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 A B S T R A C T

In this paper, we studied continuous radial functions that are positive definite on a domain 𝐷
in the Euclidean space R𝑑 or a compact two-point homogeneous space M𝑑 . We showed that 
for 𝐷 ⊂ R𝑑 that contains 𝑑-balls of arbitrary radius, a radial function that is PD on 𝐷 is PD 
on R𝑑 . On the other hand, for any closed proper subset 𝐷 ⊂ M𝑑 , there exists a radial function 
that is PD on 𝐷 but not PD on M𝑑 . We derived some sufficient conditions in terms of spectral 
coefficients for a continuous radial function that is PD on 𝐷 to be PD on M𝑑 . As an example, 
we explicitly constructed radial functions that are PD on the unit ball embedded in the unit 
sphere S𝑑 by a distance preserving map, but not PD on S𝑑 .

1. Introduction

Positive definite (PD) radial functions play an important role in the theory of isotropic Gaussian random fields on Euclidean 
spaces and homogeneous spaces, since they are the covariance functions of the random fields. PD radial functions on R𝑑 and S𝑑
were characterized by Bochner’s theorem and Schoenberg (1942), respectively. A 𝑑-dimensional compact two-point homogeneous 
space M𝑑 is a compact Riemannian manifold M𝑑 with geodesic distance 𝜌(⋅, ⋅) such that for any two point pairs (𝐱1, 𝐱2) and (𝐲1, 𝐲2)
in M𝑑 with 𝜌(𝐱1, 𝐱2) = 𝜌(𝐲1, 𝐲2) there exists an isometry 𝜙(⋅) on M𝑑 such that 𝜙(𝐱1) = 𝐲1, 𝜙(𝐱2) = 𝐲2. According to Wang (1952), 
M𝑑 falls into one of the five categories: the unit spheres S𝑑 (𝑑 = 1, 2,…), the real projective spaces P𝑑 (R)(𝑑 = 2, 3,…), the complex 
projective spaces P𝑑 (C)(𝑑 = 4, 6,…), the quaternionic projective spaces P𝑑 (H)(𝑑 = 8, 12,…), and the octonionic plane P16(O). We 
normalize the length of a geodesic line in M𝑑 to be 2𝜋. The connected component of the group of isometries of M𝑑 was given in 
Table 1 in Ma and Malyarenko (2020). Gangolli (1967) characterized PD radial functions on M𝑑 . In this paper, we study radial 
functions that are PD on a subset 𝐷 of R𝑑 or M𝑑 . A kernel 𝐾(⋅, ⋅) on 𝐷 is PD if for any set of 𝑁 points {𝐱𝑛}𝑁1  in 𝐷 and 𝑁 real 
numbers {𝑎𝑛}𝑁1 , 

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑎𝑖𝑎𝑗𝐾(𝐱𝑖, 𝐱𝑗 ) ≥ 0. A radial function 𝑓 that maps R+ (for R𝑑) or [0, 𝜋] (for M𝑑) to R is PD on 𝐷 if for any 

set of 𝑁 points {𝐱𝑛}𝑁1  in 𝐷 and 𝑁 real numbers {𝑎𝑛}𝑁1 , 
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗𝑓 (𝜌(𝐱𝑖, 𝐱𝑗 )) ≥ 0. (1.1)

For an isotropic function 𝐹 (⋅) on R𝑑 , i.e., 𝐹 (𝐱) only depends on ‖𝐱‖, there is a unique function 𝑓 (⋅) on [0,∞) such that 
𝐹 (𝐱) = 𝑓 (‖𝐱‖) for all 𝐱 ∈ R𝑑 . The function 𝑓 (⋅) is called the radial part of 𝐹 (⋅). For an isotropic kernel 𝐾(⋅, ⋅) on a metric space, 
i.e., 𝐾(𝐱, 𝐲) only depends on 𝜌(𝐱, 𝐲), the radial part of 𝐾(⋅, ⋅) is the unique function 𝑓 (⋅) such that 𝐾(𝐱, 𝐲) = 𝑓 (𝜌(𝐱, 𝐲)) for all 𝐱 and 
𝐲 in the metric space. By Bochner’s theorem, a continuous radial function is PD on R𝑑 if and only if it is the radial part of the 
Fourier transform of a positive finite isotropic Borel measure on R𝑑 , namely, ∫R𝑑 𝑒𝑖𝐤⋅𝐱𝑑𝜇(𝐤) where 𝜇(𝐤) only depends on ‖𝐤‖. Rudin 
(1970) showed that a continuous radial function on [0, 2𝑟] that is PD on the ball B𝑑𝑟 (𝐜) = {𝐱 ∈ R𝑑 , ‖𝐱 − 𝐜‖ ≤ 𝑟} can be extended to 
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a continuous radial function on [0,∞) that is PD on R𝑑 . We will show that a continuous radial function on [0,∞) that is PD on a 
cone or a quadrant is always PD on R𝑑 .

A continuous function 𝑓 (⋅) on [0, 𝜋] has the spectral expansion on M𝑑 ,

𝑓 (𝜃) =
∞
∑

𝑙=0
𝑐𝑙(𝑓 (⋅))𝑝

(𝛼,𝛽)
𝑙 (cos(𝜃)),

where 𝑝(𝛼,𝛽)𝑙 (𝑥) is the normalized Jacobi polynomial 𝑃 (𝛼,𝛽)
𝑙 (𝑥)∕𝑃 (𝛼,𝛽)

𝑙 (1) (see Olver et al.) with 𝛼 = (𝑑 − 2)∕2, 𝛽 = 𝛼 for spheres and 
𝛽 = −1∕2, 0, 1 or 3 for projective spaces; see Gangolli (1967) for details. The spectral coefficient 𝑐𝑙(𝑓 (⋅)) is given by (see Ma and 
Malyarenko (2020))

𝑐𝑙(𝑓 (⋅)) =
dim𝐻𝑙
𝜔𝑑 ∫M𝑑

𝑓 (𝜌(𝐱, 𝐲))𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲))𝑑𝐱,

where

𝜔𝑑 = vol(M𝑑 ) =
(4𝜋)𝛼+1𝛤 (𝛽 + 1)
𝛤 (𝛼 + 𝛽 + 2)

,

𝐻𝑙 is the eigenspace of the Laplace–Beltrami operator 𝛥 on M𝑑 associated with 𝜆𝑙 = 𝑙(𝑙 + 𝛼 + 𝛽 + 1), and

dim𝐻𝑙 =
(2𝑙 + 𝛼 + 𝛽 + 1)𝛤 (𝛽 + 1)𝛤 (𝑙 + 𝛼 + 𝛽 + 1)𝛤 (𝑙 + 𝛼 + 1)

𝛤 (𝛼 + 1)𝛤 (𝛼 + 𝛽 + 2)𝛤 (𝑙 + 1)𝛤 (𝑙 + 𝛽 + 1)
.

The integral is independent of 𝐲 ∈ M𝑑 because the group of isometries of M𝑑 acts transitively on M𝑑 . Koornwinder (1973) proved 
the addition theorem on M𝑑 , 

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲)) =
dim𝐻𝑙
∑

𝑚=1

𝜔𝑑
dim𝐻𝑙

𝑆𝑙𝑚(𝐱)𝑆𝑙𝑚(𝐲), (1.2)

where 𝑆𝑙𝑚(⋅) are the orthonormal eigenfunctions in 𝐻𝑙. Gangolli (1967) showed that a continuous radial function 𝑓 (⋅) is PD on M𝑑

if and only if its spectral coefficients 𝑐𝑙(𝑓 (⋅)) are nonnegative and summable. We will show that a radial function that is PD on a 
subset of M𝑑 is not necessarily PD on M𝑑 .

As an example in M𝑑 , we consider the unit ball embedded in the unit sphere by a distance preserving map. Following (Lu et al., 
2020), we equip the unit ball in R𝑑 with the metric,

𝜌(𝐱, 𝐲) = arccos(𝐱 ⋅ 𝐲 +
√

1 − ‖𝐱‖2
√

1 − ‖𝐲‖2),

which is isomorphic to the upper hemisphere S𝑑+ = {𝐱 ∈ R𝑑+1, ‖𝐱‖ = 1, 𝑥1 ≥ 0} by mapping 𝐱 in the unit ball in R𝑑 to 
(𝐱,

√

1 − ‖𝐱‖2) ∈ S𝑑+. Buhmann and Xu (2024) showed that if a continuous radial function is an even or odd function of cos(⋅)
on [0, 𝜋], it is PD on the embedded ball if and only if it is PD on S𝑑 . We will construct a radial function that is PD on S𝑑+ but not 
PD on S𝑑 .

The rest of the paper is organized as follows. In Section 2, we investigate radial functions that are PD on a domain in R𝑑 or M𝑑 . 
In Section 3, we study radial functions that are PD on the unit ball embedded in S𝑑 . We present the proofs in Section 4 and draw 
conclusions in Section 5.

2. Radial functions that are PD on a domain in R𝒅 or M𝒅

In this paper, a domain stands for a nonempty open set. The following theorem shows that for certain unbounded domain 𝐷 ⊂ R𝑑 , 
such as a cone or a union of quadrants, a radial function that is PD on 𝐷 must be PD on R𝑑 .

Theorem 2.1.  For a given domain 𝐷 ⊂ R𝑑 , if for any 𝑟 > 0, there exists 𝐜 ∈ R𝑑 such that the ball B𝑑𝑟 (𝐜) ⊂ 𝐷, a radial function that is 
PD on 𝐷 must be PD on R𝑑 .

The following theorem shows that if a continuous radial function 𝑓 (⋅) on [0, 𝜋] is PD on a domain 𝐷 ⊂ M𝑑 and has finitely 
many nonzero spectral coefficients, it must be PD on M𝑑 . In contrast, the theorem does not hold if 𝐷 is an arbitrary subset of M𝑑 , 
e.g., 𝐷 = S𝑑−1 ⊂ S𝑑 and 𝑓 (𝜃) = 𝑝((𝑑−3)∕2,(𝑑−3)∕2)𝑙 (cos 𝜃) as shown in Lu et al. (2020). The theorem relies on the following lemma.

Lemma 2.2.  Let 𝐷 be a domain in M𝑑 . The eigenfunctions of the Laplace–Beltrami operator 𝛥 on M𝑑 restricted to 𝐷 are linearly 
independent.

Theorem 2.3.  Let 𝐷 be a domain in M𝑑 . If a continuous radial function 𝑓 (⋅) on [0, 𝜋] is PD on 𝐷 and has finitely many nonzero spectral 
coefficients, it is PD on M𝑑 .

The next theorem shows that for most domains 𝐷 ⊂M𝑑 , a continuous radial function on [0, 𝜋] that is PD on 𝐷 is not necessarily 
PD on M𝑑 . Denote the closure of 𝐷 by �̄�.
2 
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Lemma 2.4.  Let 𝐷 be a domain in M𝑑 . If �̄� = M𝑑 , for any set of 𝑁 points {𝐱𝑛}𝑁1  in M𝑑 , there is an isometry 𝜙(⋅) on M𝑑 such that 
{𝜙(𝐱𝑛)}𝑁1 ⊂ 𝐷.

Lemma 2.5.  For real numbers 𝑎, {𝑏𝑖}∞1 , and {𝑡𝑖}∞1 ,
(

𝑎 +
∞
∑

𝑖=1
𝑏𝑖𝑡𝑖

)2

+
∞
∑

𝑖=1
|𝑏𝑖|𝑡

2
𝑖 ≥ 𝑎2

(

1 +
∞
∑

𝑖=1
|𝑏𝑖|

)−1

,

provided that all series in the equation converge.

Theorem 2.6.  Let 𝐷 be a domain in M𝑑 . If �̄� = M𝑑 , any continuous radial function on [0, 𝜋] that is PD on 𝐷 must be PD on M𝑑 . If 
�̄� ≠ M𝑑 , for any 𝐿 ∈ N0, there exists a continuous radial function on [0, 𝜋] that is PD on 𝐷 but has negative spectral coefficients 𝑐𝑙 for 
0 ≤ 𝑙 ≤ 𝐿.

3. PD functions on the embedded ball

By Theorem  2.6, a continuous radial function that is PD on the embedded ball S𝑑+ is not necessarily PD on S𝑑 . Devinatz (1959) 
constructed radial functions that are PD on S1+ but not PD on S1, e.g., 𝑓 (𝜃) = cos(𝑘𝜃) with a non-integer 𝑘. For any 𝑑 ∈ N, we will 
construct explicitly radial functions that are PD on S𝑑+ but not PD on S𝑑 . The next theorem, which was proved in Buhmann and Xu 
(2024), is included for completeness.

Theorem 3.1.  If a continuous radial function 𝑓 (⋅) on [0, 𝜋] is PD on S𝑑+, and the indices of its nonzero spectral coefficients are all odd or 
all even, 𝑓 (⋅) is PD on S𝑑 .

It should be emphasized that 𝑓 (⋅) being PD on S𝑑+ does not imply that the even and odd parts of 𝑓 (⋅), namely, (𝑓 (⋅) ± 𝑓 (𝜋 − ⋅))∕2, 
are PD on S𝑑+, so 𝑓 (⋅) is not necessarily PD on S𝑑 . By Theorem  2.3 and Theorem  3.1, for a continuous radial function on [0, 𝜋] that 
is PD on S𝑑+ but not PD on S𝑑 , the set of the indices of its nonzero spectral coefficients must be infinite and contains both even and 
odd numbers. To construct such a function explicitly, we start with two lemmas about ultraspherical polynomials 𝑝(𝛼)𝑙 (⋅) ≡ 𝑝(𝛼,𝛼)𝑙 (⋅).

Lemma 3.2.  For 𝑘 ∈ N0, 𝑛 ∈ N0, 𝑑 ∈ N, and 𝛼 = (𝑑 − 2)∕2, 

∫

1

0
𝑥2𝑘𝑝(𝛼)2𝑛+1(𝑥)(1 − 𝑥

2)𝛼𝑑𝑥 =
(−1)𝑛

2

𝛤 (𝛼 + 1)𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1
2 )

𝛤 (−𝑘 + 1
2 )𝛤 (𝑛 + 𝑘 + 𝛼 + 2)

, (3.1)

∫

1

0
𝑥2𝑘+1𝑝(𝛼)2𝑛 (𝑥)(1 − 𝑥

2)𝛼𝑑𝑥 =
(−1)𝑛

2

𝛤 (𝛼 + 1)𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 − 1
2 )

𝛤 (−𝑘 − 1
2 )𝛤 (𝑛 + 𝑘 + 𝛼 + 2)

. (3.2)

Lemma 3.3.  For 𝑑 ∈ N, any integer 𝑘 ≥ 𝛼∕2 = (𝑑 − 2)∕4 and 𝑥 ∈ [0, 1], 

𝑥2𝑘+1 =
∞
∑

𝑛=0
𝑐𝑛𝑝

(𝛼)
2𝑛 (𝑥), (3.3)

where 

𝑐𝑛 =
(−1)𝑛

22𝛼+1
𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 − 1

2 )

𝛤 (−𝑘 − 1
2 )𝛤 (𝑛 + 𝑘 + 𝛼 + 2)

(4𝑛 + 2𝛼 + 1)𝛤 (2𝑛 + 2𝛼 + 1)
𝛤 (𝛼 + 1)𝛤 (2𝑛 + 1)

. (3.4)

The convergence is absolute and uniform.

The following theorem gives a family of continuous radial functions that are PD on S𝑑+ but not PD on S𝑑 . They agree with the 
requirements imposed by Theorem  2.3 and Theorem  3.1.

Theorem 3.4.  For 𝑑 ∈ N and any integer 𝑘 ≥ 𝛼∕2 = (𝑑 − 2)∕4, the isotropic kernel 

𝐶(𝐱, 𝐲) = −𝜖 + (𝐱 ⋅ 𝐲)2𝑘+1 +
∞
∑

𝑛=1
|𝑐𝑛|𝑝

(𝛼)
2𝑛 (𝐱 ⋅ 𝐲), (3.5)

where 𝑐𝑛 is given in  Eq.  (3.4) and

𝜖 =
𝑐20

1 +
∑∞
𝑛=1 |𝑐𝑛|

,

is PD on S𝑑  but not on S𝑑 .
+

3 
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4. Proofs

Theorem  2.1

Proof.  A finite set of points {𝐱𝑛}𝑁1  in R𝑑 is in the ball B𝑑𝑟 (𝟎) with 𝑟 = max1≤𝑛≤𝑁 ‖𝐱𝑛‖. Since there exists 𝐜 ∈ R𝑑 such that B𝑑𝑟 (𝐜) ⊂ 𝐷, 
the set {𝐱𝑛 + 𝐜}𝑁1  is in 𝐷. For a radial function that is PD on 𝐷, since 𝜌(𝐱𝑖, 𝐱𝑗 ) = 𝜌(𝐱𝑖 + 𝐜, 𝐱𝑗 + 𝐜),  Eq.  (1.1) holds for any set of 𝑁 real 
numbers {𝑎𝑛}𝑁1 . □

Lemma  2.2

Proof.  Write 𝐲 ∈ S𝑑 in the local coordinates 𝐲 = (
√

1 − ‖𝐱‖2, 𝐱) where 𝐱 ∈ R𝑑 with ‖𝐱‖ < 1. From the geodesic distance 
𝜌(𝐲1, 𝐲2) = arccos(𝐲1 ⋅ 𝐲2), we obtain the Riemannian metric,

𝑑𝑠2 = ‖𝑑𝐱‖2 + (𝐱 ⋅ 𝑑𝐱)2

1 − ‖𝐱‖2
.

On projective spaces P𝑑 (R), P𝑑 (C), P𝑑 (H), P16(O), write 𝐲 = (1, 𝐳) in the local affine coordinates where 𝐳 is a vector in R𝑑 , C𝑑∕2, 
H𝑑∕4, O2, respectively. With the geodesic length normalized as 𝜋, the geodesic distance is given by the Fubini–Study metric (Fubini, 
1904), 𝜌(𝐲1, 𝐲2) = arccos(|𝐲1 ⋅ 𝐲2|∕‖𝐲1‖∕‖𝐲2‖), where 𝐲 is the conjugate of 𝐲, and the metric is

𝑑𝑠2 = 𝑑𝐳 ⋅ 𝑑𝐳
1 + 𝐳 ⋅ �̄�

−
(𝑑𝐳 ⋅ 𝐳)(𝐳 ⋅ 𝑑𝐳)
(1 + 𝐳 ⋅ �̄�)2

.

Although the Fubini–Study metric was originally for complex projective spaces, it also works for quaternionic and octonionic 
projective spaces. Writing the metric as 𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 in the Einstein notation, the Laplace–Beltrami operator 𝛥 is given by the 
well known formula in local coordinates,

𝛥𝑓 = 1
√

|𝑔|
𝜕𝑖(

√

|𝑔|𝑔𝑖𝑗𝜕𝑗𝑓 ),

where |𝑔| = | det(𝑔𝑖𝑗 )| and 𝑔𝑖𝑗 are the components of the inverse matrix of 𝑔𝑖𝑗 . Since the metric 𝑔 is analytic in local coordinates, 𝛥 is 
an elliptic operator with analytic coefficients. By the classical result of Morrey (1958), the eigenfunctions of 𝛥 are analytic in local 
coordinates.

Any linear combination of eigenfunctions of 𝛥, denoted by 𝑓 (⋅), is analytic in the local coordinates. By the identity theorem 
in R𝑑 (see Mityagin (2020)), since 𝑓 (⋅) is analytic, the zeros of 𝑓 (⋅), {𝐱 ∈ R𝑑 |𝑓 (𝐱) = 0}, have measure zero unless 𝑓 (⋅) is zero 
everywhere. Since 𝐷 ⊂M𝑑 contains a nonempty open set, 𝐷 has positive measure. If 𝑓 (⋅) vanishes on 𝐷, 𝑓 (⋅) ≡ 0 on M𝑑 . However, 
since the eigenfunctions of 𝛥 are orthogonal on M𝑑 , the coefficients of the linear combination for 𝑓 (⋅) must be all zero. Therefore, 
the eigenfunctions of 𝛥 restricted to 𝐷 are linearly independent. □

Theorem  2.3

Proof.  For the given radial function 𝑓 (⋅), there exists 𝐿 ∈ N such that for 𝐱, 𝐲 ∈ M𝑑 ,

𝑓 (𝜌(𝐱, 𝐲)) =
𝐿
∑

𝑙=0
𝑐𝑙𝑝

(𝛼,𝛽)
𝑙 (cos 𝜌(𝐱, 𝐲)).

Let 𝐯(𝐱) = (𝑆𝑙𝑚(𝐱)) be a vector in R𝐽  where 0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ dim𝐻𝑙, and 𝐽 =
∑𝐿
𝑙=0 dim𝐻𝑙. By Lemma  2.2, the functions 

{𝑆𝑙𝑚(⋅)|0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ dim𝐻𝑙} restricted to 𝐷 are linearly independent. In other words, {𝐯(𝐱)|𝐱 ∈ 𝐷} spans R𝐽 . Therefore, there 
exist 𝐽 points in 𝐷, denoted by {𝐱𝑗}𝐽1 , such that (𝐯(𝐱𝑗 ))1≤𝑗≤𝐽  forms a nonsingular 𝐽 × 𝐽 matrix. As a result, for each 0 ≤ 𝑘 ≤ 𝐿, there 
exist 𝐽 real numbers, denoted by {𝑎𝑘𝑗 }𝐽1 , such that

𝐽
∑

𝑗=1
𝑆𝑙𝑚(𝐱𝑗 )𝑎𝑘𝑗 = 𝛿𝑙𝑘, 0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ dim𝐻𝑙 .

Since 𝑓 (⋅) is PD on 𝐷, by the addition theorem on M𝑑 given in  Eq.  (1.2),

0 ≤
𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
𝑎𝑘𝑖 𝑎

𝑘
𝑗 𝑓 (𝜌(𝐱𝑖, 𝐱𝑗 )) =

𝑁
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1

𝑐𝑙𝜔𝑑
dim𝐻𝑙

𝛿2𝑙𝑘 = 𝑐𝑘𝜔𝑑 ,

which implies that 𝑐𝑘 ≥ 0 for 0 ≤ 𝑘 ≤ 𝐿, hence 𝑓 (⋅) is PD on M𝑑 by Gangolli (1967). □

Remark. The invertibility of the 𝐽 × 𝐽 matrix in the proof above fails if 𝑓 (⋅) has infinitely many nonzero spectral coefficients. Let 
𝐯(𝐱) = (𝑆𝑙𝑚(𝐱)) with 𝑙 ∈ N0, 1 ≤ 𝑚 ≤ dim𝐻𝑙 be a vector of infinite length. By Lemma  2.2, the functions {𝑆𝑙𝑚(⋅)|𝑙 ∈ N0, 1 ≤ 𝑚 ≤ dim𝐻𝑙}
restricted to 𝐷 are linearly independent. Therefore, there exists an infinite sequence of points in 𝐷, denoted by {𝐱𝑗}, such that the 
infinite set {𝐯(𝐱𝑗 )} is linearly independent. However, it does not imply that {𝐯(𝐱𝑗 )} spans the vector space of infinite sequences. For 
example, for 𝑗 ∈ N, let 𝐯(𝐱1)𝑗 = 1 and 𝐯(𝐱𝑖)𝑗 = 𝛿𝑖𝑗 for 𝑖 ≥ 2. The set {𝐯(𝐱𝑗 )} is linearly independent, but the vector 𝑒1 = (1, 0, 0,…) is 
not in the span of {𝐯(𝐱 )}.
𝑗
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Lemma  2.4

Proof.  We prove by induction. Since 𝐷 is nonempty, ∃𝐱 ∈ 𝐷. For 𝑁 = 1, since the isometry group of M𝑑 acts on M𝑑 transitively, 
there exists an isometry that maps 𝐱1 to 𝐱 ∈ 𝐷. Assume that the conclusion holds for 𝑁 points. For a set of 𝑁 + 1 points {𝐱𝑛}𝑁+1

1
in M𝑑 , by the induction assumption, there is an isometry 𝜙(⋅) on M𝑑 such that {𝜙(𝐱𝑛)}𝑁1 ⊂ 𝐷. If 𝜙(𝐱𝑁+1) ∈ 𝐷, {𝜙(𝐱𝑛)}𝑁+1

1 ⊂ 𝐷. 
Assume that 𝜙(𝐱𝑁+1) ∉ 𝐷. Since 𝐷 is open, ∃𝜖 > 0 such that 𝐵𝜖(𝜙(𝐱𝑛)) ⊂ 𝐷 for 1 ≤ 𝑛 ≤ 𝑁 , where 𝐵𝜖(𝐜) = {𝐱 ∈ M𝑑 , 𝜌(𝐱, 𝐜) ≤ 𝜖}. Since 
�̄� = M𝑑 , ∃𝐱 ∈ 𝐵𝜖(𝜙(𝐱𝑁+1)) ∩𝐷. The connected component of the isometry group of M𝑑 is a simple Lie group, so ∀𝜖 > 0 there exists 
an isometry 𝜓(⋅) on M𝑑 for which 𝜌(𝜓(𝐱), 𝐱) < 𝜖 for all 𝐱 ∈ M𝑑 . In particular, there exists an isometry 𝜓(⋅) such that 𝜓(𝜙(𝐱𝑁+1)) = 𝐱
and 𝜌(𝜓(𝜙(𝐱𝑛)), 𝜙(𝐱𝑛)) < 𝜖 for 1 ≤ 𝑛 ≤ 𝑁 . As a result, {𝜓(𝜙(𝐱𝑛))}𝑁+1

1 ⊂ 𝐷. □

Lemma  2.5

Proof.  The left hand side is a convex function whose minimum is attained at the unique critical point where 𝑡𝑖 = −𝑎 ⋅ sign(𝑏𝑖)∕(1 +
∑∞
𝑖=1 |𝑏𝑖|). □

Theorem  2.6

Proof.  Assume that �̄� = M𝑑 . For any set of 𝑁 points {𝐱𝑛}𝑁1  in M𝑑 and 𝑁 real numbers {𝑎𝑛}𝑁1 , by Lemma  2.4 there exists an 
isometry 𝜙(⋅) on M𝑑 such that {𝜙(𝐱𝑛)}𝑁1 ⊂ 𝐷. For a continuous radial function 𝑓 (⋅) on [0, 𝜋] that is PD on 𝐷, using  Eq.  (1.1),

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗𝑓 (𝜌(𝐱𝑖, 𝐱𝑗 )) =

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗𝑓 (𝜌(𝜙(𝐱𝑖), 𝜙(𝐱𝑗 ))) ≥ 0,

therefore 𝑓 (⋅) is PD on M𝑑 .
Next, assume that �̄� ≠ M𝑑 , i.e., M𝑑 −𝐷 has a nonempty open subset. Let 𝜂(⋅) be a bump function on M𝑑 with support in M𝑑 −𝐷, 

i.e., a nonnegative smooth function on M𝑑 that is zero in 𝐷 and positive in a nonempty open subset of M𝑑 −𝐷. Define a kernel on 
M𝑑 ,

𝑔(𝐱, 𝐲) =
𝐿
∑

𝑙=0

dim𝐻𝑙
𝜔𝑑

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲))𝜂(𝐱)𝜂(𝐲).

Since 𝜂(⋅) vanishes on 𝐷, 𝑔(𝐱, 𝐲) = 0 on 𝐷. By the addition theorem on M𝑑 given in  Eq.  (1.2),

𝑔(𝐱, 𝐲) =
𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1
𝜙𝑙𝑚(𝐱)𝜙𝑙𝑚(𝐲),

where

𝜙𝑙𝑚(𝐱) = 𝑆𝑙𝑚(𝐱)𝜂(𝐱).

Expand 𝜙𝑙𝑚(⋅) in spherical harmonics on M𝑑 ,

𝜙𝑙𝑚(𝐱) =
∞
∑

𝑙′=0

dim𝐻𝑙′
∑

𝑚′=1
𝑎𝑙

′𝑚′

𝑙𝑚 𝑆𝑙′𝑚′ (𝐱),

where

𝑎𝑙
′𝑚′

𝑙𝑚 = ∫M𝑑
𝜙𝑙𝑚(𝐱)𝑆𝑙′𝑚′ (𝐱)𝑑𝐱 = ∫M𝑑

𝑆𝑙𝑚(𝐱)𝜂(𝐱)𝑆𝑙′𝑚′ (𝐱)𝑑𝐱.

Since 𝜙𝑙𝑚(⋅) is a smooth function on M𝑑 , for any 𝑛 ∈ N,

∫M𝑑
𝜙𝑙𝑚(𝐱)𝑆𝑙′𝑚′ (𝐱)𝑑𝐱 = 1

𝜆𝑛𝑙′ ∫M𝑑
𝜙𝑙𝑚(𝐱)(−𝛥)𝑛𝑆𝑙′𝑚′ (𝐱)𝑑𝐱 = 1

𝜆𝑛𝑙′ ∫M𝑑
(−𝛥)𝑛𝜙𝑙𝑚(𝐱)𝑆𝑙′𝑚′ (𝐱)𝑑𝐱.

By the Cauchy–Schwarz inequality,

(𝑎𝑙
′𝑚′

𝑙𝑚 )2 ≤ 1
𝜆2𝑛𝑙′

∫M𝑑
((−𝛥)𝑛𝜙𝑙𝑚(𝐱))2𝑑𝐱 = 1

(𝑙′(𝑙′ + 𝛼 + 𝛽 + 1))2𝑛 ∫M𝑑
((−𝛥)𝑛𝜙𝑙𝑚(𝐱))2𝑑𝐱.

For 0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝐻𝑙, and 𝑛 ∈ N, |𝑎𝑙′𝑚′

𝑙𝑚 | ≤ 𝐶𝑛(𝑙′)−𝑛, where

𝐶𝑛 =

√

max
0≤𝑙≤𝐿,1≤𝑚≤𝐻𝑙 ∫M𝑑

((−𝛥)𝑛𝜙𝑙𝑚(𝐱))2𝑑𝐱.

Setting 𝑛 = 𝑑 + 1 and 𝐶 = 𝐶𝑑+1, we obtain 

|𝑎𝑙
′𝑚′

| ≤ 𝐶(𝑙′)−𝑑−1. (4.1)
𝑙𝑚

5 
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By  Eq.  (1.2), |𝑆𝑙𝑚(𝐱)| ≤
√

dim𝐻𝑙∕𝜔𝑑 = 𝑂(𝑙(𝑑−1)∕2), so the series for 𝜙𝑙𝑚(⋅) converges uniformly. Let 𝐽 =
∑𝐿
𝑙=0 dim𝐻𝑙, 𝐴 be a 𝐽 × 𝐽

matrix with entries 𝑎𝑙′𝑚′

𝑙𝑚  for 0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ dim𝐻𝑙, 0 ≤ 𝑙′ ≤ 𝐿, and 1 ≤ 𝑚′ ≤ dim𝐻𝑙′ , and

ℎ(𝐱, 𝐲) = 𝐽𝐶
∞
∑

𝑙=𝐿+1
𝑙−𝑑−1

dim𝐻𝑙
𝜔𝑑

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲)),

which converges uniformly to a continuous function because dim𝐻𝑙 = 𝑂(𝑙𝑑−1). For any set of 𝑁 points {𝐱𝑗}𝑁1  on S𝑑 and 𝑁 real 
numbers {𝑎𝑗}𝑁1 , 

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗𝑔(𝐱𝑖, 𝐱𝑗 ) =

𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1

( 𝑁
∑

𝑗=1
𝑎𝑗𝜙𝑙𝑚(𝐱𝑗 )

)2

=
𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1

⎛

⎜

⎜

⎝

∞
∑

𝑙′=0

dim𝐻𝑙′
∑

𝑚′=1
𝑎𝑙

′𝑚′

𝑙𝑚 𝑡𝑙′𝑚′

⎞

⎟

⎟

⎠

2

, (4.2)

where 𝑡𝑙𝑚 =
∑𝑁
𝑗=1 𝑎𝑗𝑆𝑙𝑚(𝐱𝑗 ). By the addition theorem in  Eq.  (1.2) and  Eq.  (4.1), 

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗ℎ(𝐱𝑖, 𝐱𝑗 ) = 𝐽

∞
∑

𝑙=𝐿+1

dim𝐻𝑙
∑

𝑚=1
𝐶𝑙−𝑑−1𝑡2𝑙𝑚 ≥

𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1

∞
∑

𝑙′=𝐿+1

dim𝐻𝑙′
∑

𝑚′=1
|𝑎𝑙

′𝑚′

𝑙𝑚 |𝑡2𝑙′𝑚′ . (4.3)

By Lemma  2.5,
⎛

⎜

⎜

⎝

∞
∑

𝑙′=0

dim𝐻𝑙′
∑

𝑚′=1
𝑎𝑙

′𝑚′

𝑙𝑚 𝑡𝑙′𝑚′

⎞

⎟

⎟

⎠

2

+
∞
∑

𝑙′=𝐿+1

dim𝐻𝑙′
∑

𝑚′=1
|𝑎𝑙

′𝑚′

𝑙𝑚 |𝑡2𝑙′𝑚′ ≥ 𝐾−1
𝑙𝑚

⎛

⎜

⎜

⎝

𝐿
∑

𝑙′=0

dim𝐻𝑙′
∑

𝑚′=1
𝑎𝑙

′𝑚′

𝑙𝑚 𝑡𝑙′𝑚′

⎞

⎟

⎟

⎠

2

,

where

𝐾𝑙𝑚 = 1 +
∞
∑

𝑙′=𝐿+1

dim𝐻𝑙′
∑

𝑚′=1
|𝑎𝑙

′𝑚′

𝑙𝑚 | ≤ 𝐾 ≡ 1 + 𝐶
∞
∑

𝑙′=𝐿+1
dim𝐻𝑙′ (𝑙′)−𝑑−1.

Since dim𝐻𝑙 = 𝑂(𝑙𝑑−1), 𝐾 is finite. Adding Eqs. (4.2) and (4.3), we have
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗 (𝑔(𝐱𝑖, 𝐱𝑗 ) + ℎ(𝐱𝑖, 𝐱𝑗 )) ≥

1
𝐾

𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1

⎛

⎜

⎜

⎝

𝐿
∑

𝑙′=0

dim𝐻𝑙′
∑

𝑚′=1
𝑎𝑙

′𝑚′

𝑙𝑚 𝑡𝑙′𝑚′

⎞

⎟

⎟

⎠

2

=
‖𝐴𝑡‖2

𝐾
,

where 𝑡 = (𝑡𝑙𝑚)0≤𝑙≤𝐿,1≤𝑚≤dim𝐻𝑙
 is a vector in R𝐽  and 𝐴 is a 𝐽 × 𝐽 matrix with entries 𝑎𝑙′𝑚′

𝑙𝑚  for 0 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ dim𝐻𝑙, 0 ≤ 𝑙′ ≤ 𝐿, 
and 1 ≤ 𝑚′ ≤ dim𝐻𝑙′ . By Lemma  2.2, for a nonzero vector 𝑡 ∈ R𝐽 , ∑𝐿

𝑙=0
∑dim𝐻𝑙
𝑚=1 𝑆𝑙𝑚(𝐱)𝑡𝑙𝑚 does not vanish on a nonempty open set in 

M𝑑 , so

𝑡𝑇𝐴𝑡 = ∫M𝑑

( 𝐿
∑

𝑙=0

dim𝐻𝑙
∑

𝑚=1
𝑆𝑙𝑚(𝐱)𝑡𝑙𝑚

)2

𝜂(𝐱)𝑑𝐱 > 0,

which proves that 𝐴 is a positive definite matrix. Therefore, there exists 𝜆 > 0 such that ‖𝐴𝑡‖ ≥ 𝜆‖𝑡‖ for any 𝑡 ∈ R𝐽 . As a result,
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗 (𝑔(𝐱𝑖, 𝐱𝑗 ) + ℎ(𝐱𝑖, 𝐱𝑗 )) ≥

𝜆2

𝐾

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗

𝐿
∑

𝑙=0

dim𝐻𝑙
𝜔𝑑

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱𝑖, 𝐱𝑗 )).

In other words,

𝑔(𝐱, 𝐲) + ℎ(𝐱, 𝐲) − 𝜆2

𝐾

𝐿
∑

𝑙=0

dim𝐻𝑙
𝜔𝑑

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲)),

is PD on M𝑑 . Since 𝑔(𝐱, 𝐲) = 0 on 𝐷, the isotropic kernel

𝑓 (𝐱, 𝐲) ≡ ℎ(𝐱, 𝐲) − 𝜆2

𝐾

𝐿
∑

𝑙=0

dim𝐻𝑙
𝜔𝑑

𝑝(𝛼,𝛽)𝑙 (cos 𝜌(𝐱, 𝐲))

is PD on 𝐷. By the definition of ℎ(⋅, ⋅), the spectral coefficients 𝑐𝑙 of the radial part of 𝑓 (⋅, ⋅) are positive for 𝑙 > 𝐿 and negative for 
0 ≤ 𝑙 ≤ 𝐿. □

Theorem  3.1

Proof.  Define 𝑔 ∶ [−1, 1] → R by 𝑔(𝑧) = 𝑓 (arccos(𝑧)). Since the ultraspherical polynomial 𝑝(𝛼)𝑙 (⋅) has the same parity as 𝑙, the given 
condition is equivalent to that 𝑔(⋅) is an odd or even function. Assume 𝑔(⋅) is an odd function. For any set of points {𝐱𝑗}𝐽1  in S𝑑 ⊂ R𝑑+1
and numbers {𝑎𝑗}𝐽1 , define 𝐲𝑗 = −𝐱𝑗 and 𝑏𝑗 = −𝑎𝑗 if (𝐱𝑗 )1 < 0, and 𝐲𝑗 = 𝐱𝑗 and 𝑏𝑗 = 𝑎𝑗 otherwise. Then {𝐲𝑗}𝐽1  are in S𝑑+, and since 
𝑓 (⋅) is PD on S𝑑+,

𝐽
∑

𝐽
∑

𝑎𝑖𝑎𝑗𝑔(𝐱𝑖 ⋅ 𝐱𝑗 ) =
𝐽
∑

𝐽
∑

𝑏𝑖𝑏𝑗𝑔(𝐲𝑖 ⋅ 𝐲𝑗 ) ≥ 0.

𝑖=1 𝑗=1 𝑖=1 𝑗=1

6 



T. Lu Statistics and Probability Letters 226 (2025) 110520 
Consequently, 𝑓 (⋅) is PD on S𝑑 . If 𝑔(⋅) is an even function, the proof holds if we set 𝑏𝑗 = 𝑎𝑗 for all 𝑗. □

Lemma  3.2

Proof.  By the recurrence relation 18.9.1 in Olver et al., 

(2𝑙 + 2𝛼 + 1)𝑥𝑝(𝛼)𝑙 (𝑥) = (𝑙 + 2𝛼 + 1)𝑝(𝛼)𝑙+1(𝑥) + 𝑙𝑝
(𝛼)
𝑙−1(𝑥), (4.4)

we have

𝑝(𝛼)2𝑛 (0) = (−1)𝑛
𝛤 (𝛼 + 1)𝛤 (𝑛 + 1

2 )

𝛤 ( 12 )𝛤 (𝑛 + 𝛼 + 1)
.

Combined with the derivative formula 18.9.20 in Olver et al., we get

∫

1

0
𝑝(𝛼)2𝑛+1(𝑥)(1 − 𝑥

2)𝛼𝑑𝑥 = −
(1 − 𝑥2)𝛼+1𝑝(𝛼+1)2𝑛 (𝑥)

2(𝛼 + 1)

|

|

|

|

|

|

1

0

=
(−1)𝑛

2

𝛤 (𝛼 + 1)𝛤 (𝑛 + 1
2 )

𝛤 ( 12 )𝛤 (𝑛 + 𝛼 + 2)
,

and

∫

1

0
𝑥𝑝(𝛼)2𝑛 (𝑥)(1 − 𝑥

2)𝛼𝑑𝑥 = ∫

1

0

(2𝑛 + 2𝛼 + 1)𝑝(𝛼)2𝑛+1(𝑥) + 2𝑛𝑝(𝛼)2𝑛−1(𝑥)
4𝑛 + 2𝛼 + 1

(1 − 𝑥2)𝛼𝑑𝑥

=
(−1)𝑛

2

𝛤 (𝛼 + 1)𝛤 (𝑛 − 1
2 )

𝛤 (− 1
2 )𝛤 (𝑛 + 𝛼 + 2)

.

Therefore, Eqs. (3.1) and (3.2) hold for 𝑘 = 0. By  Eq.  (4.4),

𝑥2𝑘𝑝(𝛼)2𝑛+1(𝑥) =
2𝑛 + 2𝛼 + 2
4𝑛 + 2𝛼 + 3

𝑥2𝑘−1𝑝(𝛼)2𝑛+2(𝑥) +
2𝑛 + 1

4𝑛 + 2𝛼 + 3
𝑥2𝑘−1𝑝(𝛼)2𝑛 (𝑥),

𝑥2𝑘+1𝑝(𝛼)2𝑛 (𝑥) =
2𝑛 + 2𝛼 + 1
4𝑛 + 2𝛼 + 1

𝑥2𝑘𝑝(𝛼)2𝑛+1(𝑥) +
2𝑛

4𝑛 + 2𝛼 + 1
𝑥2𝑘𝑝(𝛼)2𝑛−1(𝑥).

Eqs. (3.1) and (3.2) can be proven by induction on 𝑘. □

Lemma  3.3

Proof.  Since the Jacobi polynomials of even order, 𝑝(𝛼)2𝑛  with 𝑛 ∈ N0, span the space of even 𝐿2 functions on [−1, 1], they form an 
orthogonal basis of the space of 𝐿2 functions on [0, 1]. By 18.3 in Olver et al., 

∫

1

0
𝑝(𝛼)2𝑛 (𝑥)𝑝

(𝛼)
2𝑛′ (𝑥)(1 − 𝑥

2)𝛼𝑑𝑥 = 22𝛼
4𝑛 + 2𝛼 + 1

𝛤 2(𝛼 + 1)𝛤 (2𝑛 + 1)
𝛤 (2𝑛 + 2𝛼 + 1)

𝛿𝑛𝑛′ . (4.5)

For 𝑘 ∈ N0 and 𝑥 ∈ [0, 1], we have the expansion

𝑥2𝑘+1 =
∞
∑

𝑛=0
𝑐𝑛𝑝

(𝛼)
2𝑛 (𝑥),

which converges in 𝐿2 norm, and by  Eq.  (3.2) and  Eq.  (4.5),

𝑐𝑛 =
∫ 1
0 𝑥

2𝑘+1𝑝(𝛼)2𝑛 (𝑥)(1 − 𝑥
2)𝛼𝑑𝑥

∫ 1
0 (𝑝

(𝛼)
2𝑛 (𝑥))

2(1 − 𝑥2)𝛼𝑑𝑥

=
(−1)𝑛

22𝛼+1
𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 − 1

2 )

𝛤 (−𝑘 − 1
2 )𝛤 (𝑛 + 𝑘 + 𝛼 + 2)

(4𝑛 + 2𝛼 + 1)𝛤 (2𝑛 + 2𝛼 + 1)
𝛤 (𝛼 + 1)𝛤 (2𝑛 + 1)

.

Since |𝑐𝑛| ∼ 𝑛𝛼−2𝑘−
3
2 , ∑∞

𝑛=1 |𝑐𝑛| < ∞ for 𝑘 ≥ 𝛼∕2. Since 𝑝(𝛼)2𝑛 (⋅) is PD on S𝑑 , |𝑝(𝛼)2𝑛 (𝑥)| ≤ 𝑝(𝛼)2𝑛 (0) = 1. Therefore, the series in  Eq.  (3.3) 
converges absolutely and uniformly. □

Theorem  3.4

Proof.  By Proposition 1 in Lu et al. (2023), for any 𝑙 ∈ N0,

𝑝(𝛼)𝑙 (𝐱 ⋅ 𝐲) ≥ 𝑝(𝛼)𝑙 (𝑥1)𝑝
(𝛼)
𝑙 (𝑦1).

Here 𝐴(⋅, ⋅) ≥ 𝐵(⋅, ⋅) means that 𝐴(⋅, ⋅) − 𝐵(⋅, ⋅) is a PD kernel on S𝑑 . In particular, 𝐱 ⋅ 𝐲 ≥ 𝑥1𝑦1. Therefore,

𝐶(𝐱, 𝐲) ≥ 𝐷(𝐱, 𝐲) ≡ −𝜖 + (𝑥1𝑦1)2𝑘+1 +
∞
∑

|𝑐𝑛|𝑝
(𝛼)
2𝑛 (𝑥1)𝑝

(𝛼)
2𝑛 (𝑦1).
𝑛=1

7 
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Notice that 𝐷(⋅, ⋅) is not isotropic. For 𝐱 and 𝐲 in S𝑑+, 𝑥1 ≥ 0 and 𝑦1 ≥ 0. By Lemma  3.3, on S𝑑+,

𝐷(𝐱, 𝐲) = −𝜖 +
∞
∑

𝑛=0
𝑐𝑛𝑝

(𝛼)
2𝑛 (𝑥1)

∞
∑

𝑛=0
𝑐𝑛𝑝

(𝛼)
2𝑛 (𝑦1) +

∞
∑

𝑛=1
|𝑐𝑛|𝑝

(𝛼)
2𝑛 (𝑥1)𝑝

(𝛼)
2𝑛 (𝑦1),

with summable ∑∞
𝑛=1 |𝑐𝑛| for 𝑘 ≥ 𝛼∕2. For any 𝑁 points {𝐱𝑖}𝑁1  in S𝑑+, 𝑁 real numbers {𝑎𝑖}𝑁1 , and 𝑛 ∈ N0, denote

𝑡𝑛 =
𝑁
∑

𝑖=1
𝑝(𝛼)2𝑛 ((𝐱𝑖)1)𝑎𝑖.

By Lemma  2.5,
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑎𝑗𝐷(𝐱𝑖, 𝐱𝑗 ) = −𝜖𝑡20 +

( ∞
∑

𝑛=0
𝑐𝑛𝑡𝑛

)2

+
∞
∑

𝑛=1
|𝑐𝑛|𝑡

2
𝑛 ≥ −𝜖𝑡20 +

𝑐20 𝑡
2
0

1 +
∑∞
𝑛=1 |𝑐𝑛|

= 0.

Therefore, 𝐷(⋅, ⋅) and 𝐶(⋅, ⋅) are PD on S𝑑+. On the other hand, by  Eq.  (3.4),

𝑐0 =
𝛤 (𝑘 + 1)𝛤 (2𝛼 + 2)

22𝛼+1𝛤 (𝑘 + 𝛼 + 2)𝛤 (𝛼 + 1)
≠ 0.

So 𝜖 > 0. By Schoenberg (1942), an isotropic kernel on S𝑑 is PD if and only if the spectral coefficients of its radial part are nonnegative 
and summable. Therefore, 𝐶(⋅, ⋅) is not PD on S𝑑 . □

5. Conclusion

We studied continuous radial functions that are positive definite (PD) on a subset of the Euclidean spaces R𝑑 or compact two-point 
homogeneous spaces M𝑑 . A radial function that is PD on 𝐷 ⊂ R𝑑 which contains balls of any size is PD on R𝑑 . A continuous radial 
function on [0, 𝜋] that is PD on a domain 𝐷 ⊂ M𝑑 and has finitely many nonzero spectral coefficients must be PD on M𝑑 . On the 
other hand, a continuous radial function on [0, 𝜋] that is PD on a domain 𝐷 ⊂ M𝑑 is guaranteed to be PD on M𝑑 if and only if 
�̄� = M𝑑 . Moreover, if �̄� ≠ M𝑑 , there exists a continuous radial function that is PD on 𝐷 ⊂M𝑑 with finitely many specified negative 
spectral coefficients. We also explicitly constructed continuous radial functions that are PD on the unit ball embedded in S𝑑 but not 
PD on S𝑑 .
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