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Abstract
A magnetohydrodynamic numerical model for hydrogenic pellet ablation in the electrostatic approximation has
been developed based on the method of front tracking. The main features of the model are the explicit tracking of
interfaces that separate the solid pellet from the ablated gas and the cold, dense and weakly ionized ablation cloud
from the highly conducting fusion plasma, a surface ablation model, a kinetic model for the electron heat flux and
an equation of state accounting for atomic processes in the ablation cloud. The interaction of the pellet ablation flow
with the magnetic field including the J×B Lorentz force is studied here systematically for the first time. The model
has also been validated through the comparison with the semi-analytic Transonic Flow model and previous purely
hydrodynamic simulations. Contrary to prevailing expectations, the ablation rate is reduced only slightly when the
geometry is changed from spherically symmetric to axially symmetric, in the case of purely hydrodynamic models.
However, in the magnetohydrodynamic simulations the J×B force funnels the flow into an extended plasma shield,
which intercepts the incident plasma heat flux and reduces the ablation rate, depending on the rise time of heat
flux seen by the pellet. Shorter ‘warm-up’ times lead to narrower ablation channels, stronger shielding and reduced
ablation rates. This new feature implies that pellets traversing strong plasma gradients, as in the edge pedestal region
of the ITER plasma, could have significantly lower ablation rates if injected at higher velocity.

PACS numbers: 28.52.Cx, 52.65.Kj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The injection of frozen pellets of deuterium and tritium
proposed in [1] is considered the major mechanism for
refuelling of nuclear fusion reactors of the tokamak
configuration. This problem is significantly important for
the International Thermonuclear Experimental Reactor (ITER)
[2]. In order to evaluate the efficiency of this fuelling method,
it is necessary to determine the pellet ablation rate in a plasma.

The ablation of tokamak pellets has been studied using
several semi-analytical [3–7] and numerical [8,9] approaches.
An inherent limitation of all previous ablation models has
been the absence of a self-consistent and rigorous inclusion of
the interaction of the ionized ablation flow with the magnetic
field. Near the pellet, the ablation is highly resistive, and
thus the pressure gradient force largely balances the inertial
force resulting in a nearly isotropic flow pattern. Farther
downstream, the J × B Lorentz force eventually overwhelms
the inertial force, and tends to funnel the flow along the

magnetic field lines, forming a long extended ablation channel.
Whether the ablation channel would offer the pellet additional
shielding from the incident parallel electron heat flux has
remained an open question for a long time.

The main motivation for the present study is to incorporate
these MHD effects, the J × B force and the attendant Joule
heating. Our strategy will be to exploit the typically low
magnetic Reynolds number Rm = µ0Lvσ � 1 [5], where
L is the length scale, v is the transverse velocity with respect
to the magnetic field and σ is the transverse conductivity in the
ablation flow near the pellet. This means that near the pellet the
magnetic field is only slightly perturbed, δB/B ∼ Rm < 1,
as a result of the induced current density generated by the
electromotive force associated with the cross-field component
of the flow velocity v. And, in the long ablation channel
where the flow is frozen to the magnetic field lines, the ablation
pressure P has decayed to the point where the magnetic beta
β = µ0P/(B2/2) � 1. Because of these assumptions, which
we will verify a posteriori, the magnetic field is taken to be
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Figure 1. Schematic of the hydrogen pellet in a tokamak.

uniform and constant: its evolution via Faraday’s law is not
really needed, either near the pellet, where Rm < 1, or in the
frozen flow region downstream, where β < 1. As a result, the
electrostatic MHD approximation is valid.

The knowledge of the pellet ablation rates in magnetic
fields and the structure and parameters of the elongated ablation
region are also crucial for other models that consider the large-
scale drift and redistribution of the ionized ablation substance
in a tokamak due to its inherent toroidicity [10–12].

An additional goal of the present paper is to improve
modelling and numerical algorithms of [8, 9] by the explicit
numerical resolution of interfaces in the pellet–ablation cloud–
plasma system. This is done through the FronTier-MHD code
for multiphase systems with free interface support [13] based
on the method of front tracking [14]. Since the method of
front tracking allows the study of multiphysics phenomena
in multiphase systems characterized by strong discontinuities
in physical properties of the system components, it is ideally
suitable to the pellet ablation problem. Another advantage of
our code compared with the previous pellet ablation numerical
models is that the FronTier-MHD has been implemented in
3D. The 2D axisymmetric approximation is sufficient for the
purpose of the present paper. A general 3D study of the pellet
ablation and striation instabilities based on an electrostatic
model [15] will be reported in a forthcoming paper.

In our computational model, explicit interfaces separate
the solid pellet from the ablated gas and the cold, dense and
weakly ionized ablation cloud from the highly conducting
fusion plasma (see figure 1). This allows the use of
different mathematical and numerical approximations in
complex geometrical domains occupied by different material
substances, and thus the resolution of different material
properties and time scales. We assume the axial symmetry
of the problem, and solve equations in the cylindrical
axisymmetric coordinate system r, z. Realistic equations
of state are employed in different geometrical regions
corresponding to different states of matter. The code is capable
of simulating the transition of deuterium in the pellet from
the solid to the liquid state under high ablation pressures. A
surface ablation model is used at the pellet surface to model
the solid–vapour transition phase change. A kinetic-based
electron heat flux model for the calculation of the thermal
energy deposition in the ablation cloud and on the pellet surface
uses the analytical model of [9,10]. Atomic physics processes
in the ablation cloud such as dissociation, recombination and
ionization are taken into account by a plasma equation of state
(EOS). In this work, we neglected the rotation of the ablation
channel about the axis of symmetry. Modelling of the channel
rotation and the study of its influence on the channel width
and the pellet ablation rate will be the subject of future work.
We have validated the developed model by comparison with

analytical predictions and previous numerical simulations of
pure hydrodynamic models (no MHD forces), and used it
to study the pellet ablation physics, i.e. the structure of the
ablation flow and pellet ablation rates in magnetic fields.

The paper is organized as follows. In section 2, we
describe equations for one-fluid MHD in low magnetic
Reynolds number approximation, weakly ionized plasma
EOS, electronic heat flux and surface ablation models. The
numerical implementation and main ideas of the front tracking
code FronTier are described in section 3. In section 4,
we validate our pellet ablation numerical model through
comparisons of 1D and 2D simulations with theory and
numerical simulations. After validation, we present MHD
studies and discuss ablation channel properties and pellet
ablation rates. Finally, we conclude the paper with a summary
of our results and perspectives for future work.

2. Main equations

2.1. One-fluid MHD in the low magnetic Reynolds number
approximation

Following our discussion in the previous section, we
approximate MHD processes in the pellet ablation cloud by the
low magnetic Reynolds number MHD. Such an approximation
is also beneficial from a numerical point of view, as the fast
diffusion of the magnetic field into the cold neutral or weakly
ionized ablation cloud would otherwise severely restrict the
time step in numerical simulations. The main equations of the
inviscid low magnetic Reynolds number one-fluid MHD are
the Euler equations with electromagnetic terms:

∂ρ

∂t
= −∇ · (ρu), (1)

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + J × B, (2)

ρ

(
∂

∂t
+ u · ∇

)
e = −P∇ · u +

1

σ
J2 − ∇ · q, (3)

P = P(ρ, e). (4)

Here u, ρ and e are the velocity, density and the specific internal
energy of the fluid, respectively, P is the pressure, B is the
magnetic field induction, J is the current density distribution
and σ is the fluid conductivity. An external heat source −∇ · q
represents electron heat flux in the pellet ablation problem. We
have neglected the heat conduction in the energy equation. The
EOS (4) closes the hydrodynamics system. The EOS model
for weakly ionized plasmas will be discussed in section 2.2.
The current density distribution is obtained using Ohm’s law

J = σ(−∇φ + u × B). (5)

In this paper, we do not resolve the distribution of the electric
field potential in the ablation channel. The pellet cloud
charging model is our current work in progress. In the
axial symmetry approximation, ∂/∂θ = 0, where θ is the
azimuthal coordinate, the magnetic field is a constant field
in the z-direction, Bzẑ, and we assume that the only non-zero
component of J is Jθ

Jθ = σurBz. (6)
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Therefore by neglecting Faraday’s law the electrostatic
MHD model presented here differs from the one based on the
complete MHD system. Consequently, the J × B force can
modify the flow, but the induced currents cannot significantly
perturb the magnetic field, which remains approximately
constant and equal to the background field. In section 4.2
we will justify this approach by presenting calculated values
of the cloud β and Rm and discuss its applicability range.

The transverse to B electrical conductivity of partially
ionized plasmas can be approximated by the following
expression which includes the effect of electron–ion and
electron–neutral atom collisions [5]:

σ

[
�

m

]
= 9.675 × 103

ln 	Te[eV]−3/2 + 0.054Te[eV]−0.059(1/fi − 1)
,

(7)

where fi is the ionization fraction, Te is the electron
temperature in eV units and

	 = 3.6 × 109T
3/2

e

n
1/2
e

, (8)

where ne is the electron density. In the limit fi → 1, σ → σ⊥,
which is the transverse Spitzer conductivity.

2.2. Equation of state

The processes of dissociation and ionization in diatomic
gases in the presence of external energies, resulting in the
formation of weakly ionized plasmas, introduce energy sinks
and therefore strongly affect the plasma temperature. This in
turn influences the electrical conductivity and MHD processes.
In the one temperature, one pressure MHD model, the pressure
and specific internal energy of a partially dissociated and
partially ionized diatomic gas can be written [4, 9] as

P =
(

1

2
+

1

2
fd + fi

)
ρkT

m
, (9)

e =
(

1 − fd

2(γm − 1)
+

fd + fi

γ − 1

)
kT

m
+

1

2
fd

kεd

m
+ fi

kεi

m
, (10)

where γm and γ = 5/3 are specific heat ratios for molecules
and atoms, respectively, k is the Boltzmann constant, m is
the mass of the atom (ion). The dissociation fd(ρ, T ) and
ionization fi(ρ, T ) fractions are defined as

fd = (na + ni)/nt,

fi = ni/nt,

in which nt ≡ 2ng +na +ni = ρ/m stands for the total number
density of nuclei, and ng, na and ni denote, respectively, the
number densities of gas D2 molecules, D atoms and D+ ions.
For deuterium, the dissociation energy is εd = 4.48 eV and
the ionization energy is εi = 13.6 eV. The dissociation and
ionization fractions can be found from Saha equations [16].
For deuterium, they can be written (in eV units) as [4, 9]

f 2
i

1 − fi
= 3.0 × 1021 T αi

nt
exp

(
− εi

T

)
, (11)

f 2
d

1 − fd
= 1.55 × 1024 T αd

nt
exp

(
−εd

T

)
, (12)

where αi = 3/2 and the parameter αd is chosen to be
0.327, as in [4, 9], for the best approximation of deuterium
thermodynamic data [4]. The system of equations (9)–(12)
can be used as an EOS closure for a hydrodynamic system of
equations written in ρ, u, T independent variables, as well as
for a simple finite difference discretization of such a system.
The system (9)–(12) is an example of the incomplete EOS
model [18]. However, most advanced numerical discretization
algorithms, including second order MUSCL type schemes and
interface propagation algorithms implemented in the FronTier
code [17], are based on solutions of Riemann problems.
Solving numerically a Riemann problem requires an ability to
calculate the sound speed and integrals of Riemann invariant
type expressions along the characteristics. For this purpose, we
derived the expressions for entropy and other thermodynamic
properties of the system (9)–(12) based on the second law
of thermodynamics. Omitting lengthy calculations, we
summarize our results.

The molar entropy is given by

S

R
= ln T

2(γm − 1)
+

ln V

2
+

1 + βd

2
fd + (1 + βi)fi

− ln(1 − fd)

2
− ln(1 − fi), (13)

where R is the universal gas constant, and

βd = αd +
εd

T
,

βi = αi +
εi

T
.

Using this expression, we can calculate the adiabatic sound
speed. For convenience, we introduce an effective gamma,
γeff , that defines the sound speed squared

c2 = ∂P

∂ρ

∣∣∣∣
S

in a form typical for the polytropic gas

c2 = γeff
P

ρ
. (14)

The explicit expression for γeff is

γeff − 1 = (m + a)(1 + (φdβd + φiβi)/(m + a))2

(1/(γ − 1))m + 3
2a + φdβ

2
d + φiβ

2
i

− φd + φi

m + a
,

(15)

where we introduced the following notations

φd = 1

2

fd(1 − fd)

(2 − fd)
,

φi = fi(1 − fi)

(2 − fi)
,

m = 1 − fd

2
,

a = fd + fi.

The Grüneisen coefficient [18],

 = −V

T

∂T

∂V

∣∣∣∣
S

,
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used in FronTier EOS and hyperbolic solvers libraries for
the calculation of eigenvalues and eigenvectors of Euler’s
equations, can be expressed as

 = m + a + φdβd + φiβi

(1/(γ − 1))m + 3
2a + φdβ

2
d + φiβ

2
i

.

We have also found (see appendix A) that the fundamental law
of thermodynamics imposes the following constraints on the
exponents in the Saha equations (11)–(12):

αd = 3 − 1

γm − 1
, αi = 3

2
.

Therefore, in order to satisfy the first constraint with empirical
αd = 0.327, we use γm = 1.3741 in our calculations. Not
surprisingly, this value of the specific heat ratio lies midway
between 7/5 and 9/7, values that correspond, respectively,
to excitations of purely rotational modes and rotational–
vibrational modes of a diatomic molecule.

The influence of the dissociation and ionization processes
on the gas temperature and conductivity with the increase in
the specific internal energy is shown in figure 2. In the vicinity
of the dissociation and ionization energies, the temperature
exhibits a nonlinear behaviour, leading to much smaller values
of both temperature and conductivity. By the ‘conductivity of
the polytropic gas’ in figure 2(b), we mean the conductivity
calculated using equations (7) and (11), with the temperature
given by the polytropic EOS model. The use of temperature
calculated by the weakly ionized plasma EOS model in (7)
and (11) reduces the conductivity, as shown in figure 2(b).
Therefore, the EOS model for the ablation can strongly affect
both hydrodynamic and MHD processes in the ablation cloud.

2.3. Electron heat flux model

The electronic heat flux model is identical to the one described
in [9, 10]. To be self-contained, we formulate the main
model equations below. The heat source −∇ · q̄ coming
from the energy deposition by hot long-mean-free-path plasma
electrons streaming into the ablation cloud along the magnetic
field lines can be approximated analytically as

− ∇ · q̄ = q∞nt(r, z) ln 	

τ∞
[g(u+) + g(u−)], (16)

where g(u) = u1/2K1(u
1/2)/4, and K1 is the Bessel function

of the second kind and

q∞ =
√

2

πme
ne∞(kTe∞)3/2.

u± = τ±/τ∞ is the dimensionless opacity, where

τ+(r, z) =
∫ z

−∞
nt(r, z

′) ln 	 dz′,

τ−(r, z) =
∫ ∞

z

nt(r, z
′) ln 	 dz′

are the respective line integrated densities penetrated by right-
going (left-going) electrons arriving at the point (r, z) from
infinity, and

τ∞ = T 2
e∞

8πe4
.

(a)

(b)

Figure 2. (a) Gas temperature, calculated using the polytropic and
weakly ionized plasma EOS models, as a function of the specific
internal energy. (b) Plasma conductivity calculated using the
temperature of the polytropic and weakly ionized plasma EOS
models.

The Coulomb logarithm is

ln 	 = fi ln 	ef + (1 − fi) ln 	eb.

For deuterium, 	ef and 	eb can be expressed (in eV—cgs
units) as

	ef = 1.35 × 1010Te∞
(fint)1/2

, 	eb = 2.516Te∞
7.5

.

The heat deposition on the pellet surface is given as

q± = q∞ 1
2u±K2(u

1/2
± ). (17)

2.4. Pellet surface ablation model

It is well known [3–9] that the ablated material effectively
shields the pellet surface from the incoming plasma electrons.
The dynamics of the pellet ablation is mostly defined by the
processes in the ablation cloud, so that surface ablation has
a marginal role. We therefore use a simplified model for
the cryogenic phase transition on the pellet surface, which
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neglects temperature gradients near the interface and some
thermodynamic details of the phase transition problem.

Here we assume that all electron energy that reaches
the pellet surface is completely used for the conversion of
solid deuterium into vapour, thus defining the mass flux.
The ablation on the pellet surface satisfies three boundary
conditions. First, the heat diffusion in the solid pellet is
slow compared with the ablation process, therefore the pellet
surface temperature is virtually constant. We varied the pellet
temperature between 40 and 60 K and found the ablation
process insensitive to the surface temperature, which was in
agreement with [9]. Second, with pellet density ρpel fixed, the
normal velocity of the pellet surface, vs, is determined by
the heat flux into the pellet, q, and the sublimation energy
εs. The equation relating q and εs to the normal velocity of the
vapour at the pellet surface u is

q

εs
= −ρpelvs = ρv(u − vs),

where ρv is the vapour density at the pellet surface and the
surface velocity vs is negative because the pellet is shrinking.
For 2D simulations with anisotropic (along magnetic fields
lines) heating, q = q± cos θ , where θ is the angle between
the electron flux and the norm of the pellet surface. The third
equation is for the change in the Riemann variable along the
characteristic from the ablation cloud onto the pellet surface,

∂p

∂t
+ (u − c)

∂p

∂n
− ρc

(
∂u

∂t
+ (u − c)

∂u

∂n

)
= 

∂q±
∂z

,

where c is the sound speed in the cloud,  is the Grüneisen
coefficient, defined in section 2.2, and z is the direction of the
electron flux. Combined with these three boundary conditions,
the conservation laws in the cloud completely determine the
ablation process.

3. Numerical Implementation

In this section, we will describe numerical ideas implemented
in the FronTier-MHD code. In general, the system of
MHD equations in the low magnetic Reynolds number
approximation is a coupled hyperbolic–elliptic system in
a geometrically complex moving domain. The numerical
method treats the MHD system in an operator splitting
manner. Namely, we decouple the hyperbolic and elliptic
parts of the MHD system for every time step. The mass,
momentum and energy conservation equations are solved first
without the electromagnetic terms (Lorentz force). We use
the front tracking hydro code FronTier with free interface
support [17, 19] for solving the hyperbolic subsystem.
The electromagnetic terms are then found, in the general
case, from the solution of the Poisson equation for the
electric potential. In our 2D axisymmetric approximation, the
numerical solution of the Poisson problem is eliminated as
the current density in the ablation cloud is a known function
of the radial velocity and longitudinal magnetic field, as was
explained in section 2.1. At the end of the time step, the fluid
states are integrated along every grid line in the longitudinal
direction in order to obtain the electron heat deposition given
by equations of section 2.3. The heat deposition changes the
internal energy and temperature of fluid states and therefore

s

s

s

s

s

+0

–1

1

2

–2

–0s

Ambient plasma

Ablation cloud

Interface states

States for solving 
the interface propagation 
problem in the normal direction

Interior states defined on the rectangular grid

Figure 3. Rectangular grid, interface and states for the method of
front tracking. States contain density, momentum and energy
density of the fluid (plasma), and references to the EOS model and
other parameters.

the electrical conductivity. The Lorentz force is then added to
the momentum equation.

FronTier represents interfaces as lower dimensional
meshes moving through a volume filling grid [14], as shown
in figure 3. The traditional volume filling finite difference
grid supports smooth solutions located in the region between
interfaces. The location of the discontinuity and the jump in
the solution variables are defined on the lower dimensional
grid or interface. The dynamics of the interface comes
from the mathematical theory of the Riemann problem. The
Riemann problem consists of finding solutions to the system
of conservation laws, which in our case is the system of
Euler’s equations, with piece-wise constant initial conditions
[18]. The solution of the Riemann problem consists of
three elementary waves: the left and right going shock or
rarefaction wave, and the middle wave, which is always
the contact discontinuity with both pressure and velocity
continuous across the wave. Since the multiphase fluid
system can be considered as a discontinuous solution of
Euler’s equations with discontinuous parameters, the interface
separating different phases resembles the contact discontinuity
wave of the Riemann problem solution.

The main algorithms implemented in FronTier’s hyper-
bolic part are as follows [17]. The time step loop starts with
the advance of the interface. A computational stencil is con-
structed at every interface point in the normal and tangential
directions, and stencil states are obtained through interpola-
tion. Then Euler equations, projected on the normal and tan-
gential directions, are solved. The normal propagation of an
interface point is a predictor–corrector technique. We solve
the Riemann problem for left and right interface states to pre-
dict the location and states of the interface at the next time
step. Then a corrector technique is employed which accounts
for fluid gradients on both sides of the interface. Namely,
we trace back characteristics from the predicted new interface
location and then solve Euler equations along the characteris-
tics using techniques described in [17]. After the propagation
of the interface points, the new interface is checked for con-
sistency of intersections. The untangling of the interface at
this stage consists in removing unphysical intersections, and
rebuilding a topologically correct interface [19]. The update of
interior states using second order monotonic upstream-centred
schemes for conservation laws (MUSCL, [20,21]) is performed
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in the next step. The tracked interface allows us to avoid the
integration across large discontinuities of fluid states and thus
eliminate the numerical diffusion. Additional features of the
FronTier hyperbolic solvers include a choice of exact or ap-
proximate Riemann solvers and realistic models for the EOS.

We would also like to comment on some implementation
details of the EOS model for weakly ionized plasmas described
in section 2.2. To satisfy the requirement of FronTier’s
hyperbolic solvers and interface propagation routines, we
derived the complete set of thermodynamic functions in terms
of different pairs of independent variables (ρ, e), (ρ, P ),
(ρ, T ), etc. The corresponding algorithms use numerical
solvers for complicated nonlinear algebraic equations. The
direct use of such algorithms in hydrodynamic simulations
was prohibitively expensive. To speed up the code, we
created tabulated data of thermodynamic functions and their
integrals on a fine mesh in the specific domain of interest
before simulations and used table look-up and interpolation
algorithms during the run.

4. Simulation results

In this section, we apply the front tracking numerical model
to the study of the pellet ablation and hydrodynamic/MHD
processes in the ablation cloud in 1D spherically symmetric
and 2D axisymmetric geometries. In the next sections, the
term ‘hydrodynamic model’ indicates that the electromagnetic
(J × B) force is ignored, contrarily to the ‘MHD model’. The
1D hydrodynamic model of section 4.1.1 is used primarily for
the benchmark purpose. The axisymmetric 2D hydrodynamic
model, described in section 4.1.2, employs the anisotropic
heating along imaginary magnetic field lines. This model was
studied in detail in [8, 9]. Using this model primarily for the
benchmark, we also obtained new results on the role of the
anisotropic heating in the ablation rate reduction. The study
of the axisymmetric MHD model, summarized in section 4.2,
is the main goal of this paper. We discuss the formation and
properties of ablation channels in magnetic fields of various
strength, flow structures in channels and the reduction of the
pellet ablation rate by magnetic fields.

Unless otherwise stated, we use the following parameters
for our simulations: the pellet radius rp = 2 mm, plasma
electron temperature Te∞ = 2 keV, plasma number density
ne∞ = 1014 cm−3 and the pellet density ρpel = 0.2 g cm−3.

In previous pellet injection experiments with realistic
plasma profiles and pellet speeds ∼800 m s−1, the heat flux
seen by the moving pellet is actually ramping up on a time
scale on the order of the pellet lifetime ∼300–600 µs. In
fusion devices such as ITER, a pellet travels through a high
temperature gradient plasma pedestal region during a time
anywhere from 20 to 300 µs. We define a ‘warm-up’ time,
during which we linearly ramp up the incident electron heat
flux q∞ from 0 to its maximal value in order to simulate the heat
flux seen by the moving pellet. For the purely hydrodynamic
simulations (no J × B force) the warm-up time has no effect
on the formation of the steady-state ablation flow. To reduce
the computation time, we choose a 1 µs warm-up time.

When the J × B force is included, the formation of the
ablation channel is quite sensitive to the warm-up time. We
shall see explicitly why the ablation rate of the pellet at a

given moment in time depends not only on the heat flux
at that moment but also on its past exposure to the time-
varying heat flux at all earlier moments. Loosely speaking,
the pellet ablation process has ‘memory’, and therefore it
matters how long it takes for the heat flux to ramp up to the
maximum value. However, simulations of very long physical
time intervals currently require a very long computational time
even on large parallel supercomputers due to the restriction of
the time step imposed by the stability condition. To speed up
the computational time, we restricted the MHD simulations to
artificially short warm-up times, typically in the range from
5 to 20 µs.

The 2D axisymmetric MHD model required one
additional parameter, namely the effective shielding length of
the cloud [22, 23]. The actual shape of the ablation channel
in a real tokamak magnetic field (∇B induced bending of
the channel) can be studied only in 3D. The assumption of
a perfectly axisymmetric channel would lead to an increase
in the shielding of the pellet, causing the ablation rate to
approach zero asymptotically in time. To eliminate these
unphysical consequences, we used estimates of [22, 23] to
obtain the effective shielding length of 15 cm. Numerically,
we limited the interaction of the ablation channel with the
plasma heat flux to 15 cm, and applied the outflow boundary
conditions in the z-direction. In other words, to simulate a
finite shielding length, or heating zone, heat flux absorption in
the region z > 15 cm was arbitrarily set to zero. The effective
shielding length was also assumed to be constant as we varied
the magnetic field over the range 2–6 T.

4.1. Pellet ablation studies with hydrodynamic models

4.1.1. Spherically symmetric model. 1D axially symmetric
simulations of the pellet ablation confirmed the analytical [3]
and previous numerical [8, 9] predictions of the steady-state
ablation flow. In the first numerical experiment, the atomic
processes in the ablation cloud were ignored by using the
polytropic EOS for molecular gas with γ = 7/5. The ablation
flow reached the steady-state ablation rate of G = 112 g s−1 in
a few (<5) microseconds. The ablation rate was in very good
agreement with the result of Ishizaki et al : G = 113 g s−1

was reported in [9]. The ablation flow transformed from a
subsonic regime near the pellet surface to a supersonic one at
the sonic radius r∗ = 0.659 cm. The pressure and temperature
at the sonic radius were p∗ = 20.0 bar and T ∗ = 5.51 eV,
respectively. Figure 4(a) shows the normalized pressure p/p∗,
temperature T/T ∗ and Mach number M as functions of the
normalized radius r/r∗. We found that the Mach number
asymptotically approaches

M∞ =
√

5

γ
= 1.8898, (18)

as predicted in [3] and also verified in previous numerical
studies [8, 9]. We have compared simulation data with some
scaling laws derived in [3], such as the proportionality of the
ablation rate to r

4/3
p , and found good agreement.

The next simulation accounted for atomic processes in
the ablation cloud through the use of the plasma EOS model
described in section 2.2. A small reduction of the ablation rate
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(a)

(b)

Figure 4. Normalized ablated gas profiles at 10 µs in 1D spherically
symmetric model of (a) ablation without atomic processes
(polytropic EOS) and (b) with atomic processes (plasma EOS). The
solid, dashed and dash–dotted lines are M, p/p∗ and T/T ∗ as
functions of r/r∗, respectively.

was observed, in complete agreement with [9]. The absolute
value of the ablation rate G = 106.5 g s−1 was practically
identical to G = 106 g s−1 obtained in [9]. The first sonic
radius, r∗ = 0.445 cm, was shifted towards the pellet surface
compared with the previous simulation for which the atomic
processes in the ablation cloud were ignored. The pressure
and temperature at the sonic radius were, respectively, p∗ =
26.9 bar and T ∗ = 1.07 eV (T ∗ = 1.11 eV was reported in [9]).
The normalized pressure, temperature and Mach numbers are
depicted in figure 4(b). From the figure, it is clear that
the ablation phenomena are changed by including the atomic
processes. The most essential difference is a shock wave,
represented by a jump structure at r = 2.1r∗, in figure 4(b).
The stationary shock front is due to the energy sink from the
atomic processes. The ablated material accelerates near the
pellet surface and the temperature increases due to external
heating. As the ablated gas becomes sufficiently hot, the
dissociation and ionization take place. A portion of the energy
of incoming hot electrons is used for the atomic processes
rather than for the thermal and kinetic energy increase. This

causes the shock wave. Farther downstream, we observed a
second transonic surface at r = 3.9r∗. The double transonic
flow structure was also observed in [9].

4.1.2. Axisymmetric hydrodynamic model. In this section,
we present results of numerical studies of the axisymmetric
hydrodynamic model. We remind the reader that the only
action of the magnetic field was to direct the electronic heat
flux along the z-axis. The MHD model, accounting for the
J × B force, will be discussed in the next section. The pellet
deformation under high ablation pressures was not studied
in the current paper. In order to prevent deformation, we
artificially set to zero the velocity of the fluid states inside the
pellet and only propagated the pellet surface points according
to the surface ablation model (‘rigid’ pellet model). Another
reason for not considering the pellet deformation is that real
tokamaks operate with cylindrical pellets with their axis of
symmetry not aligned with the magnetic field lines. Therefore,
3D simulations are required in order to account for the real
pellet shape. Our 3D studies will be reported in a future
paper.

2D distributions of the temperature, pressure and Mach
number of the ablation flow near the pellet at 20 µs are shown
in figure 5, and plots of the temperature, pressure and Mach
number in the longitudinal and radial directions are shown in
figure 6. Figure 5(c) shows that the double transonic flow in
the spherical model with atomic processes in the ablation cloud
is preserved in the axisymmetric hydrodynamic model. The
flow is established within few microseconds, but it takes at
least 20 µs for the ablation rate to reach the steady-state value
(much longer compared with the 1D model). It can be seen
in figure 5(c) that the two sonic surfaces and the shock front
in between are close to spherical shapes, with the first sonic
surface being slightly elongated in the z = 0 plane (the first
sonic point was located at 0.504 cm in the radial direction and
at 0.445 cm along the z-axis), and the shock and the second
sonic surfaces being slightly elongated along the z axis. This
is consistent with results of [9].

Figure 6 allows us to compare properties of the ablation
flow in the longitudinal and radial directions. Figure 6(a)
shows that the temperature beyond the shock surface is about
57% higher along the r-axis than along the z-axis. Higher
temperatures in the radial direction can be explained by the
pellet ‘shadow’: the region r � rp aligned with the axis of
symmetry. Hot electrons that reach the pellet are deposited
on the pellet surface, providing the energy source for ablation.
Therefore, hot electrons going in only one direction deposit
energy in the shadowed volume of the ablation cloud, as
opposite to the ablation cloud region r > rp. From figure 6(b)
we observe that cloud pressure is isotropic except near the
pellet surface. The pressure on the pellet surface is 108 bar at
the poles and approximately 75 bar on the equator. The reason
for the pressure gradient along the pellet surface is that the
heat flux penetrating the ablation cloud is entirely absorbed by
the pellet at the poles, while only marginally absorbed on the
equator. Lastly, figure 6(c) indicates that the Mach number is
virtually the same in two directions.

The steady-state value of the ablation rate was 90.5 g s−1.
This result is in excellent agreement with the numerical
simulation of [8] and the semi-analytic 2D model of Kuteev
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(a)

(b)

(c)

Figure 5. 2D distributions of (a) temperature (eV), (b) pressure
(bar) and (c) Mach number of the ablation flow near the pellet at
20 µs obtained with the 2D axisymmetric hydrodynamic model.

[6]: both references obtain ∼90 g s−1. Our result is not
in agreement with the numerical simulation of [9], which
obtains a lower result of 60 g s−1. Accordingly, we find
a 0.85, or 15%, reduction in ablation rate compared with
our 1D spherically symmetric simulation. We conducted a
series of 1D spherically symmetric and 2D axially symmetric
hydrodynamic simulations at different values of the electron
plasma density and temperature in order to quantify the
heating anisotropy on pellet ablation. The reduction of
the ablation rate by 2D effects was consistently found to
be, on average, ∼0.82 or ∼18%. This number appears to

Figure 6. (a) Temperature (eV), (b) pressure (bar) and (c) Mach
number of the ablation flow near the pellet in the longitudinal (solid
line) and radial (dashed line) directions at 20 µs obtained with the
2D axisymmetric hydrodynamic model.

conflict with the prevailing expectation that 2D ablation rates
are reduced by a factor of ∼2 compared with 1D ablation
rates [6, 8, 9].

Arguably, the factor of ∼2 reduction must now be called
into question. First of all, our 2D results agree with [6, 8].
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(a)

(c)

(b)

Figure 7. Velocity distribution of the ablation flow near the pellet in 6 T magnetic field with warm-up time 20 µs. (a) 1 µs, (b) 3 µs and
(c) 5 µs.

Despite the implied claims of factor of 2 reduction, a clear-
cut confirmation was unavailable because neither reference
presented 1D simulations on hydrogen pellet ablation with a
Maxwellian electron heat flux. What [6] actually found was
that their 2D pellet ablation rate was a factor of ∼2 (actually
2.2) higher than the transonic flow model of [3]: [6] obtained
90 g s−1, and [3] obtained 41 g s−1. According to the authors
of [6], the factor of 2.2 discrepancy could be attributed to a
combination of two approximations made by [3], the mono-
energetic heat flux approximation and the 1D spherically sym-
metric heating approximation, both removed in [6]. The
argument was that the actual Maxwellian heat flux increases
the ablation rate by a factor of four or five. It was therefore
argued that 2D effects must reduce the ablation rate by a fac-
tor of ∼2, to explain the net result of a factor of ∼2.2 larger
ablation rate compared with [3]. We believe that this inter-
pretation of the discrepancy is now in doubt. Our explanation

for the discrepancy is that 2D effects account for only a 0.82
reduction in the ablation rate, not ∼2. While the effect of using
a Maxwellian heat flux compared with a mono-energetic heat
flux is to increase the ablation rate by a factor of 2.75. This
number comes from the recent 1D simulations presented in sec-
tion 4 of [9], in which we have considerable confidence because
they agree well with our 1D simulations (with Maxwellian heat
flux). The net result 2.75 × 0.82 = 2.25 nicely explains the
factor of 2.2 discrepancy. Finally, even though the 2D simu-
lations of [9] show a factor of ∼2 reduced ablation rate due
to heating anisotropy, these 2D simulations are not in agree-
ment with our 2D result or the 2D results of [6,8] which we do
agree with.

4.2. Axisymmetric MHD model

In this section, we study the influence of MHD forces on the
pellet ablation flow. The ionization of the pellet ablation cloud
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(a)

(b)

(c)

Figure 8. Mach number distribution in the ablation flow near the
pellet in 6 T magnetic field with warm-up time 20 µs. (a) 3 µs, (b)
5 µs and (c) 9 µs.

(a)

(b)

(c)

Figure 9. Temperature (eV) distribution in the ablation flow near
the pellet in 6 T magnetic field with warm-up time 20 µs. The dark
curve near the origin is the pellet surface. (a) 3 µs, (b) 5 µs and
(c) 9 µs.

by the electron heat flux leads to the channelling of the ablation
flow along magnetic field lines. We found that this effect is
sensitive to the parameter ‘warm-up time’. Longer warm-
up time leads to a slower increase in temperature and wider
ablation flow channels.

(a)

(b)

(c)

Figure 10. Pressure (bar) distribution in the ablation flow near the
pellet in 6 T magnetic field with warm-up time 20 µs. (a) 3 µs,
(b) 5 µs and (c) 9 µs.

With 20 µs warm-up time and 6 T magnetic field, the
ablation flow undergoes large changes at approximately 2 µs
after the ablation process starts at the beginning of warm-
up. As shown in figure 7, the ablation flow between the
pellet surface and the shock wave was almost spherically
symmetric at 1 µs, with the absolute value of the radial
component larger than the longitudinal component (consistent
with observations of the previous section), and the flow outside
the shock wave was primarily in the radial direction. At 3 µs,
the flow before the shock wave slightly changed its direction
towards the z-axis, while the flow outside the shock wave
completely changed direction and approximately aligned the
magnetic field. Such a flow distribution remained qualitatively
unchanged during several microseconds with the sonic and
shock surfaces moving towards the pellet surface.

In addition to the formation of the ablation channel, the
action of the magnetic field completely changed the structure
of the ablation flow compared with the pure hydrodynamic
case. Results illustrating this statement are depicted in
figures 8–10. The double transonic flow structure, similar to
the one predicted by the hydrodynamic model, remained in
the ablation channel at t = 3 µs (figure 8(a)). At t = 5 µs,
the second supersonic layer was transformed into the subsonic
regime (figure 8(b)) due to the temperature increase along
the ablation channel (figure 9(b)). The first sonic and shock
surfaces moved towards the pellet surface. However at t =
9 µs, the entire flow in the ablation channel was transformed
into subsonic (figure 8(c)). The temperature continued to
increase along the ablation channel (figure 9) while the pressure
distribution grew to a steady state which is close to constant in
the channel except for the narrow region near the pellet surface
(figure 10). At shorter warm-up times, the flow exhibits similar
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(a)

(c) (d)

(b)

Figure 11. Pressure along the longitudinal and radial axes of steady-state ablation channel with warm-up time 10 µs. Solid line: B = 2 T,
dashed line: B = 4 T and dotted line: B = 6 T. The longitudinal domain extends from the pellet centre to the end of the effective shielding
length, and the radial domain extends from the pellet centre to the edge of the ablation channel. (a) Longitudinal, no shielding;
(b) longitudinal, electrostatic shielding; (c) radial, no shielding and (d) radial, electrostatic shielding.

qualitative behaviour and transforms into the subsonic regime
at an earlier time.

At a given value of the shielding length (15 cm in our
simulations) the ablation flow converged into steady state.
The pressure, Mach number and temperature along the axis
of symmetry and across the ablation channel in the location of
the pellet in the steady-state flow are shown in figures 11(a),
11(c)–13(a), 13(c). We define the channel radius to be the
location of the highest pressure gradient in the radial direction.
These simulations were performed at 10 µs warm-up time.
The steady-state flow was subsonic everywhere in the channel,
with the Mach number reaching 1 at the exit. The pressure
was almost constant along the ablation channel, and slowly
decreased towards the channel exit. In the transverse direction,
the pressure also remained almost constant across the channel
and decayed towards the channel edge. The temperature
increased in both the longitudinal and the transverse directions,
reaching higher values near the edge of the channel than near
the channel exit. The nonlinear behaviour of the temperature
and Mach number near the pellet surface was caused by the
atomic processes in the ablation cloud, similarly as in the
1D hydrodynamic case. In the MHD simulation the flow
always remained subsonic inside the channel, so shock waves
could not be observed. However, the energy sinks caused by

the dissociation and ionization reduced the kinetic energy and
the Mach number of the flow at a distance of order 1 mm from
the pellet surface. In the transverse direction on the z = 0
mid-plane, we observed the stagnation (zero velocity) point at a
small distance behind the ablation channel radius, in agreement
with [24].

As pointed out in [9], the negatively charged ablation
cloud effectively reduces the incident electron density ne and
the heat flux by the Boltzmann factor e−eφ/Te∞ , where φ is
the potential drop across the cold cloud/hot plasma interface.
The pellet charging is not self-consistently modelled in this
paper, it will be addressed in future work. We model the
effect of the electrostatic shielding by reducing ne from 1014 to
1.6 × 1013 cm−3, according to the theoretical estimate of [9].
The corresponding pressure, Mach number and temperature in
the steady-state flow are shown in figures 11(b), 11(d)–13(b),
13(d). As expected, the channel pressure and temperature
are significantly lower with electrostatic shielding, while the
Mach number profiles are not changed by much. It is worth
mentioning that in the case of the electrostatic shielding,
the pressure on the pellet surface is significantly reduced
and almost isotropic, which leads to a much weaker stress
on the solid pellet compared with the pure hydrodynamic
case.
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(a)

(c) (d)

(b)

Figure 12. Mach number along the longitudinal and radial axes of the steady-state ablation channel with warm-up time 10 µs. Solid line:
B = 2 T, dashed line: B = 4 T and dotted line: B = 6 T. (a) Longitudinal, no shielding; (b) longitudinal, electrostatic shielding; (c) radial,
no shielding and (d) radial, electrostatic shielding.

Note that the pressure slightly decreases towards the exit
of the ablation channel. This effect was caused by the
model approximations. Namely, we specify the length of
the ablation channel to be 15 cm, smoothly decrease to zero the
unattenuated electron heat flux Q∞ in a narrow (1 cm) layer
near the channel exit and allow the ablated material to escape
the channel. The ablated material rapidly expands reaching
the sonic state at the channel exit. This expansion and the
reduction of Q∞ causes the decrease in temperature. Values of
the pressure, temperature and Mach number are in agreement
with analytical expressions of [10]. The temperature and
pressure distributions in the ablation channel normalized by the
values at the exit are plotted in figure 14. For comparison, the
normalized temperature and pressure predicted by the parallel
flow model for the ablation channel [10] are also plotted in
figure 14. The agreement between the simulation and the
model is excellent except at low Mach number, where the flow
is in transition from spherical to parallel.

Measurements of the ablation channel width and ablation
rate are shown in figures 15(a) and (b). As expected,
the channel width reduced with the increase in the
magnetic field and decrease of the warm-up time. Indeed,
the magnetic field can only restrict the outward radial motion
of the ablated material; it cannot reverse the radial flow

or reduce the ablation channel radius once it is formed (at
least for leading order effects as opposite to small pressure
perturbations). For smaller warm-up times, the increase in
temperature and ionization fraction is slower, and the ablated
material expands radially to wider ablation channels before
being restricted to the longitudinal motion by the magnetic
field. For the same reason, the channel width is larger
with reduced electron density flux, though the ablation rate
is smaller. For ne = 1014 cm−3, the ablation rate was
approximately 34 g s−1 in the 2 T magnetic field, 28 g s−1 in
the 4 T field and 24 g s−1 in the 6 T field. Compared with the
ablation rate in the 2D hydrodynamic model, 90 g s−1, that
corresponded to the 2.6, 3.2 and 3.8 times reduction. With the
electrostatic shielding taken into account, the corresponding
ablation rate in the hydrodynamic model was reduced to about
60%. The magnetic field further reduced the ablation rate by
2.5 times to approximately 22 g s−1 in the 2 T field, by 2.8 times
to 19 g s−1 in the 4 T field and by 3.2 times to 17 g s−1 in the
6 T field.

Therefore, we conclude that the magnetic field
significantly reduces the ablation rate due to the increased
shielding of the pellet by long ablation channels contrarily
to some expectations that the magnetic field would have a
minor effect on the ablation rate as it is mostly the high-density,
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(a)

(c) (d)

(b)

Figure 13. Temperature along the longitudinal and radial axes of steady-state ablation channel with warm-up time 10 µs. Solid line:
B = 2 T, dashed line: B = 4 T and dotted line: B = 6 T. (a) Longitudinal, no shielding; (b) longitudinal, electrostatic shielding; (c) radial,
no shielding and (d) radial, electrostatic shielding.

isotropic part of the flow close to the pellet that does most of the
shielding. The directional channelling of the ablated material
leads to the redistribution of density as shown in figure 16, and
a much stronger shielding in the channel far from the pellet
compared with the spherically symmetric case.

One important caveat is necessary to interject at this point.
We used warm-up times ∼10 µs that were unrealistically
shorter than what is actually expected in present day pellet
injection experiments. With realistic plasma profiles and
pellet speeds ∼800 m s−1, the heat flux seen by the moving
pellet actually represents a warm-up time of 0.5 m/(800 m s−1)

∼600 µs. The present simulations showed (see figure 15(b))
that changing the warm-up time from 5 to 10 µs increased the
ablation rate from 16.5 to 22 g s−1 in the 2 T field, from 12.7 to
19 g s−1 in the 4 T field and from 10.6 to 17 g s−1 in the 6 T field.
It indicates that a short warm-up time results in ablation rates
that are much lower than experimental values. For example,
a warm-up time of 10 µs gives an ablation rate of 22 g s−1 at
2 T, whereas the experimentally adjusted ablation rate formula
of [7] gives 39 g s−1. In ITER, the pedestal width is ∼8 cm,
the warm-up time is 26 µs for maximum pellet speed 3 km s−1

if we use gyrotron pellet accelerator [25]. With a B = 6 T in
ITER, a factor of ∼3 reduction in ablation rate from the hydro
simulation would be possible.
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Figure 14. Normalized temperature and pressure in the ablation
channel. The solid lines are from the simulation in 2 T magnetic
field with electrostatic shielding, and the dashed lines are from the
parallel flow model for the ablation channel [10].

We expect to improve the numerical algorithm by adding
the adaptive mesh refinement. The low temperature region
around the pellet will be discretized on a fine mesh, while the
high temperature region of the ablation cloud and the ambient
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(a)

(b)

Figure 15. (a) Radius (cm) of the ablation channel as a function of
the magnetic field strength, solid line for 10 µs warm-up time with
ne = 1014 cm−3, dashed line for 10 µs warm-up time with
electrostatic shielding, and dotted line for 5 µs warm-up time with
ne = 1014 cm−3. (b) Ablation rate as a function of the magnetic
field. The solid and dashed curves have the same parameters as the
corresponding ones in (a), and the dash–dotted curve is obtained
with 5 µs warm-up time with electrostatic shielding included.
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Figure 16. Density of the ablation cloud along the z-axis of the 1D
spherically symmetric hydrodynamic model (dotted line), and 2D
MHD models at B = 6 T with ne = 1014 cm−3 (solid line) and
B = 2 T with ne = 1.6 × 1013 cm−3 (dashed line).

Table 1. The ratio of the induced magnetic field to the toroidal
magnetic field in the tokamak. Values near the pellet and far away
from the pellet down the channel are calculated.

2 T 4 T 6 T

ne\B δnear δfar δnear δfar δnear δfar

1014 cm−3 0.530 0.822 0.128 0.223 0.051 0.100
1.6 × 1013 cm−3 0.110 0.180 0.029 0.055 0.015 0.026

plasma domains will contain much coarser grids, providing less
limitation of the computational time step. This will allow us to
simulate longer time intervals and increase the warm-up time.
We will then calculate the MHD reductions of the ablation rate
in low pellet velocity experiments and predict pellet ablation
rates in ITER with more confidence using realistic distributions
of the plasma temperature and density in the pedestal region.
The other simplification, the effective shielding length, which
was set to 15 cm in this work independently of the magnetic
field, will also be improved in the future work by a self-
consistent model.

In order to justify the low magnetic Reynolds number
approximation of the MHD equations, we calculated the
near-field and far-field inductance rate |�B/B|, which are
denoted by δnear and δfar, respectively, in table 1. The
induced magnetic field near the pellet is calculated using
the Biot–Savart law. Far from the pellet along the channel,
the inertial term in momentum equation is considered to be
small, and δfar is half the magnetic β, which is the ratio of
the channel pressure to the energy density of the magnetic
field. The first row of table 1 lists cases of ne = 1014cm−3

and Te = 2 keV, the toroidal magnetic field ranging from
2 T to 6 T. If the electrostatic reduction of the electron heat
flux is taken into account by using the electron density ne =
1.6 × 1013 cm−3, |�B/B| is further reduced as shown in
the second row of table 1. Therefore, we conclude that
Faraday’s Law is indeed negligible for realistic tokamak
parameters.

5. Conclusions

A magnetohydrodynamic model for the study of the
pellet ablation in 2D axisymmetric approximation has been
developed based on the low magnetic Reynolds number
approximation of the MHD system of equations and the
method of front tracking. In the front tracking method,
explicit interfaces separate the solid pellet from the ablated
gas and the cold, dense and weakly ionized ablation cloud
from the highly conducting fusion plasma. This allows the
use of different mathematical and numerical approximations in
complex geometrical domains occupied by different material
substances, and thus the resolution of different material
properties and time scales. The model has been validated
through the comparison with theory and previous simulations.
The 1D version of our model is in excellent agreement with
the scaling laws and ablation rate predicted by the Transonic
Flow model [3]. The 2D axisymmetric simulations of the
ablation flow structure agree with results of MacAulay [8],
and Ishizaki et al [9]. However, we show that the geometric
effects (axisymmetric approximation) have a relatively minor
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role in pure hydrodynamic models: the pellet ablation rate in
the axisymmetric model was 0.82 of that in the spherically
symmetric 1D model.

Pellet ablation rates and ablation flow properties in
magnetic fields have been systematically studied in this paper
for the first time. We have shown that the increase in the
magnetic field reduces the ablation channel width and the
pellet ablation rate. The main conclusion of the paper is
that the directional channelling of the ablated material by
the magnetic field leads to the redistribution of density and
reduces the pellet ablation rate depending on the rise time of
heat flux seen by the pellet. Shorter ‘warm-up’ times lead
to narrower ablation channels, stronger shielding and reduced
ablation rates. This new feature implies that pellets traversing
strong plasma gradients, as in the edge pedestal region of the
ITER plasma, could have significantly lower ablation rates if
injected at higher velocity.

We have also determined that the low magnetic Reynolds
number approximation is appropriate for realistic tokamak
parameters. It is unsatisfactory at only very low magnetic
fields and high densities of hot plasma electrons in the ablation
cloud.

In the future, we will perform simulations using accurate
distributions of the plasma density and temperature in
the pedestal region and incorporate a channel rotation model
due to the E×B force. The developed model is also a basis for
the future study of striation instabilities and the pellet ablation
in 3D.
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Appendix. Relation between exponents in Saha
equations and plasma EOS

Given

PV =
(

1

2
+

fd

2
+ fi

)
RT,

E =
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1 − fd

2(γm − 1)
+

fd + fi

γ − 1

)
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fdRεd + fiRεi,

f 2
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f 2
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= NiV T αi e−εi/T

with γ = 5/3, R = k/m, V = 1/ρ, we will prove that

αd = 3 − 1

γm − 1
,

αi = 3

2
.

Proof. The second law of thermodynamics requires that
T dS = dE + P dV , and therefore
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from which we have
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which reduces to
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Using the plasma EOS, the left-hand side of equa-
tion (21) is
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The right-hand side is
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Comparing equation (22) and equation (23), we obtain
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On the other hand, from the two Saha equations we have
the following relations between the derivatives:

1
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1

V

∂fi

∂T

∣∣∣∣
V

=
(αi

T
+

εi

T 2

) ∂fi

∂V

∣∣∣∣
T
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Comparing equation (25) and equation (27), it is
straightforward to show that

αi = 1

γ − 1
.

Since γ = 5/3, αi = 3/2. Similarly, comparing equation (24)
and equation (26) we can obtain that

αd = 2

γ − 1
− 1

γm − 1
.

For γ = 5/3, αd = 3 − 1/(γm − 1).
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