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Abstract
In this paper, we proved that a positive definite radial function on Rd with support in [0, π] is strictly

positive definite on the sphere Sd and real projective space RPd for odd d ≥ 3. We also proved that
the truncated power function (t − ·)(d+1)/2

+
is strictly positive definite on Sd and RPd for d ≥ 2 and

t ∈ (0, π].
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
technologies.
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1. Introduction

Positive definite (PD) functions and strictly positive definite (SPD) functions play important
oles in the approximation theory. A continuous (radial) function f : [0, ∞) → R is PD on

d if for all distinct point sets {x1, . . . , xn} in Rd , the matrix [ f (ρ(xi , x j ))]n
i, j=1 is positive

semidefinite, where ρ(x, y) denotes the Euclidean distance. The function f is SPD if such
matrices are all positive definite. PD and SPD functions on the sphere Sd

= {x ∈ Rd+1, ∥x∥ =

1} or the real projective space RPd (formed by identifying antipodal points of Sd ) are defined
accordingly for point sets in Sd or RPd with ρ(x, y) denoting the geodesic distance.

Bochner’s theorem characterizes PD functions on Rd by the nonnegativeness of the Fourier
transform of the function f (∥ · ∥), i.e.,

∫
Rd f (∥x∥)e−ik·xdx ≥ 0. PD functions on the spheres

have wide applications in geophysics and cosmology [12]. By [18], f is a PD function on Sd

if and only if the spectral coefficients given below are nonnegative for l ∈ N0,

cl( f ) =

∫
Sd

f (ρ(x, y))pα,l(x · y)dx, (1.1)
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where pα,l(·) is the normalized Jacobi polynomial (18.3 in [15]), P (α,α)
l (·)/P (α,α)

l (1), with
= (d − 2)/2. The normalized Jacobi polynomial pα,l(·) is the same as the normalized

egenbauer polynomial (18.3 in [15]), Ĉ (α)
l (·) = C (α)

l (·)/C (α)
l (1), with α = (d − 1)/2.

SPD functions are particularly useful in the approximation theory because they guarantee
he existence and uniqueness of the solution to the interpolation problem for g(·) [2],

n∑
j=1

f (ρ(xi , x j ))c j = g(xi ), i = 1, . . . , n.

e will study compactly supported SPD functions, for which the matrix in the interpolation
roblem is sparse and thus computationally efficient [20]. Compactly supported SPD functions
n Rd have been studied for decades [19,20]. By the Paley–Wiener theorem [16], the Fourier
ransform of a function on Rd with compact support cannot vanish on an open set. As a result,
y Theorem 2.2 in [5], a PD function on Rd with compact support is SPD on Rd .

SPD functions on spheres and other two-point homogeneous spaces have been characterized
n [1,6,9,13]. A PD function f on Sd with d ≥ 2 is SPD if and only if its spectral coefficients
l( f ) > 0 for infinitely many even l and infinitely many odd l. A PD function f on S1 is SPD
f and only if any infinite increasing integer arithmetic sequence contains an integer l such
hat cl( f ) > 0. A PD function f on a non-spherical two-point homogeneous space (e.g. a real
rojective space) if and only if its spectral coefficients cl( f ) > 0 for infinitely many l. In this
aper, we will prove that certain functions have positive spectral coefficients on Sd or RPd ,
nd therefore are SPD on the corresponding space.

One way to generate SPD functions on Sd is to restrict an SPD function on Rd+1 to the
mbedded sphere Sd with Euclidean distance. If f is SPD on Rd+1, g(·) = f (2 sin(·/2))
estricted to [0, π] is SPD on Sd . Another way to generate SPD functions on Sd is to use
compactly supported PD function on Rd directly for Sd with spherical distance. It has been

roved that a PD function on Rd with support in [0, π] is PD on Sd and real projective space
Pd for odd d ≥ 3 [10,14]. We will prove that a PD function on Rd with support in [0, π]

has positive spectral coefficients on Sd and RPd for odd d ≥ 3, thus is SPD on those spaces.
A PD function on R with support in [0, π] is PD, but not necessarily SPD, on S1.

By our theorem, SPD functions on Sd for odd d can be generated from the compactly
supported PD functions on Rd introduced in [19,20]. A natural question to ask is whether the
theorem holds for even d . However, it remains an open problem. Compactly supported SPD
functions on Sd and Rd for even d can be generated from such functions on Rd+1. The literature
on compactly supported PD functions on Rd for even d but not on Rd+1 is scarce. There are a
few ways to generate such functions. One way is to convolve a compactly supported function
with itself on Rd . Another way is to apply half-order integration to a compactly supported PD
function φ(·) on Rd+1 as in [17],

f (x) =

∫
∞

x
φ(r )(r2

− x2)−1/2rdr.

The third way is to use the truncated power function (1 − ·)λ
+

with λ ≥ (d + 1)/2, a classical
D function on Rd due to [8].

For even d , a PD function on Rd with support in [0, π] is not guaranteed to be PD on Sd .
However, we will prove that it is guaranteed for a PD truncated power function. [2] proved that
(t − ·)(d+1)/2

+ was SPD on Sd for d = 3, 5, 7 and t ∈ (0, π]. By our result on odd dimensional
spheres, the conclusion holds for all odd dimensions beyond 1. [7] proved that (t − ·)3/2

+ is
PD on S2 for sufficiently small t . We will prove Conjecture 1.4 in [2], which stated that for
2
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d ≥ 2, t ∈ (0, π], and λ ≥ (d +1)/2, the truncated power function (t −·)λ
+

has positive spectral
oefficients on Sd , and thus is SPD on Sd .

In summary, we proved that a PD function on Rd with support in [0, π] is SPD on Sd and
Pd for odd d ≥ 3. As a result, the rich literature about compactly supported PD functions

on Rd can be used to generate compactly supported SPD functions on Sd , which has wide
pplications in geophysics. Although we did not prove the corresponding theorem for even d,
e showed that it holds for two classes of compactly supported PD functions on Rd , one of
hich being the truncated power functions. It sheds light on the conjecture that a PD function
n Rd with support in [0, π] is PD on Sd for all dimensions.

The rest of the paper is organized in the following way. In Section 2, we prove that a PD
unction on Rd with support in [0, π] is SPD on Sd and RPd for odd d ≥ 3. In Section 3,
e prove Conjecture 1.4 in [2] about truncated power functions on Sd . In Section 4, we make

ome remarks and draw the conclusion.

. Positive definite functions on odd dimensional spheres

The Fourier transform of a PD function f on Rd ,
∫
Rd f (∥x∥)e−ik·xdx ≥ 0, is nonnegative

nd isotropic. We denote the radial part of the Fourier transform by F(k) with k = ∥k∥. By
the Paley–Wiener theorem, if f is compactly supported, the integral of F on any nonempty
interval is positive. We will show that if d ≥ 3 is odd, for l ∈ N0, the l’th spectral coefficient
of f on Sd , cl( f ) defined by Eq. (1.1), can be written as

cl( f ) =

∫ l+d−1

l
F(k)B(k)dk,

or a continuous function B that is positive on (l, l + d − 1). As a result, cl( f ) > 0 for l ∈ N0,
ence f is SPD on Sd for odd d ≥ 3.

First we prove a lemma relating Gegenbauer polynomials to spherical Bessel functions. For
∈ N0 and l ∈ N0, let

ĵα(x) =
2α+1Γ (α +

3
2 )

Γ ( 1
2 )

jα(x)
xα

, (2.1)

e the normalized spherical Bessel function (10.47 in [15]) with ĵα(0) = 1,

Ĉ (α)
l (x) = C (α)

l (x)/C (α)
l (1),

e the normalized Gegenbauer polynomial, and Bl,α(x) be the B-spline function of order α

ith knots l2, (l + 2)2, . . . , (l + 2α + 2)2, normalized by
∫

∞

0 Bl,α(x)dx = 1. The explicit form
s

Bl,α(x) = (α + 1)
α+1∑
k=0

((l + 2k)2
− x)α

+

ω′((l + 2k)2)
, (2.2)

here ω(x) =
∏α+1

k=0 (x − (l + 2k)2). As shown by [4], for α ≥ 1, the B-spline function is
ontinuous, positive between the first and last knots and vanishing elsewhere, and satisfying

B ′

l,α(x) = (α + 1)
Bl,α−1(x) − Bl+2,α−1(x)

(l + 2α + 2)2 − l2 =
Bl,α−1(x) − Bl+2,α−1(x)

4(l + α + 1)
. (2.3)

emma 2.1. For α ∈ N0 and l ∈ N0,

Ĉ (α+1)
l (cos x)(sin x)2α+2

=

∫
∞

ĵα(
√

px)x2α+2 Bl,α(p)dp. (2.4)

0

3
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Proof. We prove Eq. (2.4) by induction on α. By Eqs. (2.1) and (2.2),

ĵ0(x) =
sin x

x
, Ĉ (1)

l (x) =
sin((l + 1)x)
(l + 1) sin(x)

, Bl,0 =
1

4(l + 1)
χ[l2,(l+2)2].

q. (2.4) holds for α = 0. From the identity −(2α + 1) ĵ ′

α−1(x) = x ĵα(x) (10.51.3 in [15]), we
ave

− 2(2α + 1)
∂

∂p

(
ĵα−1(

√
px)x2α

)
= ĵα(

√
px)x2α+2. (2.5)

he normalized Gegenbauer polynomials satisfy (18.9.8 in [15])

(2α + 1)(Ĉ (α)
l (cos x) − Ĉ (α)

l+2(cos x)) = 2(l + α + 1)Ĉ (α+1)
l (cos x)(sin x)2. (2.6)

or α ≥ 1, assume that Eq. (2.4) holds for α − 1, i.e.,

Ĉ (α)
l (cos x)(sin x)2α

=

∫
∞

0
ĵα−1(

√
px)x2α Bl,α−1(p)dp. (2.7)

Using Eqs. (2.5), (2.3), (2.7), and (2.6) in that order,∫
∞

0
ĵα(

√
px)x2α+2 Bl,α(p)dp = −2(2α + 1)

∫
∞

0

∂

∂p

(
ĵα−1(

√
px)x2α

)
Bl,α(p)dp

=2(2α + 1)
∫

∞

0
ĵα−1(

√
px)x2α Bl,α−1(p) − Bl+2,α−1(p)

4(l + α + 1)
dp

=
(2α + 1)

2(l + α + 1)

(
Ĉ (α)

l (cos x) − Ĉ (α)
l+2(cos x)

)
(sin x)2α

= Ĉ (α+1)
l (cos x)(sin x)2α+2.

□

From Lemma 2.1 we can obtain the following theorem.

heorem 2.2. For odd d ≥ 3, a PD function f on Rd with support in [0, π] has positive
pectral coefficients on Sd and RPd , and thus is SPD on Sd and RPd .

roof. For l ∈ N0, the l’th spectral coefficient of f (x) on Sd is

cl( f ) = ωd−1

∫ π

0
f (x)Ĉα

l (cos x)(sin x)2αdx,

ith α = (d − 1)/2 ∈ N and ωd−1 = µ(Sd−1) = 2πd/2/Γ (d/2). By Lemma 2.1,∫ π

0
f (x)Ĉα

l (cos x)(sin x)2αdx =

∫ π

0

∫ (l+2α)2

l2
f (x) ĵα−1(

√
px)x2α Bl,α−1(p)dpdx . (2.8)

ince f (·) is PD on Rd with support in [0, π], the radial part of its Fourier transform

F(k) = ωd−1

∫ π

0
f (x) ĵα−1(kx)x2αdx

s nonnegative and not vanishing on an open set. We can rewrite Eq. (2.8) as

cl( f ) =

∫ (l+2α)2

l2
F(

√
p)Bl,α−1(p)dp.

s Bl,α−1(p) is positive on (l2, (l + 2α)2), cl( f ) > 0. Consequently, f is SPD on Sd . The
pectral coefficients of f on RPd for l ∈ N0 were given in [10] as∫ π

f (x)p
( d−2

2 ,− 1
2 )

l (cos x)(sin
x

)d−1dx = 2
∫ π/2

f (2x)Ĉ
d−1

2
2l (cos x)(sin x)d−1dx, (2.9)
0 2 0

4
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where p(α,β)
l (x) = P (α,β)

l (x)/P (α,β)
l (1) is the normalized Jacobi polynomial. Since g(x) ≡ f (2x)

s PD on Rd with support in [0, π/2], the spectral coefficients of f on RPd are positive. By [1],
f (x) is SPD on RPd . □

3. Truncated power functions

[8] proved that the truncated power function f (·; t) = (t − ·)(d+1)/2
+ is PD on Rd for any

> 0. By Theorem 2.2, f (·; t) is SPD on Sd for odd d ≥ 3 if t ≤ π . To prove that f (·; t) is
PD on all spheres with d ≥ 2, we introduce the concept of positive mixture. For a real-valued
ontinuous function f (·) on [0, a] with a > 0 and a family of functions g(·; t) supported on
0, a] with t ∈ D ⊂ R, f (·) is a positive mixture of g(·; t) with t ∈ D if

f (x) =

∫
D

g(x; t)dµ(t),

here µ(t) is a positive measure, i.e., µ(U ) > 0 for any nonempty open set U ⊂ D. If g(·; t)
s PD (SPD) on a given space for t ∈ D, and f (·) is positive mixture of g(·; t) with t ∈ D,
hen f (·) is PD (SPD) on the same space, because for any n distinct points {xi }

n
1 in the given

pace and n real numbers {ai }
n
1 that are not all zero,

n∑
i=1

n∑
j=1

f (ρ(xi , x j ))ai a j =

∫
D

⎛⎝ n∑
i=1

n∑
j=1

g(ρ(xi , x j ); t)ai a j

⎞⎠ dµ(t) ≥ 0

or a PD function and strict inequality for a SPD function. In other words, PD and SPD
roperties are preserved under positive mixtures.

For t > 0, denote by χt the characteristic function on [0, t]. Let

fd (x, y; t) =

∫
Rd

χt (∥x − z∥)χt (∥y − z∥)dz,

e the self convolution of χt on Rd , and denote its isotropic part by fd (r; t) with r = ∥x − y∥.
or t ∈ (0, π/2], let

gd (x, y; t) =

∫
Sd

χt (ρ(x, z))χt (ρ(y, z))dz,

e the self convolution of χt on Sd , and denote its isotropic part by gd (r; t) with r = ρ(x, y)
n Sd . For any function on Rd , the Fourier transform of its self convolution is the square of its
ourier transform. For any function on Sd , the l’th spectral coefficient of its self convolution

s the square of its l’th spectral coefficient (see the proof of Theorem 3.5). Therefore, fd (·; t)
s PD on Rd , and gd (·; t) is PD on Sd . We will prove that for t ∈ (0, π/2], fd (·; t) is a positive

ixture of gd (·; β) with β ∈ [0, t], hence is also PD on Sd . In addition, we will show that for
∈ (0, π], the truncated power function f (·; t) = (t − ·)(d+1)/2

+ is a positive mixture of fd (·; β)
ith β ∈ [0, t/2], hence is PD on both Rd and Sd .
Our proof uses the concept of completely monotonic (CM) functions introduced in [3]. For

> 0 or a = ∞, let f (·) be a real valued C∞ function on (0, a). The function f (·) is CM on
0, a) if

(−1)n f (n)(x) ≥ 0

or all x ∈ (0, a) and n ∈ N0. By the Hausdorff–Bernstein–Widder theorem [3], a function is
M on (0, ∞) if and only if its inverse Laplace transform is nonnegative. As shown in [3], for
5



T. Lu Journal of Approximation Theory 306 (2025) 106120

w
m

L

(

P
h

c

w

C

o

L

a finite a, f is CM on (0, a) if and only if there exist bn ≥ 0 for n ∈ N0 such that

f (x) =

∞∑
n=0

bn(a − x)n, (3.1)

hich converges for x ∈ (0, a). We start with a few lemmas about CM functions and positive
ixtures.

emma 3.1. Let f be a smooth function on (0, a] with a > 0.
(i) If f is CM on (0, a), ( f (·) − f (a))/(a − ·) is CM on (0, a).
(ii) If f (0+) ≥ 0, f (a) = 0, f ′(a) < 0, and − f ′′ is CM on (0, a), (a − ·)/ f (·) is CM on

0, a).
(iii) If f (0+) ≥ 0, f ̸≡ 0, and f ′ is CM on (0, a), 1/ f (·) is CM on (0, a).
(iv) If f (a) > 0 and −(ln f )′ is CM on (0, a), f λ(·) is CM on (0, a) for λ > 0.
Statements (iii) and (iv) also hold for a = ∞.

roof. (i) By Eq. (3.1), ( f (x) − f (a))/(a − x) =
∑

∞

n=0 bn+1(a − x)n with bn ≥ 0 for n ∈ N,
ence ( f (·) − f (a))/(a − ·) is CM on (0, a).

(ii) By Eq. (3.1) and the given conditions, f (x) = − f ′(a)(a − x)(1−
∑

∞

n=1 cn(a − x)n) with
n ≥ 0 for n ∈ N, and 0 ≤

∑
∞

n=1 cn(a − x)n < 1 for x ∈ (0, a). Then

a − x
f (x)

=
1

− f ′(a)

∞∑
k=0

(
∞∑

n=1

cn(a − x)n

)k

,

hich converges on (0, a). Therefore, (a − ·)/ f (·) is CM on (0, a).
(iii) Since f (a) > 0 and f (a) − f (·) is CM on (0, a), 1/ f (·) = 1/( f (a) − ( f (a) − f (·))) is

M on (0, a).
(iv) Since ln f (·) − ln f (a) is CM on (0, a), f λ(·) = f λ(a) exp[λ(ln f (·) − ln f (a))] is CM

n (0, a). □

emma 3.2. (i) The function arctan(
√

·)/
√

· is CM on (0, ∞).
(ii)

F(s) =

(π

2

)2
− arctan2(

√
s) −

arctan
√

s
√

s
. (3.2)

F(·) is CM on (0, ∞).
(iii)

G(s) =
π

2
√

s
−

arctan
√

s
√

s
−

1
1 + s

. (3.3)

G(·) is CM on (0, ∞).

Proof. (i) By the identity∫
∞

0

∫
∞

√
t

e−x2
−st

√
t

dxdt =
2

√
s

∫
∞

0

∫
∞

y/
√

s
e−x2

−y2
dxdy =

arctan(
√

s)
√

s
,

L−1
(

arctan
√

s
√

)
=

√
π erfc(

√
t)

√ > 0,

s 2 t

6
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where L−1 denotes the inverse Laplace transform and erfc(·) is the complementary error
function. Therefore, arctan(

√
·)/

√
· is CM on (0, ∞).

(ii) By the identity(π

2

)2
− arctan2(

√
s) =

∫
∞

s

arctan
√

x
√

x
1

1 + x
dx,

e have

L−1(F) =

√
π

2
e−t

t

∫ t

0

ex

√
x

erfc(
√

x)dx −

√
π

2
erfc(

√
t)

√
t

.

Since

2x3/2
(

ex

√
x

erfc(
√

x)
)′

= ex erfc(
√

x)(2x − 1) −
2
√

x
√

π
< ex erfc(

√
x)2x −

2
√

x
√

π
< 0,

−1(F) > 0, so F(·) is CM on (0, ∞).
(iii)

L−1(G) =

√
π

2
erf(

√
t)

√
t

− e−t
=

1
√

t

∫ √
t

0
e−x2

dx − e−t > 0.

herefore, G(·) is CM on (0, ∞). □

emma 3.3. Let β > 0, λ > 0, and

h(x; β) =
(
β2

− arctan2(
√

x)
)
+

.

i) For ν > 0, (a − ·)λ+ν
+ is a positive mixture of (t − ·)λ

+
with t ∈ [0, a].

(ii) If a non-constant f (·) is CM on (0, a), (a −·)λ
+

f (·) is a positive mixture of (t −·)λ
+

with
∈ [0, a].

(iii) For 0 < β < π/2, hλ(·; β) is a positive mixture of (t − ·)λ
+

with t ∈ [0, tan2 β].
(iv) For β ≥ π/2, hλ(·; β) and (β − arctan(

√
·))λ are CM on (0, ∞).

roof. (i) For λ > −1 and ν > 0, by setting y = (t − x)/(1 − x),∫ 1

0
(t − x)λ

+
(1 − t)ν−1dt = (1 − x)λ+ν

+

∫ 1

0
yλ(1 − y)ν−1dy = (1 − x)λ+ν

+
B(λ + 1, ν),

here B(x, y) is the Beta function. For λ > −1 and ν > 0, B(λ + 1, ν) > 0, so (1 − ·)λ+ν
+ is

positive mixture of (t − ·)λ
+

with t ∈ [0, 1]. By scaling, (a − ·)λ+ν
+ is a positive mixture of

t − ·)λ
+

with t ∈ [0, a].
(ii) By Eq. (3.1),

(a − x)λ
+

f (x) = b0(a − x)λ
+

+

∞∑
n=1

bn(a − x)λ+n
+

,

ith bn ≥ 0 for n ∈ N0, and {bn}
∞

1 is not all zero. By part (i), (a − ·)λ+n
+ is a positive mixture

f (t − ·)λ
+

with t ∈ [0, a]. With a point mass of b0 at t = a, (a − ·)λ
+

f (·) is a positive mixture
f (t − ·)λ

+
with t ∈ [0, a].

(iii) For 0 < β < π/2 and x ∈ [0, tan2 β],

hλ(x; β) =

(
β(tan2 β − x)

2

)λ

gλ(x; β),

tan β(1 + tan β)

7
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where

g(x; β) =
tan β(1 + tan2 β)(β2

− arctan2 √
x)

β(tan2 β − x)
.

e have

−(ln g(x; β))′ =
1

tan2 β − x

[
arctan

√
x

√
x

tan2 β − x
f (x; β)

− 1
]

,

here

f (x; β) =
(
β2

− arctan2 √
x
)

(1 + x). (3.4)

By Lemma 3.2(i), (arctan
√

·)/
√

· is CM on (0, tan2 β). We have

f ′(x; β) = β2
− arctan2 √

x −
arctan

√
x

√
x

= F(x) + β2
−

(π

2

)2
,

ith F(·) defined in Eq. (3.2). By Lemma 3.2(ii), − f ′′(·; β) = −F ′(·) is CM on (0, tan2 β).
e also have

f (0; β) = β2, f (tan2 β; β) = 0, f ′(tan2 β; β) = −β/ tan β.

y Lemma 3.1(ii), (tan2 β −·)/ f (·; β) is CM on (0, tan2 β), and so is the function f (·) defined
y

f (x) ≡
arctan

√
x

√
x

tan2 β − x
f (x; β)

.

pplying l’Hôspital’s rule, f (tan2 β) = 1. By Lemma 3.1(i) with a = tan2 β, −(ln g(·; β))′ is
M on (0, tan2 β). Since g(tan2 β; β) = 1, by Lemma 3.1(iv), gλ(·; β) is CM on (0, tan2 β).
ince g(·; β) is not a constant, by part (i), hλ(·; β) is a positive mixture of (t − ·)λ

+
with

∈ [0, tan2 β].
(iv) For β ≥ π/2 and x ∈ [0, ∞),

−(ln h(x; β))′ =
arctan

√
x

√
x f (x; β)

,

ith f given by Eq. (3.4). By Lemma 3.2(ii), f ′(·; β) is CM on (0, ∞). By Lemma 3.1(iii),
/ f (·; β) is CM on (0, ∞). Combined with Lemma 3.2(i), −(ln h(·; β))′ is CM on (0, ∞). By
emma 3.1(iv), hλ(·; β) is CM on (0, ∞). For β ≥ π/2 and x ∈ [0, ∞),

−(ln(β − arctan
√

x))′ =
1

φ(x; β)(1 + x)
,

ith φ(x; β) = 2
√

x(β−arctan
√

x). Since φ′(x; β) = (β−π/2)/
√

x +G(x), with G(·) defined
n Eq. (3.3), by Lemma 3.2(iii) and that 1/

√
· is CM on (0, ∞), φ′(·; β) is CM on (0, ∞).

ince φ(0; β) = 0, by Lemma 3.1(iii), 1/φ(·; β) is CM on (0, ∞). Since 1/(1 + ·) is also CM
n (0, ∞), by Lemma 3.1(iv), (β − arctan

√
·)λ is CM on (0, ∞). □

emma 3.4. For λ > 0 and 0 < ν < 1, (1 − ·
ν)λ

+
is a positive mixture of (t − ·)λ

+
with

∈ [0, 1].

roof. For x ∈ [0, 1],

(1 − xν)λ = (ν(1 − x))λgλ(x),
8
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where g(·) is a continuous function on [0, 1],

g(x) =

{ 1−xν

ν(1−x) , 0 ≤ x < 1
1, x = 1

.

or 0 < ν < 1, by the binomial expansion about x = 1, x1−ν
−x = ν(1−x)(1−

∑
∞

k=1 an(1−x)n)
with an > 0 for n ≥ 1. Subsequently, using the identity (1 − y)−1

=
∑

∞

k=0 yk for y =∑
∞

n=1 an(1 − x)n ,

−(ln g(x))′ =
ν

x1−ν − x
−

1
1 − x

=

∞∑
n=0

bn(1 − x)n,

with bn > 0 for n ∈ N0. Therefore, −(ln g(·))′ is CM on (0, 1). By Lemma 3.1(iv), gλ(·) is
M on (0, 1) for λ > 0. By Lemma 3.3(ii), (1 − ·

ν)λ
+

is a positive mixture of (t − ·)λ
+

with
∈ [0, 1]. □

The lemmas lead to the following theorem, which incorporates the conjecture in [2].

heorem 3.5. For β > 0, r ≥ 0, and λ ≥ 0, let

Fλ(r; β) =

∫
∞

r/2
(β2

− x2)λ
+

dx,

Pλ(r; β) =

∫
∞

r/2
(β − x)λ

+
dx =

1
λ + 1

(β −
r
2

)λ+1
+

.

(i) Fλ(·; β) and Pλ(·; β) are SPD on Rd for d ≥ 1 and λ ≥ (d − 1)/2.
(ii) Fλ(·; β) and Pλ(·; β) are SPD on Sd and RPd for d ≥ 2, 0 < β < π/2, and

≥ (d − 1)/2.
(iii) F̂λ(·; β) and P̂λ(·; β) are SPD on Sd for d ≥ 1, β ≥ π/2, and λ > 0, where

F̂λ(r; β) =

∫ π/2

r/2
(β2

− x2)λ − (β2
− (π/2)2)λdx = Fλ(r; β)− Fλ(π; β)− F ′

λ(π; β)(r −π ),

P̂λ(r; β) =

∫ π/2

r/2
(β − x)λ − (β − π/2)λdx = Pλ(r; β) − Pλ(π; β) − P ′

λ(π; β)(r − π ).

roof. (i) For β > 0, denote the isotropic part of the self convolution of χβ on Rd by fd (·; β).
ince ∫

Rd
fd (∥z∥; β)eik·zdz =

(∫
Rd

χβ(∥x∥)eik·xdx
)2

≥ 0,

fd (·; β) is PD on Rd . Since χβ is compactly supported, fd (·; β) is SPD on Rd . With ∥x−y∥ = r ,

fd (r; β) = µ({z ∈ Rd , ∥x − z∥ ≤ β, ∥y − z∥ ≤ β}) = 2
∫ β

r/2

∫
x2

1 +···+x2
d−1≤β2−x2

d

dx1 · · · dxd

= 2Bd−1

∫
∞

r/2
(β2

− x2)
d−1

2
+ dx,

here

Bd = µ(Bd ) = π
d
2 /Γ (

d
+ 1).
2
9
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Therefore, F(d−1)/2(·; β) is SPD on Rd . For λ > (d − 1)/2, by Lemma 3.3(i), (β2
− ·

2)λ
+

is a positive mixture of (t2
− ·

2)(d−1)/2
+ with t ∈ [0, β], so Fλ(·; β) is a positive mixture of

F(d−1)/2(·; t) with t ∈ [0, β]. Hence Fλ(·; β) is SPD on Rd . For λ = 0, Pλ(·; β) = Fλ(·; β). For
> 0, by Lemma 3.4 with ν = 1/2, (1−·)λ

+
is a positive mixture of (t2

−·
2)λ

+
with t ∈ [0, 1].

y scaling, there is a positive measure µ1(·) on [0, β] such that

(β − x)λ
+

=

∫ β

0
(t2

− x2)λ
+

dµ1(t).

hen

Pλ(r; β) =

∫
∞

r/2

∫ β

0
(t2

− x2)λ
+

dµ1(t)dx =

∫ β

0
Fλ(r; t)dµ1(t). (3.5)

o Pλ(·; β) is a positive mixture of Fλ(·; t) with t ∈ [0, β]. Therefore, Pλ(·; β) is SPD on Rd

f λ ≥ (d − 1)/2.
(ii) For 0 < β < π/2, denote the isotropic part of the self convolution of χβ on Sd by

gd (·; β). Recall the Funk–Hecke formula on Sd embedded in Rd+1 (Lemma 2 in [11]),∫
Sd

pα,l(x · z)pα,l(y · z)dz = Kd,l pα,l(x · y), Kd,l ≡
ωd

dim Hl
,

where

ωd = µ(Sd ) = 2π
d+1

2 /Γ (
d + 1

2
),

nd Hl is the eigenspace of the Laplacian on Sd corresponding to λl = l(l + d − 1),

dim Hl =
(2l + d − 1)Γ (l + d − 1)

Γ (d)Γ (l + 1)
.

pplying the Funk–Hecke formula to the spectral expansion of χβ ,

χβ(ρ(x, y)) =

∞∑
l=0

∫
Sd χβ(ρ(x, y))pα,l(x · y)dx

Kd,l
pα,l(x · y),

e find the l’th spectral coefficient of gd (·; β),

cl(gd (·; β)) =

∫
Sd

gd (ρ(x, y); β)pα,l(x · y)dx =

(∫
Sd

χβ(ρ(x, y))pα,l(x · y)dx
)2

≥ 0.

herefore, gd (·; β) is PD on Sd . Notice that cl(gd (·; β)) vanishes for finitely many β in (0, π/2)
ecause pα,l(·) is a polynomial which has finitely many zeros. With ρ(x, y) = r ,

gd (r; β) = µ({z ∈ Sd , ρ(x, z) ≤ β, ρ(y, z) ≤ β})

= 2Bd−1(cos β)d−1
∫ π/2

r/2

(
tan2 β − tan2 x

) d−1
2

+
dx .

o derive the formula above, we embed Sd in Rd+1 as {z = (z0, . . . , zd ), ∥z∥ = 1}. Set
= (1, 0, 0, . . . , 0), y = (cos(r ), sin(r ), 0, . . . , 0). Write z =

√
1 − t2 cos φ and z =
0 1

10



T. Lu Journal of Approximation Theory 306 (2025) 106120

B
F
m

a

b
o
a
E

a

e

w
m
A
a

f

√
1 − t2 sin φ with t =

√
z2

2 + · · · + z2
d . We have

gd (r; β) = 2
∫

ρ(x,z)≤β, r/2≤φ≤β

dz1 · · · dzd

z0
= 2

∫
z0≥cos β, r/2≤φ≤β

dz1d(Bd−1td−1)
z0

=2
∫ β

r/2

∫
0≤t≤

√
1−(cos β/ cos φ)2

d(Bd−1td−1)dφ

=2Bd−1(cos β)d−1
∫ β

r/2
(sec2 β − sec2 φ)

d−1
2 dφ.

y Lemma 3.3(iii), (β2
− arctan2 √

·)λ
+

is a positive mixture of (t − ·)λ
+

with t ∈ [0, tan2 β].
or d ≥ 2, with λ = (d − 1)/2 > 0 and a change of variable, (β2

− ·
2)(d−1)/2

+ is a positive
ixture of (tan2 t − tan2

·)(d−1)/2
+ with a positive measure µ2(t) on [0, β]. As a result,

fd (r; β) =

∫ β

0
gd (r; t)(cos t)1−ddµ2(t),

nd

cl(F(d−1)/2(·; β)) =
1

2Bd−1

∫ β

0
cl(gd (·; t))(cos t)1−ddµ2(t) > 0,

ecause cl(gd (·; t)) > 0 except for finitely many t ∈ (0, β). It implies that F(d−1)/2(·; β) is SPD
n Sd . By Lemma 3.3(i), Fλ(·; β) is SPD on Sd for λ ≥ (d − 1)/2. By Eq. (3.5), Pλ(·; β) is
positive mixture of Fλ(·; t) with t ∈ [0, β], so Pλ(·; β) is SPD on Sd for λ ≥ (d − 1)/2. By
q. (2.9), Fλ(·; β) and Pλ(·; β) are SPD on RPd for λ ≥ (d − 1)/2.

(iii) For β ≥ π/2 and λ > 0, by Lemma 3.3(iv),

(β2
− arctan2 √

·)λ − (β2
− (π/2)2)λ and (β − arctan

√
·)λ − (β − π/2)λ (3.6)

re CM on (0, ∞), whose inverse Laplace transforms are nonnegative. By the identity

e−y
=

1
Γ (ν + 1)

∫
∞

0
(t − y)ν

+
e−t dt,

xp(−·) is a positive mixture of (t −·)ν
+

with t ∈ (0, ∞) for any ν > 0. A non-constant function
f (·) that is CM on (0, ∞) can be expressed as

f (x) =

∫
∞

0
exp(−sx)dµ(s),

here µ(·) is nonnegative and µ((0, ∞)) > 0. For s > 0 and ν > 0, exp(−sx) is a positive
ixture of (t − x)ν

+
with t ∈ (0, ∞), so f (·) is a positive mixture of (t − ·)ν

+
with t ∈ (0, ∞).

s a result, the two functions in Eq. (3.6) are positive mixtures of (t − ·)ν
+

with t ∈ (0, ∞) for
ny ν > 0. With ν = (d − 1)/2 and changes of variables,

(β2
− x2)λ − (β2

− (π/2)2)λ =

∫ π/2

0
(tan2 θ − tan2 x)(d−1)/2

+ dµ3(θ ),

(β − x)λ − (β − π/2)λ =

∫ π/2

0
(tan2 θ − tan2 x)(d−1)/2

+ dµ4(θ ),

or some positive measures µ3(·) and µ4(·). Consequently,

F̂λ(·; β) =

∫ π/2 gd (r; θ )
dµ3(θ ), P̂λ(·; β) =

∫ π/2 gd (r; θ )
dµ4(θ ).
0 2Bd−1(cos θ )d−1
0 2Bd−1(cos θ )d−1

11
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F̂λ(·; β) and P̂λ(·; β) are positive mixtures of gd (·; t) with t ∈ (0, π/2), thus are SPD on
d . □

For β ≥ π/2, d ≥ 1, and λ > 0, since Fλ(π; β) ≥ 0, F ′

λ(π; β) ≤ 0, and (π −·) is PD on Sd ,
Fλ(π; β)+F ′

λ(π; β)(·−π ) is PD on Sd . Since Fλ(r; β) = F̂λ(r; β)+Fλ(π; β)+F ′

λ(π; β)(r −π )
nd F̂λ(·; β) is SPD on Sd , Fλ(·; β) is SPD on Sd . Similarly, Pλ(π; β) ≥ 0, P ′

λ(π; β) ≤ 0, and
P̂λ(·; β) is SPD on Sd , so Pλ(r; β) = P̂λ(r; β) + Pλ(π; β) + P ′

λ(π; β)(r − π ) is SPD on Sd . It
eads to the following corollary analogous to Theorem 6 in [9].

orollary 3.5.1. For d ≥ 2 and x ∈ [0, ∞), suppose φ(x) =
∫

∞

0 (t − x)(d+1)/2
+ dµ(t) with

onnegative (and nonzero) measure µ. Then φ is SPD on Rd and the restriction of φ on [0, π]
s SPD on Sd .

. Remarks and conclusion

emark 1. Theorem 2.2 does not hold for d = 1. A PD function on R with support in [0, π]
s PD on S1. However, it is not necessarily SPD on S1. For example, by [13], (rπ −·)+ is SPD
n S1 if and only if r is an irrational number between 0 and 1.

emark 2. Theorem 3.5(iii) does not hold for λ = 0. For β = π/2, the function (π − ·)+
s PD on Sd for all d ≥ 1. However, since its spectral coefficients on Sd for even l’s vanish
xcept for l = 0, (π − ·)+ is not SPD on Sd .

In this paper, we revealed a connection between Gegenbauer polynomials and spherical
essel functions by B-splines, and used it to prove that a PD function on Rd with support in

0, π] is SPD on Sd and RPd for odd d ≥ 3. Using completely monotonic functions and positive
ixtures, we proved that two families of compactly supported functions, one being Fλ(·; t/2)

n Theorem 3.5, the other being the truncated power function (t −·)λ+1
+ , have positive spectral

oefficients on Sd and RPd for d ≥ 2, λ ≥ (d − 1)/2, and 0 < t ≤ π . We also showed that
Fλ(·; t/2) and (t − ·)λ+1

+ restricted to [0, π] are SPD on all spheres for λ > 0 and t ≥ π .
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