
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 895–915

DYNAMIC PHASE BOUNDARIES FOR COMPRESSIBLE FLUIDS∗
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Abstract. We present an algorithm for the simulation of a generalized Riemann problem for
phase transitions in compressible fluids. We model the transition as a tracked jump discontinuity.
The emphasis here is on the coupling of the phase transition process to acoustic waves, which is
required for the study of cavitation induced by strong rarefaction waves. The robustness of the
proposed algorithm is verified by application to various physical regimes.
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1. Introduction. The coupling of hydrodynamics and thermal effects in liquid-
vapor phase transitions is encountered in many applications such as evaporators and
condensers for thermal control devices. Understanding of liquid-vapor phase changes
therefore remains of great scientific and practical interest. In addition to transport
phenomena within each individual phase in these processes, other phenomena may
occur from the interface motion and thermal nonequilibrium effects. A complete
macroscopic description of phase changes requires the coupling of hydrodynamics
with surface tension, latent heat, interphase mass transfer, discontinuous material
properties, nonequilibrium thermodynamics, etc. On the other hand, these phenom-
ena occur on the phase boundary at different length scales and are coupled together.
For example, the hydrodynamics at the macro scale is coupled to the thermal diffusion
length scale, which starts at a nano scale. To simulate phase transitions accurately,
phenomena at different scales must be understood and incorporated. Due to the mul-
tiscale characteristic and also due to the poor understanding of some of the physical
mechanisms involved, the development of a numerical method for the modeling of
phase transition is a challenge.

The earlier studies of the boiling process followed two major approaches. One
examined the nature of the liquid-vapor phase change from a molecular point of view.
For example, the rate of phase change was found to be proportional to the deviation
from phase equilibrium according to a simplified model based on kinetic theory [1].
The relations between the molecular behavior and the macroscopic characteristics of
vapor can be understood qualitatively at the molecular level. Part one of [5] gives an
overview of this subject. By using molecular dynamics simulations, such phenomena
as liquid films on a solid surface [29] and a liquid droplet in contact with a solid surface
[19] have been studied. However, the molecular dynamics simulations are often not
applicable to large complex applications due to limits of computational resources.

∗Received by the editors June 1, 2006; accepted for publication (in revised form) June 25, 2007;
published electronically February 22, 2008. This work was supported in part by National Science
Foundation DMS-0102480 and Army Research Office grant W911NF0510413.

http://www.siam.org/journals/sisc/30-2/66170.html
†Computational Science Center, Brookhaven National Laboratory, Upton, NY 11973-6000

(tlu@nbl.gov, rosamu@bnl.gov).
‡Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556 (zxu2@nd.edu).
§Department of Applied Mathematics and Statistics, University of Stony Brook, Stony Brook,

NY 11794-3600 (glimm@ams.sunysb.edu, xji@ams.sunysb.edu).

895



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

896 T. LU, Z. XU, R. SAMULYAK, J. GLIMM, AND X. JI

The more practical approach for a large scale problem was based on simple models
of vapor bubble dynamics. Rayleigh [26] formulated a simplified equation of motion
for inertia-controlled growth of a spherical vapor bubble. Plesset and Zwick [22] and
later Plesset and Prosperetti [23], among others, extended Rayleigh’s analysis. Hao
and Prosperetti [15] investigated the dynamics of bubbles in acoustic pressure fields
assuming the vapor was saturated. These models, based on the Rayleigh–Plesset equa-
tion for incompressible liquid or the Keller equation of first order in c−1

l for weakly
compressible liquid, focused on the motion of a single spherical bubble under ambient
pressure waves in liquid.

More recently, the second approach has been extended to simulations of vapor and
liquid as separated phases with phase boundaries explicitly tracked. Welch [32] studied
compressible two-phase flows including interface tracking with mass transfer while
the phase interface was assumed to exist in thermal and chemical (Gibbs potential)
equilibrium. Son and Dhir [30] employed a level set method to study film boiling near
critical pressures. Juric and Tryggvason [17] simulated boiling flows in incompressible
fluids using a nonequilibrium phase transition model with a parameter called kinetic
mobility whose value was measured experimentally. Preston, Colonius, and Brennen
[25] computed the growth and collapse of vapor bubbles traveling through a nozzle,
in which the interfacial dynamics of phase transitions was derived from kinetic theory
consideration. More discussion about this approach can be found in Preston’s thesis
[24] and references therein. Matsumoto and Takemura [20] studied numerically the
influence of internal phenomena on the motion of a single spherical gas bubble with
complete mass, momentum, and energy conservation laws for compressible fluids and
the interfacial dynamics of phase transitions. Their governing equations contain more
technical details, such as the concentration of noncondensable gas in the liquid and
vapor phases. In [20], the temperature field was first solved from simplified energy
equations, and other fluid fields were solved afterwards. In our approach, all fluid
fields are updated simultaneously, and both thermodynamic and mechanical states
at the interface are updated as coupled according to the proposed solution of the
phase boundary Riemann-type problem. The dynamics of the phase boundary in our
approach is explicitly coupled to acoustic waves in both phases. There are also some
differences in assumptions simplifying the governing equations and in the numerical
methods. In contrast to [20], we do not assume constant latent heat and achieve
exact energy conservation by solving the generalized Hugoniot relation, derived in
section 2.

The Riemann problem for compressible fluids undergoing phase transitions was
studied by Menikoff and Plohr [21]. However, in their work, the phase transition zone
was treated as a macroscopic mixture of two phases at equilibrium, as opposed to the
sharp interface model studied in our work.

The description of the phase boundary evolution (generalized Riemann problem
for the phase boundary), in which the phase boundary is treated as an explicitly
tracked discontinuity in the present paper, resembles some features of both the clas-
sical Stefan problem [28] and the theory of deflagration waves in combustion [6]. The
Stefan problem studies heat transfer-driven phase change (melting and solidification)
for incompressible materials. Governed by parabolic equations, the Stefan problem
neglects acoustic waves in liquids and solids and is usually solved by the phase field
methods. For detailed discussions about the phase field methods, see [3, 4] and refer-
ences therein. In contrast to the Stefan problem, the theory of deflagration waves in
combustion solves equations for compressible media. The energy difference between
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the phases (burnt and unburnt) in combustion, which is the heat released or ab-
sorbed in a chemical reaction, is analogous to the latent heat of vaporization in phase
transitions. However, in a combustion problem, the energy difference between the
phases is not associated with temperature gradients through the Hugoniot relation
as in phase transitions. Temperature gradients are often neglected in practical calcu-
lations of combustion problems, while they cannot be neglected in phase transition
problems studied in this paper.

In the present paper, equations for compressible fluids, containing heat diffusion
terms, couple to the phase transition interface conditions. Using results for kinetic
theory, conditions at the phase boundary account for deviations from the equilibrium
given by the Clausius–Clapeyron equation. The governing system of equation is not
hyperbolic, but it is still formally advection dominant. Since the solution of such a
system loses the self-similarity property of Riemann solutions for hyperbolic systems,
the phase boundary problem is not a Riemann problem in the strict sense; rather it is
a problem with Riemann data, i.e., piecewise constant initial data with a jump in the
middle. However, we still use the term “Riemann problem” in the present paper. As
we are interested in an accurate algorithm for the evolution of the phase boundary, we
solve a one-dimensional (1D) problem in the direction normal to the interface. The
algorithms can be used without changes in multidimensional front tracking [9] for the
normal interface propagation.

The paper is organized as follows. Section 2 describes the mathematical formu-
lation of the phase transition problem. Section 3 discusses the numerical algorithms
used to propagate the phase boundary and state values at grid cells near the phase
boundary. In section 4 we present validation calculations and accuracy analysis.

2. Mathematical formulation. The physics of liquid-vapor phase transition
is governed by the compressible Euler equations with heat diffusion. For the 1D
algorithm, the equations are

∂U

∂t
+

∂F (U)

∂x
= 0,(2.1)

where U = [ρ, ρu, ρE], F (U) = [ρu, ρu2 + P, (ρE + P )u+ q]. ρ, P, u stand for density,
pressure, and velocity, respectively. E = u2/2 + ε is the specific total energy, with
ε being the specific internal energy, which is associated with ρ and P through the
equation of state for each phase. The thermal flux q follows Fourier’s law of heat
conduction:

q = −κ
∂T

∂x
,(2.2)

where κ is thermal conductivity and T is temperature. The thermal diffusion changes
the type of (2.1) from hyperbolic to parabolic. In the model presented here, the
phase boundary is regarded as a sharp interface at which density is discontinuous. The
normal velocity is also discontinuous across the interface due to mass conservation; i.e.,
the velocity field in the Knudsen layer is not resolved. Compared to the temperature
field, which is required to be continuous across the phase boundary, the velocity field
in each phase is much smoother (the gradient is small). As a result, viscosity plays a
minor role compared to the thermal conduction in our algorithm and simulations and
is omitted from (2.1).

In hyperbolic conservation laws, shock waves and contact discontinuities propa-
gate as sharp discontinuities in the solution. The introduction of the heat diffusion



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

898 T. LU, Z. XU, R. SAMULYAK, J. GLIMM, AND X. JI

removes jump discontinuities in temperature waves but still allows discontinuities in
pressure and velocity distributions. We can view (2.1) as modified Euler equations,
which have modified solutions. In the present paper, the phase boundary is modeled
as a tracked interface, in analogy with the contact discontinuity in classical Riemann
solutions, but with nonzero mass flux. In the following derivation of jump conditions
for a dynamic liquid-vapor phase boundary, subscripts v and l represent vapor and
liquid, respectively, the square bracket stands for the jump across the phase boundary,
and the bar stands for the average between two phases. For example, [ρ] = ρv − ρl,
ū = (ul + uv)/2. The velocity of the phase boundary is denoted by σ.

Integrating (2.1) across the interface, we obtain the balance equations for the
mass, momentum, and total energy:

σ[ρ] = [ρu],(2.3)

σ[ρu] = [ρu2 + p] + ps,(2.4)

σ[ρE] = [u(ρE + p) − κT,x] + ūps.(2.5)

In (2.4), ps = γ(1/R1+1/R2) is the well-known pressure jump in the Laplace equation,
with γ being the surface tension and R1 and R2 being radii of curvature. (2.3), (2.4),
and (2.5) can be manipulated to yield equations for the mass flux, linear momentum
flux, and energy balance at the phase boundary. For the mass flux M = ρv(uv −σ) =
ρl(ul − σ), the mass and momentum balance equations give

M =
[u]

[τ ]
= − [p] + ps

[u]
,(2.6)

where τ = 1/ρ. Combination of these equations with the energy balance equation
leads to the generalized Hugoniot relation

εv − εl + p̄(τv − τl) =
1

M
(κvTv,x − κlTl,x).(2.7)

The left side is called the latent heat of the phase transition, which is often denoted
by L. At phase equilibrium, L equals the difference between the specific enthalpy of
two phases. We also postulate that the temperature is continuous across the phase
boundary. Therefore, the interfacial temperatures of the vapor and liquid are equal:

Tl = Tv = Ts,(2.8)

where Ts is the interface temperature. This approach was also used in [16].

2.1. Interfacial mass flux. In the above discussion, neither the interface tem-
perature Ts nor the mass flux M is determined. To close the equations we need
another equation that determines either of them or relates them. We notice that
the pressure is not continuous across the phase boundary as required by (2.6), unless
M = 0. Physically, the pressure jump is a consequence of the velocity difference and
the acceleration of the particles as they pass through the phase transition layer. The
velocity difference in turn results from the large density difference between liquid and
vapor and the conservation of mass. In dynamic phase transitions, deviation from
thermal equilibrium at the interface drives the mass transfer across the interface.

Phase change is a complicated phenomenon of the interaction of vapor molecules
with the liquid surface. Therefore, it is essential to examine phase transitions from a
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kinetic theory point of view before we consider the macroscopic aspects of the phase
change process. The derivation below follows Alty and Mackay [1]. Assuming the
Maxwellian distribution of the velocity of vapor molecules, the number density is
given as

n(u) ∝ exp

(
− mu2

2kBT

)
,(2.9)

where m is the molecular mass and kB the Boltzmann constant. The total mass flux
of vapor molecules hitting the interface is

m

∫ ∫ ∫
ux>0

duxduyduzn(u)ux

= mNūx =
mN

4
ū =

pv√
2πRT

,

where N is the total number of molecules per unit volume and R = kB/m. Not all
molecules hitting the phase boundary condense into liquid. The ratio of molecules
condensing into liquid over the total number hitting the phase boundary is called the
accommodation coefficient. It is also referred to as the condensation or evaporation
coefficient sometimes. We use the term accommodation coefficient and denote it by
α. The range of α is between 0 and 1. The mass flux of the condensing vapor is

α
pv√

2πRT
.(2.10)

In the present analysis, we assume that the fluxes of condensing and vaporizing
molecules can be derived separately and the results superimposed to obtain the net
flux. Since the net mass flux cancels at equilibrium, the mass flux of evaporating
liquid is the same as that of condensing vapor. Denoting the equilibrium pressure at
temperature T by psat(T ), the mass flux of the evaporating liquid is

α
psat(T )√
2πRT

.(2.11)

Taking into account that the evaporation of liquid is mainly determined by the tem-
perature, we find that the net mass flux of evaporation when the vapor is unsaturated
or oversaturated is

Mev = α
psat(T ) − pv√

2πRT
.(2.12)

The relations derived above clearly depend on the value of the accommodation coeffi-
cient. Research has indicated that the value of α less than 1 results from either impu-
rity of substances or deficiency of the kinetic theory-based derivation. For example,
the above analysis does not consider nonequilibrium interactions between molecules
leaving the interface and those approaching the interface. For the detailed discussion
of the accommodation coefficient, see [5] and references therein. A review of experi-
ments and theories regarding the accommodation coefficient can also be found in [14].
In the present paper, different values of α are studied numerically.

In general, the interface temperature Ts is a nonlinear function of the mass flux
Mev and other state variables. It is difficult to obtain a closed form for Ts. The ex-
pression for the interface temperature is described in the following section.
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3. Numerical methods. The numerical technique combines the conservative
front tracking method [13] developed for multiphase flows with an algorithm designed
for phase transitions. The tracked phase boundary is represented by an interface (or
front) which in one dimension is a point advancing in a uniform underlying Eulerian
grid. In higher dimensions, the phase boundary is an explicitly tracked codimension-1
manifold advancing Lagrangianly. The time stepping to advance solution states can be
broken up into two main steps: the propagation of the front and the finite differencing
for updating cell state values. See [2, 8, 9, 10] for details of the front-tracking method.
The finite difference algorithm used in the present study is conservative for all grid
cells, including the irregular ones cut by the front. It is a finite volume scheme,
which updates the cell state average values. In this paper, we use the monotone
upstream-centered schemes for conservation laws (MUSCL) type [18, 7] scheme for
the reconstruction of piecewise linear states. The reconstructed state values are used
to compute the numerical flux values across the volume boundaries and then update
the cell states. The phase boundary propagation algorithm will be presented first,
followed by an introduction to the conservative tracking finite differencing algorithm.

3.1. An iterative phase boundary solution algorithm. The phase bound-
ary propagation algorithm determines solutions of a general phase boundary Riemann
problem. The solution procedure is similar to that for a contact discontinuity. The
key iterative step in the solution of a Riemann problem for a contact discontinuity is
to find the mid state, based on equations of continuity of the velocity and pressure
at the contact. We call this step the FMS (find mid state) iteration and generalize
it to the case of discontinuous velocities and pressures across the phase boundary.
The contact discontinuity propagation algorithm consists of three steps: the slope
reconstruction step to compute approximations to the flow gradients, the prediction
step using Riemann problem solutions to predict the new position of the point, and
the correction step to account for flow gradients on either side of the front. For the
phase boundary propagation algorithm, there is no prediction step because the exact
solution structure is not known. The correction step moves the location of the phase
boundary point and updates the phase boundary states.

The complete solution to the phase boundary Riemann problem is obtained by
solving phase boundary conditions and generalized FMS equations consistently. Con-
sistency means that the velocity jump and the pressure jump in the FMS must equal
those given by the phase boundary conditions. The numerical algorithm for a dynam-
ical phase transition proceeds as follows. The characteristic form of (2.1), which are
the FMS equations used at the interface, is

dp

dλ+
+ ρc

du

dλ+
= ΓκTxx,(3.1)

dp

dλ−
− ρc

du

dλ−
= ΓκTxx,(3.2)

dε

dλ0
+ p

dτ

dλ0
=

1

ρ
Txx,(3.3)

where c =
√

(∂p∂ρ )S is the sound speed (S is the specific entropy) and Γ is the

Gruneisen coefficient [21]. The characteristic derivatives λ+, λ−, and λ0 are defined
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Fig. 1. Stencil for the phase boundary propagation. The new front states S∗
l and S∗

r are cal-
culated. The characteristic equations along λ± characteristics are used in the calculation, while the
equation along the λ0 characteristic is substituted for by thermal conditions at the phase boundary.

by

d

dλ+
=

∂

∂t
+ (u + c)

∂

∂x
,(3.4)

d

dλ−
=

∂

∂t
+ (u− c)

∂

∂x
,(3.5)

d

dλ0
=

∂

∂t
+ u

∂

∂x
.(3.6)

The phase boundary conditions are (2.6)–(2.8) and (2.12).
To solve the characteristic system with the phase boundary conditions, an iter-

ation algorithm which intertwines a hydro iteration and a thermal iteration is de-
veloped. In the hydro iteration, the characteristic system and the phase boundary
conditions are used to solve for interfacial pressures and velocities. In the thermal
iteration, the interface temperature and mass flux of evaporation are found. The it-
eration algorithm loops over these two subiteration steps until the solution converges.
Backward characteristics are traced from an estimated location of the phase boundary
at the next time step. States at the feet of these characteristics (at the current time
level) are first obtained by interpolation. The characteristic speeds are λ± = u ± c
and λ0 = u, while the phase transition interface moves at a speed σ = [ρu]/[ρ]. For
a small time step Δt, the characteristics are approximated by straight lines. Fig-
ure 1 is a schematic diagram showing the backward characteristics. The left foot is
a distance (cl + ul − σ)Δt away from the interface, while the right foot is a distance
(cr−ur+σ)Δt away from the interface. Since |u−σ| � c in phase transitions, the feet
of λ± characteristics always reside in the left and right sides of the phase boundary
as shown in Figure 1. Once the states at the λ± characteristic feet are obtained by
interpolation, (3.1) and (3.2) are integrated along the characteristics and then solved
together with phase boundary conditions.

For phase transitions, the foot of λ0 characteristic of each phase, located at (σ −
u)Δt relative to the interface, differs from the interface position. The side of the feet
of λ0 characteristics to the interface depends on the direction of the phase transition.
Unlike the classical Riemann problem, where the two λ0 characteristics meet at the
interface and the state in each phase evolves adiabatically along the characteristic, the
phase boundary propagation must be treated differently because of the heat diffusion
and the mass transfer across the interface. Since the temperature equation is parabolic
rather than hyperbolic, it must be solved numerically by using thermal conditions at
the phase boundary, namely, (2.7), (2.8), and (2.12), rather than by integrating (3.3)
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along the λ0 characteristics. In the following paragraphs we describe the iteration
algorithm in details:

1. Thermal iteration. Substitute the vapor pressure at S0+ for pv in (2.12) and
discretize (2.7). We have two equations which we solve for the two unknown
variables Ts and M . The function psat is a nonlinear function. Since the
thermal iteration is coupled to the hydro iteration where pv is updated, the
Clausius–Clapeyron equation is linearized at a reference temperature Tv and
solved for Ts and M while preserving the convergence of S∗

l and S∗
r in Figure 1

through the iteration. For the first iteration step, Tv can be chosen to be
equal to Ts at the beginning of the time step if T0− = T0+. For subsequent
iteration steps, Tv is simply the Ts obtained in the previous iteration. Upon
linearization, we obtain solutions

Ts =
κlT−1 + κvT1 + α√

2πRTv
LΔx(pv − psat(Tv) + dpsat

dT (Tv)Tv)

κl + κv + α√
2πRTv

LΔxdpsat

dT (Tv)
(3.7)

and

Mev =
α√

2πRTv

(
psat(Tv) − pv +

dpsat
dT

(Tv)(Ts − Tv)

)
,(3.8)

where Δx is the grid size and dpsat

dT (Tv) is the slope of phase coexistence
curve at Tv determined by the Clausius–Clapeyron equation. The latent heat
L in (3.7) is approximately the equilibrium latent heat at temperature Ts.

2. Hydro iteration. Having obtained the temperature Ts and mass flux Mev,
we can solve the characteristic equations (3.1) and (3.2) combined with the
Rankine–Hugoniot conditions (2.6). Integrated along the characteristics, (3.1)
and (3.2) become

∫ tn+1

tn

dp

ρc
+

∫ tn+1

tn

du =

∫ tn+1

tn

ΓκTxx

ρc
dλ+,(3.9)

∫ tn+1

tn

dp

ρc
−
∫ tn+1

tn

du =

∫ tn+1

tn

ΓκTxx

ρc
dλ−,(3.10)

in the left and the right side of the interface, respectively. After forward Euler
discretization, they become

p∗l − pf
ρfcf

+ (u∗
l − uf ) =

Γlκl

ρfcf
Tl,xxΔt,(3.11)

p∗r − pb
ρbcb

− (u∗
r − ub) =

Γrκr

ρbcb
Tr,xxΔt,(3.12)

where the symbols are in accordance with Figure 1 and Txx’s are obtained
by finite difference. (3.11) and (3.12) are then solved together with (2.6),
which involves a term [τ ]. For the first iteration [τ ] is set to the value at the
beginning of the time step. For subsequent iteration steps, the density ρ∗l
and ρ∗r are determined from their equations of state with the pressure and
temperature obtained in the iteration and from which [τ ] is updated.
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3. Convergence check. Convergence of the iteration is controlled by pv and [τ ].
The last step in each iteration is to compare the newly obtained pv and [τ ]
with the values from the previous iteration. If the relative errors of both
pv and [τ ] are smaller than given tolerances, the iteration is terminated;
otherwise, pv and [τ ] are updated for the next iteration, which starts from
step 1 again. In the present study, the tolerances of the relative errors for pv
and [τ ] both have the value 10−9.

The thermal iteration in the proposed algorithm depends on a subgrid model to
describe the thermal layer at the phase boundary. The width of the thermal layer
in each phase is proportional to

√
νt, where ν = κ/(ρcp) is the thermal diffusivity

in each phase. The time step in simulations is restricted to Δt < Δx/c by the
Courant, Friedrichs, and Lewy (CFL) condition, which states that the domain of
dependence of hyperbolic PDEs must lie within the domain of dependence of the
finite difference scheme at each mesh point to guarantee the stability of an explicit
finite difference scheme. It usually requires 103–104 steps for the liquid thermal layer
to expand to a micron scale grid cell. If the thermal layer is thinner than a grid
cell, the temperature gradient varying significantly within the cell makes conventional
finite difference schemes insufficient in estimating the temperature gradient at the
phase boundary, which is crucial for the calculation of the evaporation rate. When
the thermal layer is thinner than a grid cell, the temperature profile in it takes the
form

T ≈ Ts + (T1 − Ts)erf

(
x√
4νt

)
,(3.13)

where Ts is the phase boundary temperature and T1 is the temperature one grid cell
away from the phase boundary. Thus the temperature gradient at the interface is
approximated by

∂T

∂x
≈ T1 − Ts√

πνt
.(3.14)

In the iteration algorithm, the interfacial temperature gradient in the form of ΔT/Δx
should be replaced by the above approximation. When the thermal layer is wider
than a grid cell, the conventional finite difference approximation of the temperature
gradient at the interface gives satisfactory results.

This is a new description of the generalized Riemann problem associated with a
phase transition in a fully compressible fluid. Mass transfer across an interface due to
the phase change is taken into account. The interface motion depends on the phase
change under nonequilibrium thermodynamic and hydrodynamic conditions.

The following is the accuracy analysis of the iterative algorithm. To obtain the
approximation of states at the feet of λ± characteristics, we use a second order MUSCL
reconstruction. A piecewise linear function is reconstructed on each cell from cell-
averaged values at time tn to yield the approximate states Un

f and Un
b at the feet of

characteristics such that the errors Un
f − Un

f = O(Δx2) and Un
b − Un

b = O(Δx2). By
solving the generalized Riemann problem by the above algorithm with Un

f and Un
b as

the initial states, we obtain a numerical phase boundary speed σn+1 with error O(Δx)
and approximate states on both sides of the phase boundary also with accuracy of
first order in Δx. The reason is that (3.9) and (3.10) are solved by forward Euler
discretization, which is of first order accuracy. One of the reasons for not using a
higher order algorithm at the interface is that the second order MUSCL scheme used
in the interior of both phases reduces to first order in the presence of shock waves.
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3.2. Conservative finite differencing. In the implementation of the conser-
vative tracking algorithm, the phase boundary is tracked as an interface in space and
time. The linear approximation of the space-time interface is formed by connecting
spatial interfaces at two consecutive time steps. We connect the nodes of a spatial cell
at time tn to the nodes of the corresponding cell at time tn+1 to form a space-time vol-
ume. If a space-time interface passes through the interior of a space-time volume, the
volume is divided into fragments such that the space-time interface is on the boundary
of the fragments. These volume fragments are combined with corresponding neigh-
bors to alleviate the restriction by the CFL condition. A second order Godunov-type
finite volume differencing scheme is used to update the grid states. On space-time
interfaces, the dynamic flux, which is F − σU resulting from the Rankine–Hugoniot
conditions of (2.1), replaces the usual flux F for time-independent boundaries of the
space-time volumes. This redefinition gives equal values of fluxes when evaluated
from both sides of the space-time interface, so that the conservation laws are satisfied
exactly at the tracked interface. Details of the conservative finite differencing method
can be found in [13].

For the proposed algorithm, as pointed out in section 3.1, the velocity of the phase
boundary and the interface states calculated numerically are of first order accuracy in
Δx because the characteristic equations (3.9) and (3.10) are solved by forward Euler
discretization. Therefore, the position of the phase boundary, denoted by S(t), is also
of first order accuracy because

S(t) = S(0) +

∫ t

0

σnum(τ)dτ

= S(0) +

∫ t

0

[σexact(τ) + O(Δx)]dτ

= S(t) + O(Δx).(3.15)

Furthermore, the discretization of the flux across the interface

Fn+1/2
s =

1

Δt

∫ tn+1

tn

[F (Us(t)) − σUs(t)]dt(3.16)

by

Fn+1/2
s =

1

2
[F (Un

s ) − σnUn
s + F (Un+1

s ) − σn+1Un+1
s ](3.17)

using the trapezoidal rule is also of first order accuracy in Δx, in contrast to [13],
where the conservative finite differencing is uniformly second order accurate in L1.
Nevertheless, the proposed algorithm is one order more accurate than any capturing
algorithm, because at solution of discontinuities, the local truncation errors of the
capturing algorithms are typically O(1) [27, 12, 11].

4. Simulation results. In this section, simulation results for various test prob-
lems are presented and analyzed. In sections 4.1 and 4.2, shock waves and rarefaction
waves interacting with a phase boundary are simulated, and results are used to test
the accuracy and convergence of the proposed algorithm. The influence of the accom-
modation coefficient is studied in section 4.3. Phase transitions controlled by external
heat flux are simulated in section 4.4. Finally, a test problem in section 4.5 demon-
strates two-phase flow in the presence of both acoustic and thermal waves. Only the
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phase boundary was tracked for all computations; shock fronts were captured by the
MUSCL scheme. The order of accuracy was determined by the following expression:

order = log2

L1 error in grid(2 � x)

L1 error in grid(�x)
.(4.1)

We should note here that the L1 error includes both the solution state error and the
interface position error since we have tracked phase boundaries in solutions. The
material used for simulations in sections 4.1–4.3 is n-heptane. The equation of state
(EOS) for n-heptane vapor used in the simulations was a γ-law gas, with γ = 1.05.
The thermal conductivity of the vapor was estimated to be κ = 0.013 W/mK. The
EOS for liquid n-heptane was given by a stiffened polytropic equation [21]

P + γP∞ = (γ − 1)ρ(E + E∞),(4.2)

with adiabatic exponent γ = 3.19, stiffening constant P∞ = 3000 bar, and energy
translation E∞ = 4.85× 109 erg/g. The thermal conductivity of the liquid n-heptane
was set to κ = 0.13 W/mK. The thermodynamic properties of n-heptane are described
in [31]. In sections 4.4 and 4.5, the material used in simulations was water and its
vapor. Parameters for their equations of state were set correspondingly.

4.1. A phase boundary-shock tube problem. We consider the interaction
of a shock wave with a phase boundary. The computational domain is [0.2–0.8] cm,
with the vapor-liquid interface located at 0.65 cm initially. The forward shock wave is
located at 0.5 cm in the liquid initially. The preshock states are at phase equilibrium,
and the initial conditions are

U(0.5 < x ≤ 0.65, t = 0) =

⎛
⎝ ρ

u
p

⎞
⎠ =

⎛
⎝ 0.633

0
0.112

⎞
⎠ ,

U(0.65 < x ≤ 0.8, t = 0) =

⎛
⎝ ρ

u
p

⎞
⎠ =

⎛
⎝ 0.00043

0
0.112

⎞
⎠ .(4.3)

The pressure behind the shock front is p = 8 bar. A flowthrough boundary condition
is used on both the left and the right boundaries. We used four meshes with 450, 900,
1800, and 3600 cells, respectively.

The results for 3600 cells at time 2 μs are shown in Figure 2. The phase boundary
moves to the right by 1.58 μm at this time. The spike in the temperature plot shows
the vapor heated by the shock wave. If the phase boundary were treated as a contact
discontinuity, after the interaction of the contact and the shock wave, the solution
of this Riemann problem would consist of a backward rarefaction wave, a contact
discontinuity, and a forward shock wave. The solution of the contact-shock wave
interaction and the solution of the phase boundary-shock wave interaction are visually
identical in this case. It indicates that thermal waves or phase nonequilibrium must
be present for phase transitions to play an important role. If the vapor and liquid are
at phase equilibrium initially and there is no external heat flux as in this problem,
the phase transition induced by shock waves is very weak. In fact, the position
difference between the phase boundary and the contact interface is less than 0.1% at
as late as 3 ms. However, the advection-dominated problem serves well for the study
of convergence of the algorithm because shock fronts are usually where numerical
schemes have the least accuracy. The accuracy results of this set of simulations are
shown in Table 1. It is clear that the algorithm has more than first order accuracy.
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Fig. 2. Solution of phase boundary-shock wave interaction problem: density, pressure, temper-
ature, and velocity at 2 μs. X is in cm, and the units of the variables are g/cm3, bar, Kelvin, and
cm/ms, respectively.

Table 1

Accuracy and convergence rate for phase boundary-shock wave interaction.

Mass Momentum Energy
N L1 error Order L1 error Order L1 error Order

450 1.849E-6 - 1.128E-4 - 4.366E-3 -
900 6.182E-7 1.580 5.054E-5 1.158 1.258E-3 1.795
1800 2.189E-7 1.498 1.832E-5 1.464 4.407E-4 1.513

4.2. A phase boundary-rarefaction wave problem. In this section, we de-
scribe a phase boundary-rarefaction wave interaction problem. The computational
domain is still [0.2–0.8] cm. Initially, the vapor-liquid interface is located at 0.54 cm,
and the forward rarefaction wave of width 0.001 cm is located at 0.5 cm in liquid.
The initial states of both phases ahead of the rarefaction wave are the same as in the
phase boundary-shock wave problem in section 4.1. The pressure at the trailing edge
of the rarefaction wave is p = −20 bar. A flowthrough boundary condition is used on
both ends of the computational domain.

The results for 3600 cells at time 1 μs are shown in Figure 3. The phase boundary
has moved to the left by 3.54 μm by then. As in section 4.1, the solution would be
virtually unchanged if the phase boundary were treated as a contact discontinuity.
After the interaction of the contact and the rarefaction wave, the solution of this
Riemann problem consists of a backward shock wave, a contact discontinuity, and a
forward rarefaction wave. Again, due to the lack of external heat flux or deviation
from phase equilibrium, phase transitions are minimal. At 3 ms, the position difference
between the phase boundary and the contact interface is less than 0.5%. The accuracy
results of this set of simulations are shown in Table 2. It confirms that the algorithm
has consistently more than first order accuracy.

4.3. Influence of α on the solution. We investigated the influence of the
accommodation coefficient α on the phase boundary evolution. We tested the above
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Fig. 3. Solution of phase boundary-rarefaction wave interaction problem: density, pressure,
temperature, and velocity at 1 μs. X is in cm, and the units of the variables are g/cm3, bar, Kelvin,
and cm/ms, respectively.

Table 2

Accuracy and convergence rate for phase boundary-rarefaction wave interaction.

Mass Momentum Energy
N L1 error Order L1 error Order L1 error Order

450 4.058E-6 - 2.362E-4 - 8.314E-3 -
900 1.417E-6 1.518 1.218E-4 0.955 2.925E-3 1.507
1800 5.103E-7 1.474 4.012E-5 1.602 1.040E-3 1.492

phase boundary-rarefaction wave problem with α = 0.2, 0.4, 0.6, and 0.8, respectively.
The computation domain was extended to [0.1–0.8] cm to accommodate the simulation
time. Figure 4 shows a magnified view of the velocity plot at 1 μs for a simulation
with 3600 cells.

We expect that, under the same condition, the larger the α value, the faster the
evaporation process. This is confirmed by the present numerical experiment. From
Figure 4, we can see that a larger α value is associated with a larger velocity jump
across the phase boundary, which corresponds to a larger evaporation rate. The
positions of the phase boundary at various times corresponding to the above α values
are listed in Table 3. From the table, we see that the phase boundary moves to
the left faster for a larger accommodation coefficient. This confirms that a larger α
gives a higher evaporation rate, which enhances the expansion of vapor due to the
rarefaction wave more strongly. Nevertheless, the influence of the α on the phase
boundary dynamics is insignificant in this case since the case is in the advection-
dominated regime.

4.4. A thermal wave problem. From the previous examples we see that phase
transitions play a minor role in advection-dominated problems, such as the passage
of a shock or rarefaction wave of moderate strength through an equilibrium phase
boundary. However, the mass transfer in phase transitions does play an important
role in the presence of a sustained thermal wave. Here we used the numerical method
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Fig. 4. The enlarged velocity plot of the phase boundary region at 1 μs for the phase boundary-
rarefaction wave interaction problem. The curves are obtained using different accommodation coef-
ficients α.

Table 3

Phase boundary positions.

α t = 0.001 ms t = 0.05 ms t = 0.1 ms
0.2 0.53734604 0.34516851 0.14909711
0.4 0.53734596 0.34516649 0.14909417
0.6 0.53734590 0.34516538 0.14909265
0.8 0.53734586 0.34516467 0.14909170

to simulate the condensation of water vapor under outgoing heat flux. The early-stage
buildup of the temperature field has been demonstrated. The late-stage condensing
flow was compared to the exact steady states and the convergence was confirmed.

The test problem consists of a tube containing a shallow layer of water. The
bottom of the tube is in contact with colder material to sustain a constant outgoing
heat flux. The remaining space is filled with water vapor. Initially the water and water
vapor are at rest and in equilibrium at room temperature: T0 = 20◦C, p0 = 23.4 mbar.
The outgoing heat flux from water gradually builds up a temperature gradient in the
water and causes condensation. For the boundary conditions at the opening of the
tube, the vapor pressure is assumed to be constant, and the temperature gradient is
assumed to be zero: (

∂T

∂x

)
x=0

= 0, p(x = 0) = p0;

(
∂T

∂x

)
x=D

= Tx0, u(x = D) = 0.

Here D = 0.1 mm is the total length of the liquid and vapor in the calculation. x = D
is the bottom of the tube, and x = 0 is the vapor end. In the following example,
Tx0 = −2.5◦C/μm. The EOS parameters for water and water vapor are set by their
physical properties at room temperature. Their thermal conductivities are 0.598 and
0.0182 W/mK, respectively. The latent heat of evaporation is 2450 J/g, and the
evaporation coefficient is set to 0.4.

4.4.1. Early stage. The grid size of the simulation was 1 μm. The position of
the phase boundary xph calculated from the simulation is plotted against the time
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Fig. 5. The position of phase boundary in the first 6 ms. T0 = 20◦C, p0 = 23.4 mbar,
Tx0 = −2.5◦C/μm. xph first increases due to the thermal contraction and later decreases due to
condensation. The solid line is from the simulation with grid size 1 μm, the dashed line is with grid
size 2 μm, and the dotted line is with grid size 4 μm.

0 < t < 6 ms in Figure 5. It shows that the phase boundary first moves to the
water end and then back to the vapor end. In other words, before the liquid volume
increases due to the condensation, it first decreases for about 2.7 ms. The reason is
that the liquid shrinks with the lowering temperature when the heat flux required
for the phase transition has not been built up. It is not until about t = 4.8 ms
that the phase boundary moves back to the original position. After that the phase
transition dominates over thermal contraction of the liquid, and the phase boundary
moves steadily toward the vapor end.

4.4.2. Late stage. The liquid volume increases during the condensation, while
the thermal and pressure waves in the tube gradually approach the “steady state”
dictated by the boundary conditions and liquid height. The steady state is not a
single state but rather a family of states depending on the liquid height, which varies
with time. The steady state is uniform in vapor by the boundary condition. In the
liquid phase, since the Mach number � 1, the energy conservation law in (2.1) can
be approximated by a temperature equation as in Stefan’s problem,

ρcp

(
∂T

∂t
+ u

∂T

∂x

)
= κ

∂2T

∂x2
,

where cp is the specific heat at constant pressure, and the energy equation at the
phase boundary (2.7) becomes

(κTx)s = −ML,

where L is the latent heat of the phase transition and M is the transition rate. The
temperature field evolves into the following steady state:

T (x) = Ts +
L

cp

(
1 − exp

(
Mcp(x− xph)

κ

))
,(4.4)

where xph is the location of the phase boundary and Ts is the interface temperature.
For each xph, M is determined by the specified temperature gradient at the water
end. Ts can be found from M via the kinetic relation with known vapor pressure p0.
The steady state liquid pressure pl, the velocity of the phase boundary uph, and the
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Table 4

Comparison of the actual states from simulation with the corresponding steady states at various
times. The steady state depends on the interface position at time t.

t(ms) 10 20 30
xph(mm) 0.04874 0.04464 0.03991

state actual steady actual steady actual steady
M(10−5g/cm2 ·ms) 3.61 5.10 4.74 5.04 4.958 4.968

Ts(oC) 14.09 11.65 12.24 11.75 11.880 11.865
pl(mbar) 23.48 23.56 23.535 23.552 23.5475 23.5481

uph(10−5cm/ms) -3.31 -4.97 -4.58 -4.90 -4.818 -4.822
uv(cm/ms) 2.16 3.06 2.84 3.02 2.975 2.981
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Fig. 6. Late-stage condensing flow. T0 = 20◦C, p0 = 23.4 mbar, Tx0 = −2.5◦C/μm. Dotted
curves are for t = 10 ms, dashed curves are for t = 20 ms, and solid curves are for t = 30 ms.

vapor velocity uv can all be calculated using the steady state form of solutions to the
mass and momentum conservation laws in (2.1). Since the phase boundary is moving,
all of the quantities above vary with time.

Table 4 is the comparison between the steady state quantities and the correspond-
ing ones in the evolving wave obtained from numerical simulation. It can be seen from
the table that the evolving state is closer to the steady state at later time. Figure 6
visualizes the evolution. From the figure we see that the pressure and velocity jumps
at the phase boundary increase steadily toward the values of steady states.

We compared the liquid temperature field in Figure 6(a) to the steady state (4.4)
more closely. The temperature gradient is approximately constant in the steady state,
so the solid curve (t = 30 ms) in Figure 6(a) should be roughly a straight line as it
is, though not exact. In fact we can show that the curvature of the temperature field
matches excellently with the nonlinearity revealed in (4.4). In order to visualize the
nonlinearity of the temperature distribution, define

y = ln
(
1 +

cp
L

(Ts − T )
)
.

From (4.4), for the steady state

yst =
Mcp
κ

(x− xph)(4.5)

is a linear function of x. yst and the y from the simulation at t = 30 ms are compared
in Figure 7. The match is very accurate, which indicates that the state at t = 30
ms is close to the steady state in fine details. In conclusion, we have shown that our
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Fig. 7. Match of the nonlinearity between the temperature from simulation at t = 30 ms and
the steady state temperature distribution. The solid line is a plot of yst in (4.5). The dots are the
discretized values of y from simulation. The dotted line is the plot of y if the temperature gradient
were constant. Obviously the actual T at t = 30 is much closer to (4.4) than a linear distribution.

numerical algorithm for phase transitions in compressible fluids works equally well in
advection-dominated and thermal wave-dominated regimes.

4.5. A problem coupling phase transitions and acoustic waves. In this
test problem we show that, when acoustic wave and phase nonequilibrium are both
present, as may occur in many practical situations, the dynamics of two-phase flows
is strongly affected by both acoustic waves and phase transitions. As a contrast to
sections 4.1–4.3, it will be shown that solutions in this section would be significantly
changed if phase transitions were neglected.

The test problem is the condensation of oversaturated water vapor in the pres-
ence of an acoustic wave. Initially, both phases have length 2 cm. Vapor is on the
left side, and water on the right side, with the phase boundary at the origin. The end
of the domain on the water side is a reflection boundary, while the end on the vapor
side is in contact with fixed ambient pressure. Both ends are insulated so there is no
external heating or cooling. Both phases are at rest and have common temperature
293 K at the beginning. The initial vapor pressure is 93 mbar, whose saturation
temperature is 343 K. The water pressure is 193 mbar. If the phase transition were
neglected, the water first expands due to its higher pressure and then shrinks and
expands periodically as the pressure wave propagates back and forth in the liquid.
The temperature and velocity fluctuations would be small in both phases. When the
phase transition is included in the process, the liquid volume still oscillates, but the
oscillation is superposed upon an expansion due to condensation as the vapor is over-
saturated. The temperature and velocity fluctuations are much stronger, especially
in the vapor phase.

Figure 8 compares the evolution of the interface with and without phase transi-
tions. Clearly the liquid volume oscillates while expanding when phase transition is
included. It can be noticed that the expansion gradually slows down due to the lack of
external cooling. Figure 9 plots the pressure, temperature, and velocity distributions
at 1 microsecond. In all figures, solid lines are for phase transitions, while dashed
lines are for a simple contact. In the pressure plot Figure 9(a) the dotted line shows
the initial pressure distribution. In the temperature plot Figure 9(b) the horizontal
line near the top stands for the initial saturation temperature of the vapor phase.
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Fig. 8. The evolution of the interface between water and water vapor in the presence of an
acoustic wave. The solid line is for the process including a phase transition; the dashed line is for
simple contact.
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Fig. 9. The pressure, temperature, and velocity distribution in water vapor and water at 1
microsecond. Solid lines are for the process including a phase transition; dashed lines are for simple
contact. In (a), the dotted line shows the initial pressure distribution. In (b), the horizontal line
near the top stands for the initial saturation temperature of the vapor phase.

The temperature peak in the center is due to the heat released from condensation at
the phase boundary. The interface temperature gradually approaches the saturation
temperature. Eventually these temperatures coincide, and the motion of the phase
transition stops as it does in all insulated systems. In Figure 9(c) the discontinuity
in the center is from the mass flux across the phase boundary. It is clear from the
figures that phase transitions play an important role when there is deviation from
phase equilibrium.

4.6. Extension to higher dimensions. We have extended this method to
higher dimensions based on the operator-splitting method for the front propagation.
The subgrid model is applied along the interface normal direction. Here we present
the 2D simulation of a vapor bubble expanding in tensile water. The computational
domain is 0.32 cm × 0.24 cm. The domain is filled with water, and an elliptic vapor
bubble initially rests at the center of the domain. The two half axes of the vapor
bubble are 0.1 and 0.06 cm, respectively. The vapor bubble is saturated initially,
having pressure 23.4 mbar at temperature 293.4 K. The ambient water is initially
under 200 bar tension at temperature 293.2 K. The water evaporates, and the vapor
bubble grows under the tension.

We compared the bubble growth in simulations of various resolutions. The bub-
ble shape at time 1 μs is shown in Figure 10(a). The bubble area has increased by
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Fig. 10. Growth of a vapor bubble in tensile water. (a) shows the shape of the bubble at time
1 μs. (b) is the magnified view of (a) that shows the difference between the simulation results of
various resolutions.

Table 5

Accuracy and convergence rate of the bubble growth under tensile water.

t = 1 μs t = 2 μs
Nx ×Ny Area(cm2) Error Order Area(cm2) Error Order
20 × 15 0.019476 3.40E-4 - 0.020678 6.81E-4 -
40 × 30 0.019688 1.28E-4 1.408 0.021073 2.87E-4 1.249
80 × 60 0.019769 4.68E-5 1.453 0.021243 1.17E-4 1.295

160 × 120 0.019802 1.41E-5 1.735 0.021321 3.86E-5 1.599

5.13% from the initial size. The bubble surfaces from various simulations are almost
indistinguishable in Figure 10(a). In the magnified view in Figure 10(b) the difference
in the fronts and the convergence under mesh refinement is clearer. Table 5 compares
the bubble area at times 1 and 2 μs calculated from the simulations. The area calcu-
lated from the simulation of the highest resolution (320×240) is used as the reference
value to determine the accuracy of other simulations. At time 2 μs the bubble has
grown by 13.3% from the original size. The comparison confirms that the algorithm
propagates the front with more than first order accuracy.

The method developed in this paper has been applied to resolve the dynamics
at cavitation bubble surfaces in the simulations of the atomization of a high speed
jet in the 2D axisymmetric geometry [33]. A plot of jet interface at late time is
shown in Figure 11. This flow is strongly compressible, and vapor bubbles are created
constantly. The capabilities developed here is necessary to carry out the simulations
of the jet breakup.

5. Conclusions. We have proposed a new numerical method to the solution
of phase boundaries for compressible flows. The method is based on the interface-
tracking technique. We have presented one-dimensional simulations in different phys-
ical regimes as well as a two-dimensional simulation of bubble growth in tensile liquid
to validate the method. The ability of the method to deal with complex interface
is demonstrated through the simulation of atomization of a high speed jet. The al-
gorithm is more than first order accurate everywhere including the tracked phase
boundaries. From test problems presented in this paper, we see that the proposed
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Fig. 11. Plot of jet interface at late time.

algorithm makes accurate predictions for problems ranging from advection-dominated
ones, in which phase transitions play a minor role, to those with sustained thermal
waves, in which phase transitions play a critical role, and to those coupled ones in
which both phase transitions and hydro waves play important roles.
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