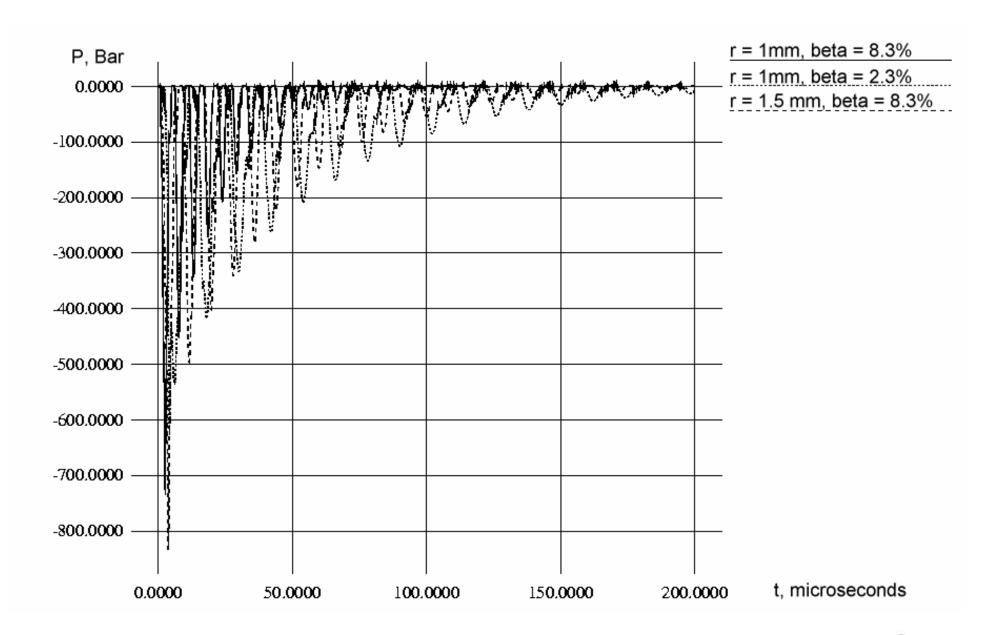
- Injection of nondissolvable gas bubbles has been proposed as a pressure mitigation technique.
- Numerical simulations aim to estimate the efficiency of this approach, explore different flow regimes, and optimize parameters of the system.

Application to SNS



Effects of bubble injection:

- Peak pressure decreases by several times.
- Fast transient
 pressure oscillations.
 Minimum pressure
 (negative) has larger
 absolute value.
- Cavitation lasts for short time



Brookhaven Science Associates U.S. Department of Energy

Dynamic cavitation

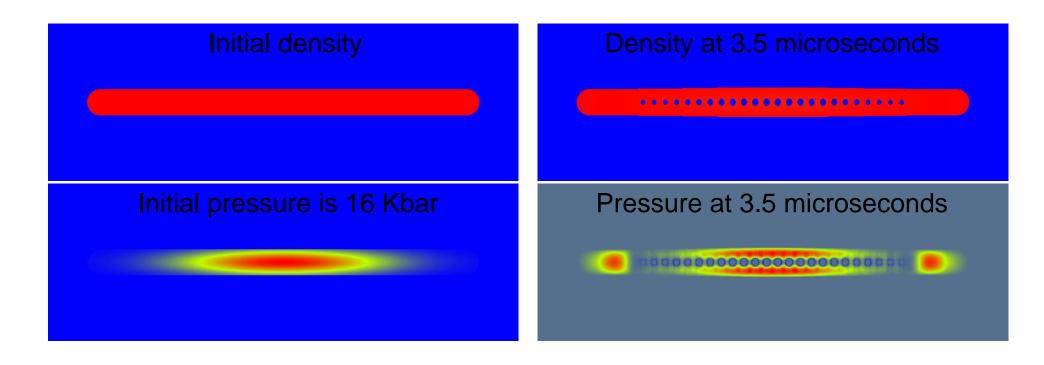
- A cavitation bubble is dynamically inserted in the center of a rarefaction wave of critical strength
- A bubbles is dynamically destroyed when the radius becomes smaller than critical. "Critical" radius is determined by the numerical resolution, not the surface tension and pressure.
- There is no data on the distribution of nucleation centers for mercury at the given conditions. Some theoretical estimates:

critical radius:
$$R_C = \frac{2S}{\Delta P_C}$$

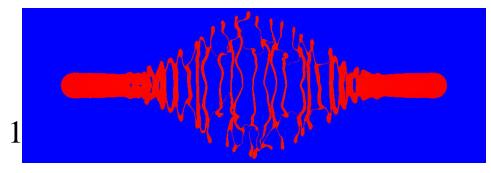
nucleation rate:
$$J = J_0 e^{-Gb}$$
, $J_0 = N \sqrt{\frac{2S}{\pi m}}$, $Gb = \frac{W_{CR}}{kT}$, $W_{CR} = \frac{16\pi S^3}{3\left(\Delta P_C\right)^2}$

 A Riemann solver algorithm has been developed for the liquidvapor interface.

Low resolution run with dynamic cavitation. Energy deposition is 80 J/g



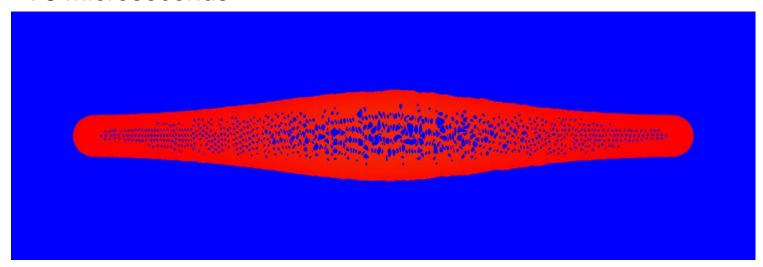
Density at 620 microseconds



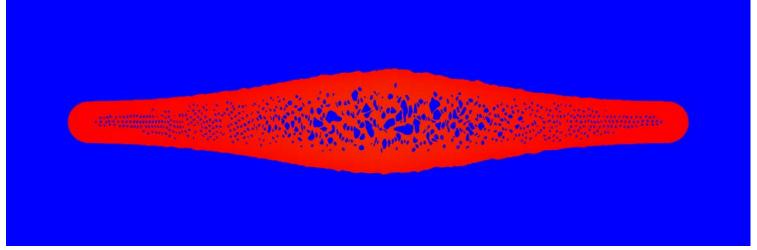
Brookhaven Science Associates U.S. Department of Energy

High resolution simulation of cavitation in the mercury jet

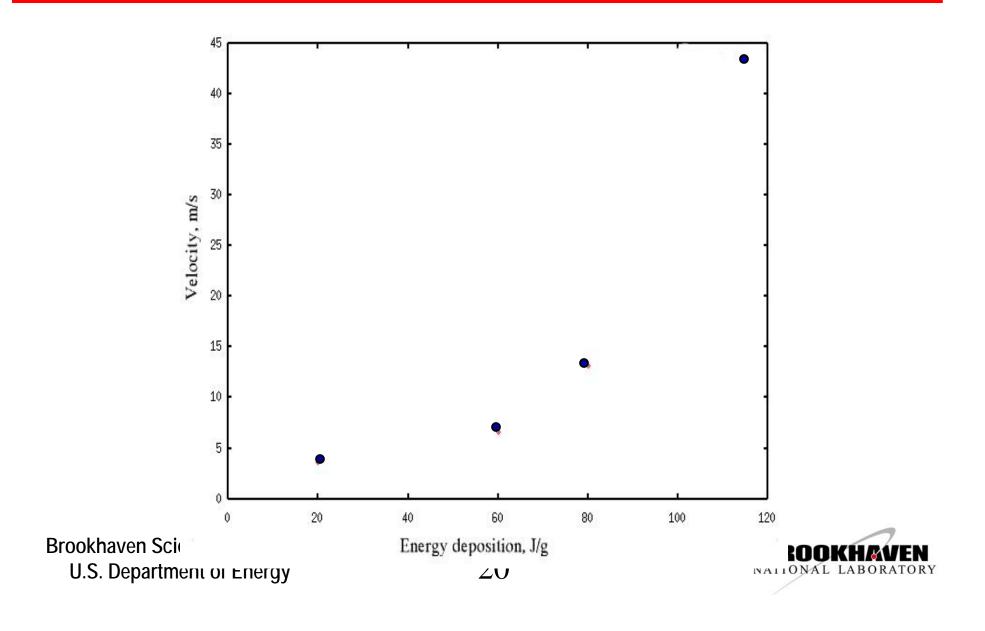
76 microseconds



100 microseconds



High resolution simulation of cavitation in the mercury jet



Interaction with multiple proton bunches.

- We have studies the wave structure and jet evolution after interaction with multiple proton bunches.
- Limit based on sound speed: 3.5 microseconds. Agrees with numerical experiments since there is no cavitation induced reduction of the sound speed during this time.
- Multiple pulses reduce surface velocity.
- Results depend on the beam r.m.s. spot size. Velocity change is smaller at large r.m.s.
- Multiple bunch beam itself has a similarity with the beam r.m.s. increase.

3D MHD simulations: summary of progress

- A new algorithm for 3D MHD equations has been developed and implemented in the code.
- The algorithm is based on the Embedded boundary technique for elliptic problems in complex domains (finite volume discretization with interface constraints).
- Preliminary 3D simulations of the mercury jet interacting with a proton pulse have been performed.
- Studies of longitudinal and azimuthal modes. Strong stabilization of longitudinal modes. Simulations showed that azimuthal modes are weakly stabilized (effect known as the flute instability in plasma physics)
- Combining of MHD and direct cavitation is necessary. The problem demands large computational resources.

Conclusions and Future Plans

- ■Two approaches to the modeling of cavitating and bubbly fluids have been developed
 - Homogeneous Method (homogeneous equation of state models)
 - Direct Method (direct numerical simulation)
- Simulations of linear and shock waves in bubbly fluids have been performed and compared with experiments. SNS simulations.
- Simulations of the mercury jet and thimble interacting with proton pulses have been performed using two cavitation models and compared with experiments.
- Both directions are promising. Future developments:
 - Homogeneous method: EOS based on the Rayleigh –Plesset equation.
 - Direct numerical simulations: AMR, improvement of thermodynamics, mass transfer due to the phase transition; distribution of cavitation centers.
 - Continue 3D simulations of MHD processes in the mercury target.
 - Coupling of MHD and cavitation models.

