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Abstract
We introduced a two-step method of multipole expansions for the inverse gra-
vimetry problem in two- and three- dimensions. The source was regularized
to be elliptic or rectangular for efficiency and robustness. In the first step, we
estimated the center of the source by back tracing the measured gravity fields.
In the second step, we solved a linear system with the measured gravity fields
to estimate the mass, dipole, and quadruple of the source expanded about the
estimated source center, then solved the nonlinear equations for the source
parameters. We derived the error bounds for the parameters of the source in the
presence of measurement noises. We demonstrated the accuracy and robustness
of the method by numerical examples.
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1. Introduction

The inverse gravimetry problem has been studied for decades [1–4]. Microgravimetric sur-
veying techniques have been utilized to detect natural (see [3, 4]) and man-made (see [5])
underground cavities. The inverse gravimetry problem is severely ill-posed [1]. In this paper,
we seek the two- or three- dimensional source Ω with a uniform mass distribution from the
gravity field measured at a few points around Ω. The uniqueness of the inverse problem is not
guaranteed in general. However, [1] established the uniqueness for sources that is either star-
shaped with respect to its center of gravity or convex in one direction. Isakov [1] also proved
the logarithmic-type stability estimate for star-shaped sources.

Level set method has been studied to recover the source from partial data [2, 6]. The linear
mapping from the source to the gravity field around it has exponentially fast decreasing singu-
lar values [6]. It was demonstrated in [7] that one could only expect to find four to seven para-
meters describing the source. Recently, Isakov and Titi proposed to use themultipole expansion
to solve the inverse gravimetry problem for two-dimensional sources in [8] and extended the

∗
Author to whom any correspondence should be addressed.

© 2025 IOP Publishing Ltd.
All rights, including for text and data mining, AI training, and similar technologies, are reserved. 1

https://doi.org/10.1088/1361-6420/adef75
https://orcid.org/0000-0002-2733-8648
https://orcid.org/0009-0002-1050-3798
mailto:tianshi.lu@wichita.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/adef75&domain=pdf&date_stamp=2025-7-23


Inverse Problems 41 (2025) 075017 T Lu and S Linkha

method to simplified three-dimensional sources in [9]. For the level set method, the gravity
field was measured on a mesh in a manifold around Ω, and the source was reconstructed by
solving a PDE. In contract, the gravity field only need to be measured at a few scattered points
around Ω for the multipole expansion method, and the reconstruction of the source is a mostly
linear process, which is highly efficient and more feasible for the error analysis.

Our inverse gravimetry problem seeks the domain Ω of the source with uniform density
in R2 or R3 from the gravity fields measured at a few points around Ω. Since the domain
is not uniquely determined by discrete data, we regularize the domain to be either elliptic or
rectangular as in [8, 9]. The gravity field is a nonlinear function of the location and shape of the
source domain. The inverse problem can be solved by an iterative solver such as the gradient
descent method. However, the gravity fields for a three-dimensional source are calculated by
triple integrals, which are computationally expensive, even with the fast implementation using
polar coordinates [2] or low rank approximation [6]. Moreover, it is hard to analyze the error
and convergence of the iterative solver, and it may lead to spurious solutions. Instead we use
the multipole expansion of the gravity field, which gives a system of linear equations, to find
the approximate geometry of the source. The non-iterative solver is efficient and gives a unique
solution with provable error bounds.

We adopt the following notations in the paper. The dimension of the source is denoted by
d. The vector g(r) denotes the exact gravity field at r and gi denotes the measured gravity
field at ri with possible noise. The vector rc denotes the center of gravity of the source. R=
min1⩽i⩽N ∥ri∥ and Rc =min1⩽i⩽N ∥ri− rc∥ are the minimum distance from the measuring
points to the origin and rc. For a vector r, r= ∥r∥ and r̂= r/r. For a parameter p, p̃ is the
estimated value of p from the measured gravity fields, and δp= p̃− p.

In section 2, we generalize the method of multipole expansion in [8, 9] and introduce a two-
step method of multipole expansion for 2D and 3D inverse gravimetry problems. In section 3,
we derive the error bounds for each step in the proposed method in the presence of noises in
the measurements. In section 4, we demonstrated the accuracy and robustness of the algorithm
by numerical examples. In section 5, we make comments and draw conclusions.

2. Algorithm for inverse gravimetry

2.1. Two-dimensional multipole expansion

Following [8], we study the inverse gravimetry problem in two dimensions. The source is
regularized to be an ellipse or a rectangle due to the presence of the background noise in
the measurements. We measure the gravity at a few points around the source and infer the
geometry of the source from the measurements. Let ϕ(r) be the gravitational potential of a
uniform source in a domain Ω⊂ R2,

ϕ(r) =−
ˆ
Ω

ln∥r− r ′∥dr ′.

For convenience the density of the source is set to −2π. The negative density rep-
resents a cavity, which is common for inverse gravimetry. The multipole expansion

2



Inverse Problems 41 (2025) 075017 T Lu and S Linkha

about the origin gives

− ln∥r− r ′∥=− lnr+
∞∑
l=1

∥r ′∥l

lrl
cos(l(θ− θ ′)) =− lnr+

r̂Tr ′

r

+
2
(
r̂Tr ′

)2 −∥r ′∥2

2r2
+O

(
r−3
)
, (1)

where r= ∥r∥, r̂= r/r, θ and θ ′ are the azimuthal angle of r and r ′ respectively. Let

M=

ˆ
Ω

dr ′, p=

ˆ
Ω

r ′dr ′, Q=

ˆ
Ω

(
2r ′r ′T −∥r ′∥2I

)
dr ′,

be the first three harmonic moments. Then

ϕ(r) =−M lnr+
r̂Tp
r

+
r̂TQr̂
2r2

+O
(
r−3
)
.

The gravity at r is

g(r) =−∇ϕ(r) = Mr̂
r

+
2r̂r̂Tp−p

r2
+

2r̂r̂TQr̂−Qr̂
r3

+O
(
r−4
)
. (2)

Noticing thatQ is symmetric and TrQ= 0, we set q= (Q11,Q12)
T as the free parameters ofQ.

There are fivemultipole parameters of the source, namely, (M;p;q), where the semicolons rep-
resent vertical concatenation. Denote the gravity fields measured at the N points {r1, · · · ,rN}
by {g1, · · · ,gN}. We introduce the auxiliary vector that has the dimension of the gravity field,

v=
(
M/R,p/R2,q/R3

)
,

where R=min1⩽i⩽N ∥ri∥. The estimated multipole parameters are given by the least squares
solution to the linear system

Aṽ= g≡ (g1; · · · ;gN) , (3)

where A is a dimensionless 2N× 5 matrix that satisfies

Av= gQ ≡
(
gQ (r1) ; · · · ;gQ (rN)

)
,

where

gQ (r) =
Mr̂
r

+
2r̂r̂Tp−p

r2
+

2r̂r̂TQr̂−Qr̂
r3

,

in which Q is determined by q. We assume rank(A) = 5, so that it has a unique least squares
solution ṽ= A+g, where A+ is the pseudoinverse of A.

An ellipse or a rectangle has five free parameters, namely, the center rc, the half axes a=
(a1,a2) with a1 ⩾ a2, and the azimuthal angle of the first half axis α1 ∈ (−π/2,π/2]. There is
a one-to-one mapping from {rc,a,α1} to {M,p,q}, except for the case a1 = a2 for which α1 is
arbitrary. We estimate {rc,a,α1} by applying the inverse mapping to {M̃, p̃, q̃}. The estimated
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center of the cavity is r̃c = p̃/M̃, from which we compute the quadruple relative to the center
of the source,

Q̃r = Q̃− M̃
(
2r̃cr̃Tc −∥r̃c∥2I

)
.

For an elliptic or rectangular cavity,

(Qr)11 =
M
cQ

(
a21 − a22

)
cos(2α1) , (Qr)12 =

M
cQ

(
a21 − a22

)
sin(2α1) ,

where cQ is 4 for an elliptic cavity and 3 for a rectangular cavity. We can estimate a21 − a22 and
α1 by

ã21 − ã22 =
cQ
M̃

√(
Q̃r
)2
11
+
(
Q̃r
)2
12
, α̃1 =

1
2
arg
((
Q̃r
)
11
+ i
(
Q̃r
)
12

)
.

The product of two half-axes, a1a2, is estimated by M̃/π for an ellipse and M̃/4 for a rectangle.
By the identity

∥a∥2 =
√(

a21 − a22
)2

+ 4(a1a2)
2
,

we can estimate the value of ∥a∥2, and then a1 and a2.

2.2. Three-dimensional multipole expansion

We generalize the method for three dimensional sources in [9]. For a 3D source with uniform
density of −4π, the gravitational potential is

ϕ(r) =
ˆ
Ω

1
∥r− r ′∥

dr ′.

The multipole expansion is

1
∥r− r ′∥

=
∞∑
l=0

∥r ′∥l

rl+1
Pl (r̂ · r̂ ′) =

1
r
+

r̂Tr ′

r2
+

3
(
r̂Tr ′

)2 −∥r ′∥2

2r3
+O

(
r−4
)
, (4)

where Pl is the Legendre polynomial. In terms of the first three harmonic moments,

M=

ˆ
Ω

dr ′, p=

ˆ
Ω

r ′dr ′, Q=

ˆ
Ω

(
3r ′r ′T −∥r ′∥2I

)
dr ′,

ϕ(r) =
M
r
+

r̂Tp
r2

+
r̂TQr̂
2r3

+O
(
r−4
)
,

g(r) =−∇ϕ(r) = Mr̂
r2

+
3r̂r̂Tp−p

r3
+

5r̂r̂TQr̂− 2Qr̂
2r4

+O
(
r−5
)
. (5)

SinceQ is symmetric and TrQ= 0, we set q= (Q11,Q22,Q12,Q13,Q23)
T as the free parameters

of Q. With the auxiliary vector

v=
(
M/R2,p/R3,q/R4

)
,
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where R=min1⩽i⩽N ∥ri∥, the nine multipole parameters of the source can be estimated by the
least squares solution to the linear system

Aṽ= g≡ (g1; · · · ;gN) , (6)

where A is a dimensionless 3N× 9 matrix that satisfies

Av=
(
gQ (r1) ; · · · ;gQ (rN)

)
,

where

gQ (r) =
Mr̂
r2

+
3r̂r̂Tp−p

r3
+

5r̂r̂TQr̂− 2Qr̂
2r4

.

We assume rank(A) = 9, so that it has a unique least squares solution ṽ= A+g, where A+ is
the pseudoinverse of A.

Assume the source is an ellipsoid or a rectangular prism. Let a= (a1,a2,a3)with a1 ⩾ a2 ⩾
a3 and U= (u1,u2,u3) be an orthogonal matrix such that {a1u1,a2u2,a3u3} are the three half
axes of Ω. We estimate {rc,a,U}, which has nine degrees of freedom, from {M̃, p̃, q̃}. The
estimated center is r̃c = p̃/M̃, from which we estimate the quadruple relative to the center,

Q̃r = Q̃− M̃
(
3r̃cr̃Tc −∥r̃c∥2I

)
.

With cQ = 5 for an ellipsoid and cQ = 3 for a rectangular prism,

Qr =
M
cQ
U
(
3D−∥a∥2I

)
UT,

where D= diag(a21,a
2
2,a

2
3). Diagonalizing cQQ̃r/M̃, we estimate ui’s by the eigenvectors and

λi ≡ 3a2i −∥a∥2 by the eigenvalues. The product of three half-axes, P= a1a2a3, is estimated
by 3M̃/(4π) for an ellipsoid and M̃/8 for a rectangular prism. We approximate ∥a∥2 by the
unique root to the cubic equation

(x+λ1)(x+λ2)(x+λ3) = 27P2,

that satisfies x⩾−λi for 1⩽ i⩽ 3. Explicitly,

∥a∥2 =
3

√
q
2
+

√
q2

4
+
p3

27
+

3

√
q
2
−
√
q2

4
+
p3

27
,

where p= λ1λ2 +λ2λ3 +λ3λ1, q= 27P2 −λ1λ2λ3. Lastly, we recover the half-axes by
ai =

√
(∥a∥2 +λi)/3.

2.3. Center of the multipole expansion

The multipole expansion is accurate only if the size of source and the distance from its
center to the center of the expansion are both small compared to R, the minimum distance
from the measuring points to the center of the expansion. If we set the origin to be the cen-
ter of the multipole expansion as in [8], the relative error in the quadruple expansion is at
least of order ∥rc∥3/R3 (cf equation (10)), which gives a relative error of order ∥rc∥3/(a21R)

5



Inverse Problems 41 (2025) 075017 T Lu and S Linkha

(cf equations (11) and (12)) in the estimated half axes. For a small source relatively far away
from the origin (∥rc∥/a1 ≫ 1), the reconstructed source size has large error.

We call the multipole expansion about the origin the one-step method. To reduce the error
in the multipole expansion, we propose a two-step method. First we estimate the center of
the source by back tracing the measured gravity fields, then we reconstruct the elliptical or
rectangular source by the multipole expansion about the estimated center of the source.

Denote Rc =min1⩽i⩽N ∥ri− rc∥. For a1 smaller than Rc, the direction of ri− rc is close to
that of the measured field gi for 1⩽ i⩽ N. So rc is close to the line Li defined by r(t) = ri+ git
for 1⩽ i⩽ N. We estimate rc to be the point that minimizes

f(rc) =
N∑
i=1

dist(rc,Li)
2
.

By setting the gradient of f(·) to zero, we see that the estimated rc, denoted by rc0, satisfies

N∑
i=1

(
I− ĝiĝTi

)
rc0 =

N∑
i=1

(
I− ĝiĝTi

)
ri, (7)

where ĝi = gi/∥gi∥. The approximate center rc0 is uniquely determined so long as the N fields
gi are not all parallel. We will show that rc0 is close to the actual center of the source rc, so
that the multipole expansion about rc0 has a small error.

3. Error analysis

We find the error bounds for the geometric parameters of the source computed by the one-step
and two-step methods. We assume the noise level is ϵn, i.e. for 1⩽ i⩽ N,

∥gi− g(ri)∥⩽ ϵn∥g(ri)∥. (8)

Throughout the paper, we simplify ∥A+∥∞ as ∥A+∥. Denote byU the orthogonal matrix com-
posed of the unit vectors along the half-axes.

3.1. Error bounds for the one-step method

Theorem 3.1. Assume that ∥rc∥+ a1 < R. For the one-step method, the error bounds of M and
rc are

|δM|
M

= ∥A+∥O(ϵ) ,
∥δrc∥
a1

=
R
a1

∥A+∥O(ϵ) . (9)

where

ϵ=
∥rc∥

(
∥rc∥2 + a21

)
R3

+
a41
R4

+ ϵn. (10)

For a 2D source, the error bounds of a and U are

∥δa∥
a1

=
R2

a21
∥A+∥O(ϵ) , ∥δU∥= R2

a21 − a22
∥A+∥O(ϵ) . (11)
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For a 3D source, the error bounds of a and U are

∥δa∥
a1

=
R2

a1a2
∥A+∥O(ϵ) , ∥δU∥=

(
R2

a21 − a22
+

R2

a22 − a23

)
∥A+∥O(ϵ) . (12)

Proof. We compute the error of the multiple expansion about the origin. For a 2D source, by
equation (1),

g(r)− gQ (r) =−∇
ˆ
Ω

∞∑
l=3

∥r ′∥l

lrl
cos(l(θ− θ ′))dr ′.

The octuple term, which vanishes for a symmetric source centered at the origin, is bounded by

∥∥∥∥∇ˆ
Ω

∥r ′∥3

3r3
cos(3(θ− θ ′))dr ′

∥∥∥∥= O

(
M
∥rc∥

(
∥rc∥2 + a21

)
r4

)
.

The 16-tuple term is bounded by∥∥∥∥∇ˆ
Ω

∥r ′∥4

4r4
cos(4(θ− θ ′))dr ′

∥∥∥∥= O

(
M

(
∥rc∥2 + a21

)2
r5

)
.

The sum of the remaining terms is bounded by

∞∑
l=5

ˆ
Ω

∥r ′∥l
∥∥∥∥∇cos(l(θ− θ ′))

lrl

∥∥∥∥dr ′ = ∞∑
l=5

ˆ
Ω

∥r ′∥l

rl+1
dr ′ ⩽

∞∑
l=5

M
r
(∥rc∥+ a1)

l

rl

=
M(∥rc∥+ a1)

5

(r−∥rc∥− a1)r5
.

Since (∥rc∥+ a1)/R< 1,

∥g(r)− gQ (r)∥= ∥g(r)∥ ·O

(
∥rc∥

(
∥rc∥2 + a21

)
r3

+
a41
r4

)
.

Combined with equation (8), for 1⩽ i⩽ N,

∥gi− gQ(ri))∥= ∥g(ri)∥ ·O(ϵ), (13)

where ϵ is given by equation (10). By equation (3), ṽ− v= A+(g− gQ), so

∥ṽ− v∥∞ ⩽ ∥A+∥∞∥g− gQ∥∞ = ∥A+∥∞MR−1O(ϵ) .

which implies

|M̃−M|=M∥A+∥O(ϵ) , ∥p̃−p∥=MR∥A+∥O(ϵ) ,

∥q̃−q∥=MR2∥A+∥O(ϵ) .

It follows that the error bounds for M and rc are given by equation (9). Since ∥δQ∥=
MR2∥A+∥O(ϵ), ∥δQr∥=MR2∥A+∥O(ϵ) and δ(a21 − a22) = R2∥A+∥O(ϵ). Since M is propor-
tional to a1a2, δ(a1a2) = a1a2∥A+∥O(ϵ). We can obtain δa1 and δa2 from the two equations
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above. Combined with ∥δU∥= O(∥δQr∥/∥Qr∥), we get the error bounds for a and U as in
equation (11).

For a 3D source, by equation (4),

g(r)− gQ (r) =−∇
ˆ
Ω

∞∑
l=3

∥r ′∥l

rl+1
Pl (r̂ · r̂ ′)dr ′.

Since

∥∥∥∥∇Pl (r̂ · r̂ ′)
rl+1

∥∥∥∥= l+ 1
rl+2

√√√√
(Pl (r̂ · r̂ ′))2 +

(
1− (r̂ · r̂ ′)2

)
(P ′

l (r̂ · r̂ ′))
2

(l+ 1)2
⩽ l+ 1

rl+2
,

which can be proved using the limits,

lim
l→∞

Pl (cos(x/l)) = J0 (x) , lim
l→∞

sin(x/l)P ′
l (cos(x/l))
l+ 1

= J1 (x) ,

and the inequality J20(x)+ J21(x)⩽ 1, where J0(·) and J1(·) are the Bessel functions, the sum
of the 32-tuple term and beyond is bounded by

∞∑
l=5

ˆ
Ω

∥r ′∥l
∥∥∥∥∇Pl (r̂ · r̂ ′)

rl+1

∥∥∥∥dr ′ ⩽ ∞∑
l=5

M
r2

(∥rc∥+ a1)
l
(l+ 1)

rl

=
M(∥rc∥+ a1)

5

(r−∥rc∥− a1)
2 r5

(
6− 5

∥rc∥+ a1
r

)
.

Equation (13) still holds, which gives the error bounds for M and rc in equation (9).
Since ∥δQr∥=MR2∥A+∥O(ϵ), δ(2a21 − a22 − a23) = R2∥A+∥O(ϵ) and δ(2a22 − a21 − a23) =
R2∥A+∥O(ϵ). SinceM is proportional to a1a2a3, δ(a1a2a3) = a1a2a3∥A+∥O(ϵ). Noticing that

∥δU∥= O

 ∑
1⩽i<j⩽3

∥δQr∥
|λi−λj|

 ,
where λi’s are the eigenvalues of Qr, we obtain the the error bounds for a and U in
equation (12). The estimated half axes may have large errors if a1 ≫ a2.

3.2. Uniqueness of the solution to the linear system

For a 2D source, there are five parameters, so the minimum number of measuring points is
three. By [8], the 6× 5 matrix A defined in equation (3) for any 3 distinct points has full rank,
so equation (3) has a unique least squares solution for three or more measurements. For a 3D
source, there are nine parameters, so the minimum number of measuring points is also three.
However, the 9× 9 matrix A defined in equation (6) for three distinct points is not always full
rank. In fact, A is singular for any three distinct points with the same distance to the center of
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the multipole expansion, which will be shown below. W.l.o.g., assume ∥ri∥= 1 for i = 1,2,3.
The linear system is(

M+ 3rTi p+
5
2
rTi Qri

)
ri−p−Qri = g(ri) , i = 1,2,3.

Denote the circumcenter of the three points r1, r2 and r3 by hn, where h⩾ 0 and n is a unit
vector perpendicular to the plane going through the three points. Let

M=−1+ h2

2
, p= hn, Q=

I
3
−nnT. (14)

It follows that for i = 1,2,3, rTi p= h2, Qri = ri/3−p, and(
M+ 3rTi p+

5
2
rTi Qri

)
ri−p−Qri =

(
−1+ h2

2
+ 3h2 +

5
2

(
1
3
− h2

))
× ri−p−

(ri
3
−p
)
= 0.

It shows that the homogeneous linear system has a nontrivial solution. Furthermore, since
equation (14) only depends on hn, rank(A)< 9 for any number of measuring points that are
coplanar and have the same distance to the center of the expansion. There are other cases the
lead to a rank deficient matrixA. For example, for the threemeasuring points {e1,e1 + se2,e1 −
se2} where e1 = (1,0,0), e2 = (0,1,0), the matrix A is singular for any s.

On the other hand, there are various configurations of measuring points that give a full rank
A. For example, for the three measuring points {e1,e1 + se2,e1 − 2se2}where 0< s< 0.3, the
smallest singular value of A satisfies σmin(A)⩾ 0.5s3, which implies that A is nonsingular. As
another example, for the fivemeasuring points {e1,e1 +d1,e1 −d1,e1 +d2,e1 −d2}where d1
and d2 are arbitrary orthogonal vectors with length up to 0.3, it can be verified that σmin(A)⩾
0.3∥d1∥ · ∥d2∥, therefore A is a full rank matrix.

3.3. Error bound of rc0

Theorem 3.2. Assume there exists K> 0 such that

1
N2

N∑
i=1

N∑
j=1

(
1−

(
ĝTi ĝj

)2)
> K. (15)

The error bound of the estimated source center is

∥rc0 − rc∥= Rc ·O
(
a21
R2
c
+ ϵn

)
, (16)

where Rc =min1⩽i⩽N ∥ri− rc∥.

Proof. Taking the multipole expansion about rc, which has no dipole term, we obtain from
equations (2) and (5) that∥∥∥∥g(rc+ r)− Mr̂

rd−1

∥∥∥∥= M
rd−1

O

(
a21
r2

)
.

9
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Combined with equation (8), for 1⩽ i⩽ N,∥∥∥∥ĝi− ri− rc
∥ri− rc∥

∥∥∥∥= O

(
a21
R2
c
+ ϵn

)
.

As a result, ∥∥∥∥∥ 1N
N∑
i=1

(
I− ĝiĝTi

)
(ri− rc)

∥∥∥∥∥=
∥∥∥∥∥ 1N

N∑
i=1

(
I− ĝiĝTi

)
∥ri− rc∥

(
ri− rc

∥ri− rc∥
− ĝi

)∥∥∥∥∥
= Rc ·O

(
a21
R2
c
+ ϵn

)
.

By equation (7),

P(rc0 − rc) =
1
N

N∑
i=1

(
I− ĝiĝTi

)
(ri− rc) ,

where

P=
1
N

N∑
i=1

(
I− ĝiĝTi

)
.

For any unit vector x ∈ Rd, let g ′
i = sign(ĝTi x)ĝi for 1⩽ i⩽ N and g ′ = (

∑N
i=1 g

′
i )/N, then

xTPx⩾ 1
2N

N∑
i=1

∥x− g ′
i ∥2 ⩾

1
2N

N∑
i=1

∥g ′
i − g ′∥2 = 1

4N2

N∑
i=1

N∑
j=1

∥g ′
i − g ′

j ∥2

⩾ 1
4N2

N∑
i=1

N∑
j=1

(
1−

(
ĝTi ĝj

)2)
.

By equation (15), ∥P−1∥= O(1), hence equation (16).

3.4. Error bounds for the two-step method

Theorem 3.3. For the two-step method, the error bounds of M and rc are

|δM|
M

= ∥A+
c ∥O(ϵc) ,

∥δrc∥
a1

=
Rc
a1

∥A+
c ∥O(ϵc) , (17)

where Ac is the matrix for the quadruple expansion about rc, and

ϵc =
a41
R4
c
+ ϵn. (18)

For a 2D source, the error bounds of a and U are

∥δa∥
a1

=
R2
c

a21
∥A+

c ∥O(ϵc) , ∥δU∥= R2
c

a21 − a22
∥A+

c ∥O(ϵc) . (19)
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For a 3D source, the error bounds of a and U are

∥δa∥
a1

=
R2
c

a1a2
∥A+

c ∥O(ϵc) , ∥δU∥=
(

R2
c

a21 − a22
+

R2
c

a22 − a23

)
∥A+

c ∥O(ϵc) . (20)

Proof. For the multipole expansion about rc0, equation (13) is modified to

∥gi− gQ (ri;rc0)∥= ∥g(ri)∥ ·O(ϵc0) , (21)

where gQ(ri;rc0) is the gravity field at ri up to the quadruple term in the multipole expansion
about rc0, and

ϵc0 =
∥rc− rc0∥

(
∥rc− rc0∥2 + a21

)
R3
c0

+
a41
R4
c0

+ ϵn.

where Rc0 =min1⩽i⩽N ∥ri− rc0∥. By equation (16), Rc0/Rc = 1+O((a1/Rc)2 + ϵn) and ϵc0 =
O(ϵc) with ϵc given in equation (18). The rest of the proof is the same as in theorem 3.1 with
R, A, and ϵ replaced by Rc, Ac, and ϵc respectively.

4. Numerical simulations

Example 1. We consider noiseless measurements (ϵn = 0) around a source with rc ̸= 0. The
errors in the source parameters estimated by the quadruple expansion at the origin are given
by equations (9)–(12). As we increase the distance from the measuring points to the origin, ϵ
in equation (10) varies as R−3. By equations (9)–(12),

1-step : |δM|/M= O
(
R−3

)
, ∥δrc∥/a1 = O

(
R−2

)
, ∥δa∥/a1 = O

(
R−1

)
,

∥δU∥= O
(
R−1

)
. (22)

The errors for the two-step method are given by equations (17)–(20). Since ϵc in equation (18)
varies as R−4

c , and Rc ≈ R for R≫∥rc∥, we have

2-step : |δM|/M= O
(
R−4

)
, ∥δrc∥/a1 = O

(
R−3

)
, ∥δa∥/a1 = O

(
R−2

)
,

∥δU∥= O
(
R−2

)
. (23)

We demonstrate equations (22) and (23) for an ellipse and a rectangular prism.
The ellipse has parameters rc = (0.1,0.2), a= (0.4,0.2), and α1 = π/3. The gravity fields

are measured at three points: (R,0), (0,R) and (R,R). The exact fields are computed by analyt-
ical formulas in [8]. The sources reconstructed by the two methods from the data for R= 1 are
plotted in figure 1(a). For R= 1,2,4,8, the relative errors in M, rc, a, and U obtained via the
quadruple expansion at the origin (one-step) and the two-step algorithm are listed in table 1.

The rectangular prism has parameters rc = (0.15,0.2,0.25), a= (0.5,0.4,0.2), and U
defined by the Euler angles (ϕ,θ,ψ) = (π/2,π/4,π/2). The gravity fields are measured at four
points: (R,0,0), (0,R,0), (0,−R,0), and (0,0,R). The exact fields are computed by numerical
integration. The sources reconstructed from the data for R= 2 are plotted in figure 1(b). For
R= 2,4,8,16, the relative errors in M, rc, a, and U obtained by the two methods are listed in
table 2.

The orders of the relative errors for both sources agree with equations (22) and (23).
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Figure 1. Example 1. Green: actual source, blue: 1-step method, red: 2-step method,
arrows: measured fields. The solution by the 2-step method is very close to the actual
source.

Table 1. Example 1 for an ellipse source.

Method R |δM|/M Order ∥δrc∥/a1 Order ∥δa∥/a1 Order ∥δU∥ Order

1-step 1 2.29× 10−2 — 1.93× 10−1 — 8.23× 10−1 — 6.55× 10−2 —
2 2.25× 10−3 3.35 3.77× 10−2 2.36 3.72× 10−1 1.15 5.52× 10−2 0.24
4 2.49× 10−4 3.18 8.23× 10−3 2.20 1.69× 10−1 1.14 3.20× 10−2 0.79
8 2.91× 10−5 3.09 1.92× 10−3 2.10 7.96× 10−2 1.09 1.71× 10−2 0.90

2-step 1 8.59× 10−4 — 5.71× 10−3 — 3.63× 10−2 — 2.93× 10−3 —
2 4.37× 10−5 4.30 7.36× 10−4 2.95 9.91× 10−3 1.87 2.04× 10−3 0.52
4 2.33× 10−6 4.23 8.72× 10−5 3.08 2.51× 10−3 1.98 5.25× 10−4 1.96
8 1.34× 10−7 4.12 1.05× 10−5 3.05 6.25× 10−4 2.00 1.29× 10−4 2.03

Table 2. Example 1 for a rectangular prism source.

Method R |δM|/M Order ∥δrc∥/a1 Order ∥δa∥/a1 Order ∥δU∥ Order

1-step 2 5.04× 10−3 — 4.69× 10−2 — 3.14× 10−1 — 6.13× 10−1 —
4 7.97× 10−4 2.66 1.16× 10−2 2.01 1.23× 10−1 1.35 3.18× 10−1 0.95
8 1.05× 10−4 2.93 2.88× 10−3 2.01 5.33× 10−2 1.21 1.59× 10−1 1.00
16 1.33× 10−5 2.98 7.18× 10−4 2.01 2.47× 10−2 1.11 7.87× 10−2 1.01

2-step 2 1.19× 10−3 — 3.58× 10−3 — 1.19× 10−3 — 3.22× 10−2 —
4 6.77× 10−5 4.14 2.94× 10−4 3.61 1.61× 10−3 −0.44 6.75× 10−3 2.25
8 4.09× 10−6 4.05 3.06× 10−5 3.26 5.43× 10−4 1.57 1.60× 10−3 2.08
16 2.51× 10−7 4.02 3.58× 10−6 3.10 1.50× 10−4 1.86 3.92× 10−4 2.03

Example 2. In this example we investigate the effect of the distribution of the measuring
points. We assume the measurement are noiseless, and we use the 2-step method. We measure
the fields at a few positions near a fixed point P. As the distance from the measuring points
to P decreases, ∥A+

c ∥ increases, while Rc and ϵc are essentially fixed. The error bounds in

12
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Figure 2. Example 2 for 3 measuring points with scaling factor s= 0.1. Green: actual
source, red: reconstructed source, arrows: measured fields.

Table 3. Example 2 for two dimensional sources.

Shape s ∥A+
c ∥ |δM|/M ∥δrc∥/a1 ∥δa∥/a1 ∥δU∥

Ellipse 1 4.56 1.60× 10−3 6.10× 10−3 1.30× 10−2 2.78× 10−2

0.1 162 6.43× 10−3 3.00× 10−2 8.15× 10−3 6.92× 10−2

0.01 1.58× 10−4 6.53× 10−3 3.05× 10−2 1.01× 10−2 6.96× 10−2

Rectangle 1 4.56 2.92× 10−4 3.92× 10−3 2.09× 10−2 0.031
0.1 162 5.83× 10−3 3.47× 10−2 1.85× 10−2 0.162
0.01 1.58× 10−4 6.04× 10−3 3.60× 10−2 1.63× 10−2 0.166

equations (17)–(20) increases unboundedly. We demonstrate by 2D and 3D examples that the
actual errors are reasonably small even for large ∥A+∥.

For the 2D sources, we use the ellipse and the rectangle that share the parameters rc =
(0.1,0.2), a= (0.4,0.2), and α1 = π/3. The gravity fields are measured at three points:
(−s,1), (0, 1) and (s,1), where s is the scaling factor. The sources reconstructed from the
data with s= 0.1 are plotted in figures 2(a) and (b). The relative errors for s= 1,0.1,0.01 are
listed in table 3.

For the 3D sources, we use the ellipsoid and the rectangular prism that share the paramet-
ers rc = (0.15,0.2,0.25), a= (0.5,0.4,0.2), and U defined by the Euler angles (ϕ,θ,ψ) =
(π/2,π/4,π/2). We consider two cases for each source. In the first case, the fields are meas-
ured at 3 points: (−s,0,2), (0,0,2), and (s/2,0,2). The three points are chosen asymmetrically
to avoid a singular matrix A (see section 3.2). In the second case, the fields are measured at
5 points: (0,0,2), (−s,0,2), (s,0,2), (0,−s,2) and (0,s,2). The sources reconstructed from
the data at three points with s= 0.1 is plotted in figures 2(c) and (d). The relative errors for
s= 1,0.1,0.01 in all cases are listed in table 4.

The reconstructed sources agree with the actual source qualitatively for clustered points
with large ∥A+

c ∥.

Example 3. In this example we demonstrate the robustness of the two-step method against
noise. We perturb the exact fields by a factor of ϵn, i.e. ∥gi− g(ri)∥= ϵn∥g(ri)∥, and recon-
struct the source from {gi}N1 . We apply the method to four sources, namely, an ellipse, a rect-
angle, an ellipsoid, and a rectangular prism. To tolerate noise, we choose the measuring points
as in Example 1 for a moderate ∥A+

c ∥. By equations (18)–(20), the relative errors in rc, a, and
U from noisy measurements are large if Rc ≫ a1. For a moderate value of Rc/a1, we set R= 1
for the 2D sources and R= 2 for the 3D sources.

13
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Table 4. Example 2 for an ellipsoid source.

Shape Points s ∥A+
c ∥ |δM|/M ∥δrc∥/a1 ∥δa∥/a1 ∥δU∥

Ellipsoid 3 1 30.7 2.88× 10−4 1.92× 10−3 2.37× 10−2 8.82× 10−3

0.1 4.31× 10−3 8.98× 10−4 3.56× 10−3 2.82× 10−2 1.75× 10−2

0.01 4.68× 10−5 4.28× 10−3 1.09× 10−2 2.98× 10−2 6.71× 10−2

Ellipsoid 5 1 8.10 1.25× 10−4 1.05× 10−3 1.55× 10−2 3.98× 10−3

0.1 685 3.48× 10−4 2.46× 10−3 2.70× 10−2 1.71× 10−2

0.01 6.79× 10−4 4.29× 10−4 2.71× 10−3 2.75× 10−2 1.94× 10−2

Rectangular 3 1 30.7 7.57× 10−3 2.63× 10−2 5.27× 10−2 0.284
Prism 0.1 4.31× 10−3 1.25× 10−2 3.90× 10−2 6.23× 10−2 0.351

0.01 4.68× 10−5 1.32× 10−2 4.05× 10−2 6.03× 10−2 0.352

Rectangular 5 1 8.10 3.81× 10−3 1.86× 10−2 2.40× 10−2 0.214
Prism 0.1 685 4.43× 10−3 2.17× 10−2 6.09× 10−2 0.278

0.01 6.79× 10−4 4.43× 10−3 2.18× 10−2 6.15× 10−2 0.279

Figure 3. Example 3 for 2D sources with 10% noise. Green: actual source, red: recon-
structed source, arrows: measured fields with noises.

The ellipse and the rectangle are the same as in example 2. The gravity fields are measured
at three points—(1, 0), (0, 1) and (1, 1), for which ∥A+

c ∥= 2.79. The sources reconstructed
from the data with 10% noise are plotted in figure 3. The relative errors for ϵn = 0,1%,10%
are listed in table 5.

The ellipsoid and the rectangular prism are the same in example 2. The gravity fields are
measured at four points—(2,0,0), (0,2,0), (0,−2,0), and (0,0,2), for which ∥A+

c ∥= 1.03.
The sources reconstructed from the data with 10% noise are plotted in figure 4. The relative
errors for ϵn = 0,1%,10% are listed in table 6.

The relative errors of the estimated source parameters are reasonably small for measure-
ments with noise up to 10%.
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Table 5. Example 3 for two dimensional sources.

Shape ϵn |δM|/M ∥δrc∥/a1 ∥δa∥/a1 ∥δU∥

Ellipse 0 8.59× 10−4 5.71× 10−3 3.63× 10−2 2.93× 10−3

1% 6.12× 10−3 2.34× 10−2 5.88× 10−2 7.27× 10−2

10% 2.88× 10−2 1.61× 10−1 8.76× 10−2 4.26× 10−1

Rectangle 0 3.38× 10−3 1.94× 10−2 6.07× 10−2 2.56× 10−2

1% 8.69× 10−3 3.76× 10−2 7.81× 10−2 8.15× 10−2

10% 3.21× 10−2 1.77× 10−1 1.26× 10−1 3.74× 10−1

Figure 4. Example 3 for 3D sources with 10% noise. Green: actual source, red: recon-
structed source, arrows: measured fields with noises.

Table 6. Example 3 for three dimensional sources.

Shape ϵn |δM|/M ∥δrc∥/a1 ∥δa∥/a1 ∥δU∥

Ellipsoid 0 2.79× 10−5 1.46× 10−3 7.47× 10−3 9.86× 10−3

1% 1.08× 10−2 6.23× 10−3 1.98× 10−2 1.17× 10−1

10% 1.10× 10−1 6.30× 10−2 1.25× 10−1 8.90× 10−1

Rectangular 0 1.19× 10−3 3.58× 10−3 1.19× 10−3 3.22× 10−2

Prism 1% 1.19× 10−2 5.39× 10−3 1.04× 10−2 9.73× 10−2

10% 1.11× 10−1 6.08× 10−2 6.16× 10−2 6.48× 10−1

5. Discussion and conclusion

As shown by example 2, the reconstructed source from noiseless measurements is more accur-
ate for elliptic shape than rectangular shape. The reason is that the 16-tuple term in the mul-
tipole expansion about the source center divided by the monopole term is O(a41/R

4
c) for rect-

angles and rectangular prisms, while only O((a21 −min(ai)2)2/R4
c) for ellipses and ellipsoids,

because all terms except the monopole term vanish for a circular (2D) or spherical (3D) source.
Therefore, for ϵn = 0, the term ϵc in the error bounds equations (17)–(20) is smaller for an
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elliptic source that a rectangular source. On the other hand, in the presence of noises, ϵc is
dominated by ϵn. As shown by example 3, the errors are similar for elliptic and rectangular
sources.

In the two-step method, the estimated source center rc0 may be replaced by the approximate
source center r̃c obtained by the quadruple expansion about the origin. However, it is not as
robust as rc0. By equations (9) and (16), the error of r̃c is at leastR ·O(∥rc∥3/R3 + ϵn), while the
error of rc0 is Rc ·O(a21/R2

c + ϵn). For small sources relatively far from the origin (∥rc∥≫ a1),
r̃c may have a large error, which leads to large errors in the subsequent multipole expansion
about r̃c.

After the second step in the two-step method, we may use the newly obtained source cen-
ter, rc1 = rc0 + p̃/M̃, as the center of the second multipole expansion. The relative error in
the second multipole expansion is still O((a1/Rc)4 + ϵn) due to the 16-tuple term, though the
octuple term might be smaller because by equations (16) and (17),

∥rc− rc0∥= Rc ·O
(
a21
R2
c
+ ϵn

)
, ∥rc− rc1∥= Rc∥A+

c ∥O
(
a41
R4
c
+ ϵn

)
.

The error bounds for the source parameters obtained by extra multipole expansions are of the
same order as in equations (17)–(20). Therefore, iterative multipole expansions cannot reduce
the errors significantly.

In summary, we presented a two-step method of inverse gravimetry. First we back trace the
measured gravity fields to estimate the center of the source, then we reconstruct the elliptic or
rectangular source by the quadruple expansion centered at the estimated source center. In the
second step, we first solve the linear system to determine the approximate monopole, dipole,
and quadruple of the source at the center of expansion, then we solve the nonlinear equations
for the source parameters exactly.

We proved that the relative errors of the mass, center, half axes, and orientation of the
reconstructed source are of 4th, 3rd, 2nd, and 2nd order respectively as the minimum distance
between the measuring points and the source center increases. We showed that the minimum
number of measuring points is 3 for both two- and three- dimensional sources. Unlike for 2D
problems, the linear system for 3D problems may be rank deficient, though it is possible to
choose measuring points to make the linear system well-conditioned. For a well-conditioned
linear system, the algorithm is robust against noises in the measurements.

Natural underground cavities such as those in karst regions have sophisticated shapes [4].
Recently, a reconstruction method for the inverse gravimetric problem using high order har-
monic moments has been proposed in [10]. The authors developed two numerical methods,
based on conformal mapping and convex minimization respectively, for two-dimensional cav-
ities. For future work, we will try to extend the method to three-dimensional cavities.
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