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Abstract
In this paper, we study the superconvergence of the semi-discrete discontinuous
Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The
asymptotic errors in cell averages, downwind point values, and the postprocessed
solution are derived for the initial discretization by Gaussian projection (for periodic
boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal. 5, 2555–
2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant
in the superconvergence of order 2k + 1 for DG methods based on upwind-biased
fluxes depends on the parity of the order k. The asymptotic errors are demonstrated
by various numerical experiments for scalar and vector hyperbolic equations.

Keywords Superconvergence · Discontinuous Galerkin · Postprocessing ·
Upwind-biased flux · Asymptotic error

1 Introduction

Discontinuous Galerkin (DG) method is a class of finite element methods that uses
discontinuous piecewise polynomials of order up to k as test functions. TheDGscheme
is used widely for solving linear and nonlinear partial differential equations. Reed
and Hill [26] introduced the DG method for solving a steady-state linear hyperbolic
equation in 1973. Cockburn et al. [13–16] applied it to time-dependent nonlinear
conservation laws.

In the past two decades, various superconvergence properties of DG methods have
been studied, which provided a deeper understanding of DG solutions. According to
the error in the DG method, the superconvergence divides into the following three
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categories. The first category is superconvergence of the error in cell average and
at Radau points, measured in the discrete L2 norm (see, e.g., [2–4]). The second
category is the superconvergence of the DG solution toward a particular projection of
the exact solution, called the supercloseness, typically measured in the standard L2
norm. Some of the results are available in [6, 8, 10, 12, 23, 28]. The last category is the
superconvergence of the postprocessed solution. Negative-order norm estimates are a
standard tool to derive superconvergent error estimates of the postprocessed solution
in the L2 norm. The choice of negative-order norms is to detect the oscillatory behavior
of a function around zero. Postprocessing aims to obtain a better approximation by
convolving the numerical solution by a local averaging operator. Formore information,
we refer the reader to [7, 17, 20, 21, 25].

Nowwe shall review some of the superconvergence results and some of the relevant
methods used in our work. Adjerid et al. [5] was first to show that the DG solution
is superconvergent at Radau points for solving ordinary differential equations and
steady-state hyperbolic problems. Later, Yang and Shu in [28] studied superconver-
gence properties of theDGmethod for linear hyperbolic equations and proved thatwith
suitable initial discretization, the error between the DG solution and the exact solution
is (k + 2)th-order superconvergent at the downwind-biased Radau points. Around
the same time, Guo, Zhong, Qiu [19] used the Fourier approach and decomposed
the error. They symbolically computed eigenvalues and the corresponding eigenvec-
tors of the DG method for low-order approximations. Shortly after, Cao, Zhang, and
Zou [8] showed that if the initial discretization is close enough to a particular recon-
structed function, then the (2k + 1)th (or (2k + 1/2)th) superconvergence rate at the
downwind points as well as the domain average is achieved. Meng, Shu, and Wu [24]
introduced the upwind-biased flux and showed the optimal a priori error estimates of
order k + 1. Cao et al. [9] proved the (2k + 1)th-order superconvergence of the cell-
averaged numerical solution obtained with the initial discretization by a special global
projection. Most studies have concentrated on the order of accuracy and neglected
the role that the error coefficient plays in the estimates. Recently, Frean and Ryan
[18] used a similar approach and showed that the semi-discrete error has dissipation
errors of order 2k + 1 and 2k + 2 order of dispersion. For upwind-biased fluxes, they
showed the critical role of the error constant in the dispersion and dissipation error for
approximation polynomial degree k, where k = 0, 1, 2, 3.

Cao showed the (2k + 1) order of convergence in Ref. [8] for the first time, using
the correction function technique. The idea of this technique is to construct a suitable
correction function to correct the error between the exact solution and its Radau pro-
jection. Many papers have used this technique to show the semi-discrete DGmethod’s
superconvergence for one-dimensional problems.One of the recent papers done byXu,
Meng, Shu, Zhang [27] uses a slightly modified correction function and the L2-norm
stability to establish the superconvergence property of the Runge–Kutta discontin-
uous Galerkin method for solving a linear constant-coefficient hyperbolic equation.
They show that under a r + 1 temporal and 2k + 2 spatial smoothness assumption,
and by choosing a specific initialization, the cell average and the numerical flux are
min(2k+1, r) superconvergent. They also proved a similar result for the postprocessed
solution, even if the initialization is the L2 or Gauss-Radau projection.
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Besides the Fourier analysis and the correction function technique, Padé approxi-
mation is another standard method for analyzing the DG method’s superconvergence.
Krivodonova and Qiu [22] used Padé approximation to analyze the spectrum of the
DG method when applied to the hyperbolic equation. They showed that for a uniform
computational mesh of N elements, the eigenvalues could be classified into N physical
modes and kN nonphysical modes. They also show a 2k + 2 order of accuracy for
the physical eigenvalue approximation. Later Chalmers and Krivodonova [11] used
Padé approximation to show the (k + 2)’th rate of superconvergence at the downwind
points. They also proved that the L2 projection of the numerical solution onto the n’th
Legendre polynomial is 2k + 1 − n accurate under certain initial conditions.

Fourier analysis and the correction function technique have been widely used to
study the superconvergence of the numerical errors, yet the asymptotic error has not
been given explicitly. The derivation of the asymptotic error can show the connection
between Fourier analysis and the correction function technique and clarify the effect
of the initial discretization.

The remainder of this paper is organized as follows. In Sect. 2, we study the super-
convergence of the DG methods with the upwind flux for linear hyperbolic equations
with periodic boundary condition. We use Fourier analysis to derive the asymptotic
errors for initial discretization by Gaussian projection, both in cell average, at down-
wind point, and in the postprocessed solution. In Sect. 3, we extend the analysis to
DG methods with upwind-biased fluxes, which can be used to solve a system of
linear hyperbolic equations using Lax-Friedrichs flux. We show that the asymptotic
error depends on the parity of the order. In Sect. 4, we compute the error for linear
hyperbolic equation with Dirichlet boundary condition, with initial discretization by
Cao projection. The results are illustrated numerically in Sect. 5, including examples
on nonlinear problems and nonuniform grids. Finally, conclusions and thoughts on
future work are discussed in Sect. 6. For pedagogical purpose, an alternative proof on
the accuracy of the eigenvalues and eigenfunctions for upwind-biased flux is included
in the Appendix.

2 DGWith the Upwind Flux

In this section,we investigate the superconvergence of the DGmethod with the upwind
flux for the one-dimensional scalar linear hyperbolic equationwith the periodic bound-
ary condition.

2.1 Preliminary

The linear hyperbolic equation with the periodic boundary condition is

ut + ux = 0, (x, t) ∈ [0, 2π ] × [0, T ].
u(x, 0) = g(x), u(0, t) = u(2π, t).

(1)
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We solve the equation using k’th-order DGmethod with the upwind flux on a uniform
grid of N cells with cell size h. The numerical solution uh ∈ Vh = {v : v|τ j ∈
Pk(τ j ), 1 ≤ j ≤ N }, in which τ j = [x j−1/2, x j+1/2] = [x j − h/2, x j + h/2]. The
equation for uh is

N∑

j=1

(v, (uh)t ) j =
N∑

j=1

(vx , uh) j +
N∑

j=1

[[v]](x j+ 1
2
)u−

h (x j+ 1
2
), ∀v ∈ Vh, (2)

where (v, u) j = ∫
τ j

vudx , [[v]] = v+ − v−, and v+(2π) = v+(0). Here v− and v+

represent the left and right limits of v at the point, and u−
h represents the left limit

of uh at the point. The initial discretization uh(x, 0) is a projection of g(x) onto Vh .
The simplest projection is the Gaussian projection, denoted by uG(x, t) = PGu(x, t),
defined by

(v, PGu) j = (v, u) j , ∀v ∈ Pk(τ j ). (3)

Cao [8] introduced a special interpolation, denoted by PI ,

uI (x, t) = PI u(x, t) = uG(x, t) + w(x, t) ≡ uG(x, t) +
k∑

i=0

wi (x, t), (4)

wherew0 = P−
h u−PGu with P−

h being the Gauss-Radau projection, which is defined
by

(v, P−
h u) j = (v, u) j , ∀v ∈ Pk−1(τ j ); P−

h u(x j+1/2) = u−(x j+1/2), (5)

and for 1 ≤ i ≤ k, 1 ≤ j ≤ N ,

(v, ∂twi−1) j = (vx , wi ) j , ∀v ∈ Pk(τ j ); w−
i (x j+1/2) = 0. (6)

Notice the wi ’s defined here are the opposite of those defined in Ref. [8]. We denote
the solution to Eq. (2) by uh(x, t) = St uh(x, 0), and the projection onto piecewise
constant functions in Vh by P0. Cao [8] showed that wi = O(hk+1+i ), and

N∑

j=1

(v, (uI − wk)t ) j =
N∑

j=1

(vx , uI ) j +
N∑

j=1

[[v]](x j+ 1
2
)u−

I (x j+ 1
2
), ∀v ∈ Vh . (7)

Consequently,

‖St u I (x, 0) − uI (x, t)‖0 � h2k+1‖g‖2k+2, (8)

where ‖g‖n is the norm of g in Hn , and A � B implies that A is bounded by B
multiplied by a constant independent of themesh size h. Since ‖uI (x, t)−u(x, t)‖0 =
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O(hk+1), the numerical solutionwith initial discretization uI (x, 0) has (k+1)th-order
error. However, since ‖P0(uI (x, t) − u(x, t))‖0 = O(h2k+1), the cell average error,

ec(x, t) = P0(St u I (x, 0) − u(x, t)), (9)

is of order 2k + 1. Also, uI − u vanishes at downwind points x−
j+1/2, so the error at

downwind points is of order 2k+1 for the initial discretization by uI (x, 0). Numerical
solutions of order 2k + 1 can be reconstructed from the cell averages or interpolation
from the downwind point values, on a stencil of at least 2k + 1 cells. Alternatively,
a smooth numerical solution can be obtained by applying a smoothness-increasing
accuracy-conserving (SIAC) filter [18] to the numerical solution.

The projection uI is not easy to compute, especially for the upwind-biased flux.
We will show that for the periodic boundary condition, an initial discretization by
the Gaussian projection also leads to (2k + 1)th-order error in cell averages and at
downwind points of the numerical solution, as well as the filtered numerical solution.
Throughout the paper, we adopt the following notation. For any function f (x) on
[0, 2π ], we can express f (x) as the modal expansion,

f (x) =
N∑

j=1

∞∑

n=0

( f ) j,nφ j,n(x), (10)

where φ j,n(x) = φn(2(x − x j )/h) restricted to τ j , in which φn is the n’th-order
Legendre polynomial [1].

2.2 Asymptotic Errors for Initialization by Gaussian Projection

Theorem 2.1 For the numerical solution to Eq. (2) with uh(x, 0) = uG(x, 0), denote
by ec(x, t) the cell average error

ec(x, t) = P0(St uG(x, 0) − u(x, t)), (11)

and by ed(x, t) the error at the downwind point x
−
j+1/2 for x ∈ τ j . Assume g ∈ H2k+2.

For any fixed t > 0,

lim
h→0

ec(x, t)

h2k+1 = (−1)kCk[tg(2k+2)(x − t) − kg(2k+1)(x − t)], (12)

lim
h→0

ed(x, t)

h2k+1 = (−1)kCk[tg(2k+2)(x − t) − (k + 1)g(2k+1)(x − t)], (13)

where

Ck = (k + 1)!k!
(2k + 2)!(2k + 1)! . (14)
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Proof Since uh ∈ Vh and Vh has modal basis φ j,n with 1 ≤ j ≤ N and 0 ≤ n ≤ k,
Eq. (2) is a linear system of ODE’s for uh expanded in the modal basis, denoted by
(uh)t = Luh . By the definition of Gauss-Radau projection in Eq. (5),

(w0) j,k = (u − PGu)(x−
j+1/2) =

∞∑

n=k+1

2n + 1

h

∫

τ j

φ j,n(x)g(x − t)dx

= 2k + 3

h

∫

τ j

φ j,k+1(x)g
(k+1)(x j − t)

(x − x j )k+1

(k + 1)! dx + o(hk+1)

= 2k + 3

2

hk+1

2k+1(k + 1)!g
(k+1)(x j − t)

∫ 1

−1
φk+1(y)y

k+1dy + o(hk+1)

= (k + 1)!
(2k + 2)!g

(k+1)(x j − t)hk+1 + o(hk+1).

(15)

where we used the identity
∫
τ j

φ2
j,n(x)dx = h/(2n + 1). By Eq. (6) and the identity

∫ 1

−1
φ′
n(y)φi (y)dy = 1 − (−1)n−i , 0 ≤ i < n, (16)

we have

(wn) j,k−n = h

2(2(k − n + 1) + 1)
∂t (wn−1) j,k−n+1, 1 ≤ n ≤ k. (17)

In particular,

∂t (wk) j,0 = (−1)k+1Ckg
(2k+2)(x j − t)h2k+1 + o(h2k+1). (18)

where Ck is given by Eq. (14). Since w = ∑k
n=0 wn ,

(w) j,n = (−1)k−n (k + 1)!k!(2n + 1)!
(2k + 2)!(2k + 1)!n!g

(2k+1−n)(x j − t)h2k+1−n + o(h2k+1−n),

0 ≤ n ≤ k. (19)

Eq. (7) can be written as (uI )t = LuI + (wk)t , which gives

uI (x, t) − St u I (x, 0) =
∫ t

0
St−τ ∂t (wk)(x, τ )dτ

= (−1)k+1Cktg
(2k+2)(x − t)h2k+1 + o(h2k+1). (20)

The cell average error of uI (x, t) is

P0(uI (x, t) − u(x, t)) = (w) j,0 = (−1)kCkg
(2k+1)(x − t)h2k+1 + o(h2k+1).

(21)
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So the cell average error in the numerical solutionwith initial discretization by uI (x, 0)
is

P0(St u I (x, 0) − u(x, t)) = (−1)kCk[tg(2k+2)(x − t)

+g(2k+1)(x − t)]h2k+1 + o(h2k+1). (22)

For the initial discretization by Gaussian projection, we use the Fourier analysis. It
has been shown in Ref. [11] that eigenvalues of L consist of N physical modes,

λ
(m)
0 = −im + O(m2k+2h2k+1), (23)

and kN nonphysical modes,

λ(m)
n = −αn

h
+ O(m), 1 ≤ n ≤ k, (24)

with −
 N−1
2 � ≤ m ≤ 
 N

2 �. For the nonphysical modes, �αn > 0, so only physical
modes appear in the asymptotic solutions. The error due to the initial discretization
by the Gaussian projection is

St u I (x, 0) − St uG(x, 0)

=

 N
2 �∑

m=−
 N−1
2 �

eim(x−t) 1

2π

∫ 2π

0
e−imxw(x, 0)dx + o(h2k+1)

=

 N
2 �∑

m=−
 N−1
2 �

eim(x−t)
k∑

n=0

N∑

j=1

(−1)k−nCk

(2n + 1)!
n! g(2k+1−n)(x j )h

2k+1−n
∫ 2π

0

e−imx

2π
φ j,n(x)dx + o(h2k+1)

=

 N
2 �∑

m=−
 N−1
2 �

eim(x−t)
k∑

n=0

N∑

j=1

(−1)k−nCk
(2n + 1)!

n! g(2k+1−n)(x j )h
2k+1−n

h

2π

n!(−imh)n

(2n + 1)! e−imx j + o(h2k+1)

= (−1)kCkh
2k+1

k∑

n=0


 N
2 �∑

m=−
 N−1
2 �

eim(x−t) 1

2π

∫ 2π

0
(im)ng(2k+1−n)(x)e−imxdx + o(h2k+1)

= (−1)kCkh
2k+1

k∑

n=0

∞∑

m=−∞
eim(x−t) 1

2π

∫ 2π

0
g(2k+1)(x)e−imxdx + o(h2k+1)

= (−1)kCkh
2k+1(k + 1)g(2k+1)(x − t) + o(h2k+1). (25)

Here we used the fact that the Fourier series of g(2k+1) converges because g ∈ H2k+2.
Combining the two errors in Eqs.(22) and (25), we get Eq. (12). Since uI −u vanishes
at downwind points, Eq. (13) follows from Eqs.(20) and (25). �
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The error of the numerical solutionSt uG(x, 0) is asymptotically of order 2k+1 only
in the cell average and at the downwind points for a fixed time t > 0. The actual error
is only of order k + 1 because it has large oscillations. We can reconstruct numerical
solutions of order 2k+1 from the cell averages or the solution at downwind points, on
a stencil of at least 2k + 1 cells. On a stencil of at least 2k + 3 cells, the reconstruction
error is of order higher than 2k + 1, so the asymptotic errors at any point in the
reconstructed solutions are given by Eqs.(12) and (13), respectively. Alternatively, to
filter out the oscillations, we can postprocess the numerical solution, as introduced by
Cockburn et al. [17]. The postprocessed solution for the numerical solution uh(x, t)
is

K 2s+2,k+1
h (x)�uh(x, t) =

s∑

j=−s

c jψ
(k+1)
h (x − jh)�uh(x, t), (26)

where ψ
(k+1)
h (x) is the B-spline function of order k + 1 on the grid with cell width h,

and the number ci are chosen to make K 2s+2,k+1
h reproduces polynomials in P2s+1 by

convolution. The value s for the stencil is at least k. Numerical experiments show that
s = k + 1 generates significantly smaller errors than s = k. Bramble and Schatz [7]
related the postprocessed error to the negative-order norm of the divided differences of
the original error, and Cockburn et al. [17] used it to prove that the postprocessed error
has order 2k + 1 everywhere for any time t ∈ [0, T ]. We will derive the asymptotic
error of the postprocessed solution in the following theorem.

Theorem 2.2 Let the postprocessed solution of St uG(x, 0) be

uK (x, t) = K 2s+2,k+1
h (x)�St uG(x, 0), s ≥ k. (27)

Assume g ∈ H2k+2. For any t ∈ [0, T ] with T being a fixed positive number,

lim
h→0

uK (x, t) − u(x, t)

h2k+1 = (−1)kCktg
(2k+2)(x − t), (28)

where Ck is defined in Eq. (14).

Proof Since K 2s+2,k+1
h reproduces polynomials in P2s+1 by convolution,

K 2 s+2,k+1
h �u(x, t) − u(x, t) = o(h2 s+1) = o(h2k+1), and so

uK (x, t) − u(x, t) = K 2s+2,k+1
h �(St uG(x, 0) − u(x, t)) + o(h2k+1). (29)

It has been shown in [17] that all nonphysical modes are suppressed by the filter
ψ

(k+1)
h . The filter K 2s+2,k+1

h only retains the physical part, i.e., the projection onto the
physical modes. In other words,

K 2s+2,k+1
h �(St uG(x, 0) − u(x, t))
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=

 N
2 �∑

m=−
 N−1
2 �

eimx

2π

∫ 2π

0
e−imx (St uG(x, 0) − u(x, t))dx + o(h2k+1). (30)

The error can be decomposed into

St uG(x, 0) − u(x, t) = St uG(x, 0) − uI (x, t)

+uI (x, t) − uG(x, t) + uG(x, t) − u(x, t). (31)

By Eqs. (20) and (25),

K 2s+2,k+1
h �(St uG(x, 0) − uI (x, t))

= (−1)kCk[tg(2k+2)(x − t) − (k + 1)g(2k+1)(x − t)]h2k+1 + o(h2k+1). (32)

Since uI (x, t)−uG(x, t) = w(x, t), by similar procedures as in Eq. (25), we see that

K 2s+2,k+1
h �(uI (x, t) − uG(x, t))

= (−1)kCk(k + 1)g(2k+1)(x − t)h2k+1 + o(h2k+1). (33)

The physical part of u(x, t) − uG(x, t) is

N∑

j=1

∞∑

n=k+1

φ j,n(x)
2n + 1

h

∫

τ j

φ j,n(x)g(x − t)dx, (34)

which is O(h2k+2) by the arguments in Eq. (25). The sum of Eqs. (32) and (33) gives
Eq. (28). �

3 DGWith the Upwind-Biased Flux

In this section, we solve the linear hyperbolic equation with the upwind-biased flux.

N∑

j=1

(v, (uh)t ) j =
N∑

j=1

(vx , uh) j +
N∑

j=1

[[v]](x j+ 1
2
)u∗

h(x j+ 1
2
), ∀v ∈ Vh, (35)

where

u∗
h = u−

h + u+
h

2
− M

u+
h − u−

h

2
, M > 0. (36)
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We denote the solution to Eq. (35) by SM
t uh(x, 0). In the notation of Ref. [9], M =

2θ −1with θ > 1/2.M can be any positive constant. The flux is reduced to the upwind
flux when M = 1. For a vector linear hyperbolic equation or a nonlinear hyperbolic
equation, ut + ( f (u))x = 0, the DG method with an upwind-biased flux is

N∑

j=1

(v, (uh)t ) j =
N∑

j=1

(vx , f (uh)) j +
N∑

j=1

[[v]](x j+ 1
2
)F∗

h (x j+ 1
2
), ∀v ∈ Vh, (37)

where

F∗
h = f (u−

h ) + f (u+
h )

2
− M

u+
h − u−

h

2
, M > 0. (38)

The upwind-biased flux is the well-known Lax-Friedrichs flux if we set M to be the
local or global maximum wave speed. Frean and Ryan [18] studied the error constant
for the DG method of order k = 0, 1, 2, 3 with the upwind-biased flux and showed
the dependency on the parity of k. We will derive the asymptotic errors for arbitrary
orders.

Theorem 3.1 For the numerical solution to Eq. (35)with uh(x, 0) = uG(x, 0), denote
by eMc (x, t) the cell average error,

eMc (x, t) = P0(SM
t uG(x, 0) − u(x, t)), (39)

and by eMd (x, t) the error at the downwind point x j+1/2 for x ∈ τ j ,

eMd (x, t) = u∗
h(x j+1/2, t) − u(x j+1/2, t). (40)

Assume g ∈ H2k+2. For any fixed t > 0,

lim
h→0

eMc (x, t)

h2k+1 = χM (−1)kCk[tg(2k+2)(x − t) − kg(2k+1)(x − t)], (41)

lim
h→0

eMd (x, t)

h2k+1 = χM (−1)kCk[tg(2k+2)(x − t) − (k + 1)g(2k+1)(x − t)], (42)

where Ck is defined in Eq. (14), and

χM =
{

M, k even
1/M, k odd

. (43)

For any t ∈ [0, T ]with T being a fixed positive number, the numerical solution filtered
by K 2s+1,k+1 with s ≥ k has the asymptotic error,

lim
h→0

K 2s+1,k+1
h (x)�SM

t uG(x, 0) − u(x, t)

h2k+1 = χM (−1)kCktg
(2k+2)(x − t). (44)
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Proof Eq. (35) can be written as

N∑

j=1

(ut + ux , v) j = −
N∑

j=1

[[u]](x j+1/2)

(
v+(x j+1/2) + v−(x j+1/2)

2
+ M

2
[[v]](x j+1/2)

)
,

∀v ∈ Vh, (45)

which gives the energy estimate,

d

dt
(u, ū) = −M

N∑

j=1

|[[u]](x j+ 1
2
)|2 ≤ 0. (46)

The equality holds only if [[u]] = 0. It implies that the inequality is exact for noncon-
stant eigenfunctions. Therefore, nonphysical eigenvalues have negative real parts. The
physical eigenfunctions can be constructed using Cao’s projection PM

I for upwind-
biased fluxes [9], which is defined by

uM
I (x, t) = PM

I u(x, t) = uG(x, t) + wM (x, t) ≡ uG(x, t) +
k∑

i=0

wM
i (x, t),

(47)

where wM
0 (x, t) = ∑N

j=1(w
M
0 ) j,k(t)φ j,k(x) such that the difference d(x, t) =

uG(x, t) + wM
0 (x, t) − u(x, t) satisfies d∗(x j+1/2, t) = 0 for all 1 ≤ j ≤ N . For

1 ≤ i ≤ k, 1 ≤ j ≤ N ,

(v, ∂tw
M
i−1) j = (vx , w

M
i ) j , ∀v ∈ Pk(τ j ); (wM

i )∗(x j+1/2) = 0. (48)

The projection is global. However, we will show that the leading order terms of
wM
i (x, t) are still local. Since u ∈ Hk+2, we have

d−(x j+1/2) = (wM
0 ) j,k − u j,k+1 + o(hk+1), (49)

and

d+(x j+1/2) = (−1)k(wM
0 ) j+1,k − (−1)k+1u j+1,k+1 + o(hk+1)

= (−1)k(wM
0 ) j,k − (−1)k+1u j,k+1 + o(hk+1).

(50)

It’s easy to verify that d∗(x j+1/2, t) = 0 implies

(wM
0 ) j,k = χMu j,k+1 + o(hk+1), (51)
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where χM is defined by Eq. (43). Subsequently, (wM ) j,n = χMw j,n + o(h2k+1−n)

for 0 ≤ n ≤ k,

uM
I (x, t) − SM

t uM
I (x, 0) = χM (−1)k+1Cktg

(2k+2)

(x − t)h2k+1 + o(h2k+1), (52)

SM
t uM

I (x, 0) − SM
t uG(x, 0) = χM (−1)kCk(k + 1)g(2k+1)

(x − t)h2k+1 + o(h2k+1), (53)

P0(u
M
I (x, t) − u(x, t)) = χM (−1)kCkg

(2k+1)

(x − t)h2k+1 + o(h2k+1). (54)

Hence Eqs. (41) and (44). Since (UM
I )∗(x j+1/2, t) = u(x j+1/2, t), we have Eq. (42).

�

Applying Theorem 3.1 to u(x, t) = eim(x−t), we see that the m’th physical eigen-
function

r (m)
0 (x) = PM

I eimx + O(h2k+1), (55)

and the error of the m’th physical eigenvalue gives rise to PM
I eim(x−t) −SM

t PM
I eimx .

Therefore,we obtain the following corollary.

Corollary 3.2 The m’th physical eigenvalue of Eq. (35), the DG method with the
upwind-biased flux, is

λ
(m)
0 = −im − χMCkm

2k+2h2k+1 + o(m2k+2h2k+1), (56)

where χM and Ck are given in Eqs. (43) and (14), respectively. The associated eigen-
function r (m)

0 (x) satisfies

(
r (m)
0 (x) − eimx

)

j,n
= χM (−1)k−nCk

(2n + 1)!
n! (imh)2k+1−neimx j + o((mh)2k+1−n). (57)

For the upwindflux,Ref. [22] showed the supercloseness of the physical eigenvalues
to the exact values, by proving that Rk,k+1(λ

(m)
0 ) = exp(imh), where Rk,k+1(z) is

the [k/k + 1] Padé approximation of exp(−z). Following Ref. [11], we can prove
Corollary 3.2 by directly solving for the physical eigenvalues and eigenfunctions. The
proof, though more technical, is included in the Appendix for pedagogical purpose.
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4 Dirichlet Boundary

Consider the linear hyperbolic equation with Dirichlet boundary condition,

ut + ux = 0, (x, t) ∈ [0, 2π ] × [0, T ].
u(x, 0) = g(x), u(0, t) = g(−t).

(58)

The exact solution is u(x, t) = g(x − t). We apply the DG method with the upwind
flux,

(v, (uh)t ) = (vx , uh) +
N∑

j=0

[[v]](x j+ 1
2
)u−

h (x j+ 1
2
), ∀v ∈ Vh, (59)

where v+(2π) = v−(0) = 0, and u−
h (0, t) = g(−t). As shown in [8], the supercon-

vergence of order 2k + 1 in cell average is retained with the initialization by PI . The
superconvergence of order 2k + 1 is lost for the initial discretization by the Gaussian
projection, as explained below. Denote the solution to Eq. (59) with zero Dirichlet
boundary condition by u(x, t) = SD

t u(x, 0). The difference between the two initial
discretizations uG(x, 0) and uI (x, 0) is uG(x, 0) − uI (x, 0), while there is no differ-
ence on the left boundary condition. For x ∈ [0, 2π ], the difference at later time t is
SD
t (uG(x, 0) − uI (x, 0)), which is close to Stv(x, 0) solved on the extended domain

[−t, 2π ] with periodic boundary condition, where v(x, 0) = uG(x, 0) − uI (x, 0) for
x ≥ 0 and v(x, 0) = 0 for x < 0. The possible discontinuity at x = 0 in v(x, 0),
uG(0, 0) − uI (0, 0), causes oscillations in Stv(x, 0) in a few grids around x = t of
similar order, while Stv(x, 0) = O(h2k+1) elsewhere. Similar conclusion applies to
the initial discretization by the Radau projection. The following theorem gives the cell
average error of uh(x, t) with uh(x, 0) = uI (x, 0).

Theorem 4.1 Let uh(x, t) be solution to Eq. (59) with uh(x, 0) = uI (x, 0), and

eDc (x, t) = P0(uh(x, t) − u(x, t)). (60)

Assume g ∈ H2k+2. For any t ∈ [0, T ] with T being a fixed positive number,

lim
h→0

eDc (x, t)

h2k+1 = (−1)kCk[min(x, t)g(2k+2)(x − t) + g(2k+1)(x − t)], (61)

where Ck is given by Eq. (14).

Proof As pointed out in [8], although the Fourier analysis doesn’t apply to theDirichlet
boundary condition, the initial discretization by uI (x, 0) still leads to superconver-
gence. The function uI (x, t) satisfies
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N∑

j=1

(v, (uI − wk)t ) j =
N∑

j=1

(vx , uI ) j +
N∑

j=1

[[v]](x j+ 1
2
)u−

I (x j+ 1
2
), v ∈ Vh,

(62)

with u−
I (0, t) = g(−t). Subtracting Eq. (59), and letting uIh(x, t) = uI (x, t) −

uh(x, t), we have

N∑

j=1

(v, (uIh − wk)t ) j =
N∑

j=1

(vx , uIh) j +
N∑

j=1

[[v]](x j+ 1
2
)u−

I h(x j+ 1
2
), v ∈ Vh,

(63)

with u−
I h(0, t) = 0. So uIh(x, t) solves the hyperbolic equation with zero Dirichlet

boundary condition.

uIh(x, t) =
∫ t

0
SD
t−τ (wk)t (x, τ )dτ =

∫ t

0
(wk)t (x, t)Ix>τdτ = (wk)t (x, t)min(x, t)

= (−1)k+1Ck min(x, t)g(2k+2)(x − t)h2k+1 + o(h2k+1).

(64)

Theorem 4.1 follows from Eqs.(64) and (21). �

5 Numerical Simulations

In this section,we perform several numerical experiments to demonstrate the supercon-
vergence properties stated in the previous sections. In all examples, the time integration
is done by a 5th-order Runge–Kutta scheme with the CFL number 0.1.

Example 5.1

ut (x, t) + ux (x, t) = 0, (x, t) ∈ [0, 2π ] × (0, 1],
u(x, 0) = cos5(x), u(0, t) = u(2π, t).

uh(x, 0) = uG(x, 0).

(65)

In the first example, we validate the asymptotic errors given in Theorem 2.1 and
Theorem 2.2. Table 1 compares the L2 norm of the errors in cell average (ec), at
downwind points (ed ), and the numerical solution filtered by K 2s+2,k+1 with s = k
and s = k + 1, respectively. We also computed the Ls norm of the errors in the
numerical solutions reconstructed from 2s+1 cell averages (ecr ) or 2s+2 downwind
point values (edr ). Table 2 compares ecr and edr on stencils of s = k and s = k + 1.
All errors are of order 2k + 1. The errors in the filtered or reconstructed solutions
are smaller on a wider stencil due to the reduction of the interpolation error. The
interpolation error also accounts for the apparent order of higher than 2k + 1 in the
filtered and reconstructed solutions.
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Table 1 Example 1. Error in cell averages, at downwind points, and in filtered solutions for k = 1, 2, 3

k N ec Order ed Order eK , s = k Order eK , s = k + 1 Order

1 40 4.18E–03 – 4.64E–03 – 4.73E–03 – 4.25E–03 –

80 5.56E–04 2.91 6.06E–04 2.94 5.81E–04 3.03 5.47E–04 2.96

160 7.08E–05 2.97 7.68E–05 2.98 7.12E–05 3.03 6.91E–05 2.99

320 8.90E–06 2.99 9.65E–06 2.99 8.79E–06 3.02 8.66E–06 3.00

2 40 2.39E–05 – 2.67E–05 – 1.02E–04 – 3.13E–05 –

80 7.84E–07 4.93 8.59E–07 4.96 2.08E–06 5.62 7.68E–07 5.35

160 2.48E–08 4.98 2.71E–08 4.99 4.46E–08 5.55 2.31E–08 5.05

320 7.79E–10 4.99 8.49E–10 5.00 1.06E–09 5.40 7.20E–10 5.01

3 40 1.79E–07 – 8.65E–07 – 1.42E–05 – 1.74E–06 –

80 8.16E–10 7.78 6.04E–09 7.16 6.40E–08 7.80 2.50E–09 9.44

160 5.12E–12 7.31 4.62E–12 10.3 2.61E–10 7.94 6.33E–12 8.63

320 3.95E–14 7.02 4.24E–14 6.77 1.04E–12 7.97 3.96E–14 7.32

Table 2 Example 1. Error in reconstructed solutions for k = 1, 2, 3

k N ecr , s = k order ecr , s = k + 1 order edr , s = k order edr , s = k + 1 order

1 40 6.31E–03 – 4.35E–03 – 5.24E–03 – 4.69E–03 –

80 7.95E–04 2.99 5.60E–04 2.96 6.47E–04 3.02 6.07E–04 2.95

160 9.86E–05 3.01 7.09E–05 2.98 7.95E–05 3.03 7.68E–05 2.98

320 1.22E–05 3.01 8.90E–06 2.99 9.81E–06 3.02 9.65E–06 2.99

2 40 3.63E–04 – 5.32E–05 – 1.05E–04 – 3.48E–05 –

80 1.20E–05 4.91 9.05E–07 5.88 2.13E–06 5.62 8.93E–07 5.28

160 3.81E–07 4.98 2.52E–08 5.17 4.65E–08 5.52 2.72E–08 5.04

320 1.19E–08 5.00 7.80E–10 5.01 1.14E–09 5.35 8.49E–10 5.00

3 40 4.29E–05 – 5.62E–06 – 1.06E–05 – 1.57E–06 –

80 2.72E–07 6.85 1.27E–08 8.78 4.31E–08 7.94 5.36E–09 8.20

160 2.99E–09 6.96 2.63E–11 8.92 1.89E–10 7.83 6.03E–12 9.80

320 2.35E–11 6.99 6.48E–14 8.67 7.58E–13 7.96 4.35E–14 7.12

The errors at t = 1 for k = 2 are plotted in Fig. 1. Figure1(a) plots the cell
average errors and the asymptotic error given in Eq. (12). Figure1(b) plots the errors
at downwind points and the asymptotic error given in Eq. (13). Figure1(c) plots the
error of numerical solution filtered by K 2k+4,k+1 and the asymptotic error given in
Eq. (28). All figures clearly demonstrated the convergence to the asymptotic errors.
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Fig. 1 Example 1. Error at t = 1 for k = 2. Blue: N = 40; red: N = 80; black: asymptotic error (color
online)

Table 3 Example 2. Cell average errors for the system of linear hyperbolic equations

k = 1 k = 2 k = 3

N ec order N ec order N ec order

80 7.72E–02 – 40 1.10E–03 – 20 1.96E–04 –

160 9.70E–03 2.99 80 3.92E–05 4.85 40 1.57E–06 6.97

320 1.20E–03 3.00 160 1.29E–06 4.93 80 1.22E–08 7.01

640 1.52E–04 3.00 320 4.15E–08 4.95 160 1.03E–10 6.88

Fig. 2 Example 2. DG solver with upwind-biased flux. The cell average error of ρ and u at t = 1 for k = 3.
Crosses: N = 20; circles: N = 40; dots: N = 80; solid lines: asymptotic error

Example 5.2

ρt + u0ρx + ρ0ux = 0, ρ0(ut + u0ux ) + c2ρx = 0, (x, t) ∈ [0, 2π ] × (0, 1];
ρ(x, 0) = sin6(x),

u(x, 0) =
(
x(2π − x)

4

)8

; ρ(0, t) = ρ(2π, t), u(0, t) = u(2π, t).

(66)

This example uses the linearized Euler equations for isothermal gas to demonstrate
the superconvergence of the DG method with the upwind-biased flux. We set ρ0 = 1,
u0 = 1, c = 5, and so the two waves move with velocity 6 and −4, respectively. The
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Table 4 Example 3. Cell average errors for Dirichlet boundary condition and different initial projection

k N Gaussian Order Radau Order Cao Order

1 40 1.84E–03 – 1.72E–03 – 1.81E–03 –

80 2.38E–04 2.95 2.22E–04 2.95 2.33E–04 2.96

160 3.01E–05 2.98 2.81E–05 2.98 2.94E–05 2.99

320 3.79E–06 2.99 3.53E–06 2.99 3.70E–06 2.99

2 40 5.17E–06 – 4.20E–06 – 4.10E–06 –

80 2.08E–07 4.63 1.35E–07 4.96 1.31E–07 4.97

160 1.06E–08 4.30 4.27E–09 4.98 4.11E–09 4.99

320 7.07E–10 3.91 1.35E–10 4.98 1.29E–10 5.00

3 20 2.27E–06 – 6.81E–07 – 5.65E–07 –

40 3.92E–08 5.86 5.65E–09 6.91 4.67E–09 6.92

80 8.24E–10 5.57 6.25E–11 6.50 3.71E–11 6.98

160 3.66E–11 4.49 6.70E–13 6.54 2.87E–13 7.01

Fig. 3 Example 3. Cell average error at t = 1 for Dirichlet boundary condition with k = 2 and different
initial discretization. Blue: N = 80; Red: N = 160; Orange: N = 320; Black((c) only): asymptotic error

equation is solved using the Lax-Friedrichs flux with M = 6, initialized by Gaussian
projection. The combined L2 cell average error of ρ and u at t = 1 is listed in Table
3. It confirms the superconvergence of order 2k + 1. It’s interesting to notice that the
error for N = 640 and k = 1 is close to that for N = 20 and k = 3, while the former
takes 100 times longer computational time than the latter. For k = 3, the cell average
errors of ρ and u at t = 1 are plotted in Fig. 2. It shows the convergence of the errors
to the asymptotic cell average errors, which are computed by applying Theorem 3.1
to both left- and right-going waves.

Example 5.3

ut (x, t) + ux (x, t) = 0, (x, t) ∈ [0, 2π ] × (0, 1],
u(x, 0) = sin3(x − π/4), u(0, t) = sin3(−t − π/4).

(67)

The third example solves the hyperbolic equation with Dirichlet boundary con-
dition. The exact solution if u(x, t) = sin3(x − t − π/4). The phase factor π/4 is
introduced to ensure the differences between the initial discretizations at the origin.
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Table 5 Example 4. Cell average errors for a linear hyperbolic equation with nonconstant wave speed

k = 1 k = 2 k = 3

N ec order N ec order N ec order

40 4.48E–03 – 40 2.74E–05 – 40 2.67E–07 –

80 5.99E–04 2.90 80 9.05E–07 4.92 80 3.41E–09 6.29

160 7.64E–05 2.97 160 2.88E–08 4.98 160 1.14E–11 8.22

320 9.62E–06 2.99 320 9.04E–10 4.99 320 7.68E–14 7.21

The cell average errors at t = 1 for the initial discretization by Gaussian projection,
Radau projection, and Cao projection are shown in Table 4. Figure3 shows the cell
average errors for k = 2. Figure3 demonstrates the convergence of the error to the
asymptotic form in Eq. (61).

As shown in Fig. 3, the L∞ error for the initial discretization by Cao projection is
of order 2k+1. For other initial projections, the errors are of order 2k+1 except for a
few grids around x = t , where the error is of order k+3/2 for Gaussian projection and
of order k + 5/2 for Radau projection. The L2 errors due to the initial discretization
by Gaussian and Radau projection are of order k + 2 or k + 3, respectively. It agrees
with the orders in Table 4.

Example 5.4

ut + (a(x)u)x = s(x, t), (x, t) ∈ [0, 2π ] × (0, 1],
u(x, 0) = cos5(x), u(0, t) = u(2π, t).

a(x) = 1 + cos(x)/5, s(x, t) = gt + (a(x)g)x , g(x, t) = cos5(x − at).

(68)

The source term is set to make u(x, t) = cos5(x−(1+cos(x)/5)t). The equation is
solved using the upwind flux and initial discretization by Gaussian projection. Table 5
demonstrates that the superconvergence of order 2k+1 also applies to linear hyperbolic
equationwith nonconstantwave speed, although the Fourier analysis no longer applies.
The order of convergence for k = 3 is not close to 2k + 1 due to the slower decay of
the nonphysical modes in the numerical solutions.

Although the asymptotic errors were derived for linear equations, numerical exper-
iments indicated that superconvergence can often be extended to nonlinear equations.
Cao et al. [10] pointed out that the superconvergence is lost near the transonic point
where the wave speed vanishes. Interestingly, the next example shows that for k = 1,
the superconvergence of order 2k + 1 = 3 is recovered near the transonic point if we
use the Lax-Friedrichs flux with a fixed M or set M to be the global maximum wave
speed instead of local maximum wave speed.
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Table 6 Example 5. Cell average errors for a transonic Burgers equation solved with Lax-Friedrichs flux

k N M = local max wave speed order M = 1 order

1 80 1.02E–04 – 6.23E–05 –

160 1.68E–05 2.60 8.74E–06 2.83

320 2.75E–06 2.61 1.16E–06 2.92

640 4.62E–07 2.57 1.49E–07 2.96

2 40 1.17E–05 – 1.61E–05 –

80 6.31E–07 4.21 1.05E–06 3.94

160 3.21E–08 4.30 7.03E–08 3.90

320 2.14E–09 3.91 5.54E–09 3.67

3 20 5.39E–06 – 1.25E–05 –

40 4.00E–07 3.75 2.79E–07 5.49

80 1.94E–08 4.37 4.58E–09 5.93

160 7.13E–10 4.77 7.69E–11 5.90

Fig. 4 Example 5. Cell average errors for the transonic Burgers equation solved with k = 1 and Lax-
Friedrichs flux. Dash-dotted (blue): N = 80; dashed (red): N = 160; solid (black): N = 320 (Color figure
online)

Example 5.5

ut + (
u2

2
)x = 0, (x, t) ∈ [0, 2π ] × (0, 0.5],

u(x, 0) = sin(x) + 1

2
, u(0, t) = u(2π, t).

uh(x, 0) = uG(x, 0).

(69)

Table 6 lists the cell average errors for the transonic Burgers equation solved with
the Lax-Friedrichs flux, with M being the local maximum wave speed or the constant
1. Figure4 compares the cell average errors with k = 1 for the two choices of M . [10]
pointed out that the (2k + 1)th-order superconvergence is lost around the supersonic
(stagnant) points x = 7π/6 and x = 11π/6, as shown in Fig. 4(a). As a result, in
Table 6, the orders of error for M being the local max wave speed are lower than
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Fig. 5 Example 6. a Normalized cell size distribution of the nonuniform grid. b Cell average error with
k = 2 for the linear equation. c Cell average error with k = 2 for the non-transonic Burgers equation. Blue:
N = 80; red: N = 160; brown: N = 320

2k + 1. However, the error with M = 1 in the flux are of higher orders for k = 1 and
k = 3. In particular, the cell average for k = 1 with M = 1 is 3rd-order accurate.
According to Theorem 3.1, the error constant for the Lax-Friedrichs flux with a fixed
M is proportional to a/M for odd k, where a is the wave speed. Near the transonic
points, a = O(h), so the error is reduced by the factor a/M , hence the enhanced
orders by setting M = 1 for k = 1 and k = 3. For k = 2, the error constant is M/a,
and there is no order enhancement by setting M = 1, as shown in Table 6.

Example 5.6 (a)

ut (x, t) + ux (x, t) = 0, (x, t) ∈ [0, 2π ] × (0, 1],
u(x, 0) = cos5(x), u(0, t) = u(2π, t).

uh(x, 0) = uG(x, 0).

(70)

(b)

ut +
(
u2

2

)

x
= 0, (x, t) ∈ [0, 2π ] × (0, 0.5],

u(x, 0) = sin(x) + 3

2
, u(0, t) = u(2π, t).

uh(x, 0) = uG(x, 0).

(71)

The linear hyperbolic equation and the Burgers equation are solved on a nonuni-
form grid using Lax-Friedrichs flux with M = 1. The initial condition for the Burgers
equation is set to avoid transonic points, so as to achieve the (2k + 1)th-order super-
convergence. The grid size normalized by the average grid size h0 = 2π/N is shown
in Fig. 5. Table 7 indicates that the superconvergence of order 2k + 1 holds on the
nonuniform grid for both linear and nonlinear equations. Figure5 shows that the cell
average error has an asymptotic form that depends on the nonuniform grid.
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Table 7 Example 6. Cell average errors obtained on a nonuniform grid

k N Linear equation order Burgers equation order

1 80 1.53E–03 – 5.67E–04 –

160 2.00E–04 2.94 8.39E–05 2.76

320 2.53E–05 2.98 1.13E–05 2.89

640 3.17E–06 2.99 1.47E–06 2.95

2 40 1.67E–04 – 4.88E–05 –

80 5.89E–06 4.83 1.67E–06 4.87

160 1.91E–07 4.95 4.62E–08 5.18

320 6.02E–09 4.99 1.34E–09 5.11

3 40 5.57E–06 – 7.02E–07 –

80 1.77E–07 4.97 1.64E–08 5.42

160 3.54E–09 5.65 2.00E–10 6.35

320 2.30E–11 7.27 1.98E–12 6.66

6 Conclusion

In this paper, we studied the superconvergence of the semi-discrete discontinuous
Galerkinmethod for scalar and vector linear hyperbolic equations in one spatial dimen-
sion. For the periodic boundary condition, we used Fourier analysis to prove that for
the initial discretization by Gaussian projection, the cell average error and error at
downwind points are asymptotically of order 2k + 1 for any fixed positive time. We
showed that a numerical solution of order 2k + 1 can be reconstructed from the cell
averages or the downwind point values. We also derived the asymptotic forms of the
cell average and downwind errors as well as the error of the solution obtained by a
SIAC filter. Then we extended the results to DG solvers with upwind-biased fluxes
and showed that the error constant depends on the parity of k. We also computed
the asymptotic error in cell average for the linear hyperbolic equation with Dirich-
let boundary condition. All the theoretical results presented have been validated by
numerical examples. In addition to that, we presented some numerical examples of
nonlinear equations and nonuniform grids.

Although the current work is on linear hyperbolic equations solved by DG method
on a uniform mesh, numerical experiments showed that much of the results can be
extended to more general settings. Our future work involves the analysis of supercon-
vergence for nonlinear hyperbolic equations solved on nonuniform grids.
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Appendix

We present a direct proof of Corollary 3.2 following the approach of Ref. [11].

Proof For −
 N−1
2 � ≤ m ≤ 
 N

2 �, denote the m’th physical eigenvalue and eigenfunc-
tion of Eq. (35) by λ and u(x), respectively. For any v ∈ Vh(τ j ), Eq. (35) can be
written as

(ut + ux , v) = [[u]](x j−1/2)

(
M − 1

2
v−(x j+1/2)e

imh − M + 1

2
v+(x j−1/2)

)
.

(72)

Scaled from x ∈ τ j to y = 2(x − x j )/h ∈ [−1, 1], the eigenfunction on [−1, 1]
satisfies

λhu + 2uy = (−1)k+1[[u]](RM
k+1)

′(y), u ∈ Pk, (73)

where [[u]] = u(−1) − u(1)e−imh , and

RM
k+1(y) =

{
aMφk+1(y) − bMφk(y), k even
bMφk+1(y) − aMφk(y), k odd

, (74)

in which

aM = e
imh
2

(
cos

mh

2
− iM sin

mh

2

)
, bM = e

imh
2

(
M cos

mh

2
− i sin

mh

2

)
.

(75)

Notice that aM + bM = M + 1, and aM − bM = (1 − M)eimh . Since u ∈ Pk ,

u(y) = [[u]] (−1)k

2

k+1∑

l=1

RM,(l)
k+1 (y)

(−λh
2 )l

. (76)

Substituting in y = 1 and using the formula φ
(k+1)
k+1 = (2k + 1)!!, we get for even k,

[[u]] = −(λh)k+1 k!
(2k + 1)!

u(1)

aM
+ O((λh)k+2)
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= −(λh)k+1 k!
(2k + 1)! + O((λh)k+2), (77)

and for odd k,

[[u]] = −(λh)k+1 k!
(2k + 1)!

u(1)

bM
+ O((λh)k+2)

= −(λh)k+1 k!
(2k + 1)!

1

M
+ O((λh)k+2). (78)

Multiplying Eq. (73) by eλh(y+1)/2 and integrating by parts repeatedly, we obtain

u(y) =
(
u(1) − M − 1

2
[[u]]eimh

)
e−imh− λh

2 (y+1) + (−1)k+1

2
[[u]]

∞∑

l=0

(−λh

2
)l RM,(−l)

k+1 (y), (79)

where RM,0
k+1 (y) = RM

k+1(y), and for l ≥ 0,

RM,(−l−1)
k+1 (y) =

∫ y

−1
RM,(−l)
k+1 (z)dz. (80)

Expanding in Legendre polynomials, we have

RM,(−l)
k+1 (y) =

k+l+1∑

i=k−l

cliφi (y), 0 ≤ l ≤ k, (81)

where

clk−l =
{

(−1)l+1 (2k−2l+1)!!
(2k+1)!! bM , k even

(−1)l+1 (2k−2l+1)!!
(2k+1)!! aM , k odd

. (82)

In particular,

RM,(−l)
k+1 (1) =

⎧
⎨

⎩

(−1)k(1 − M)eimh, l = 0
0, 1 ≤ l ≤ k
2ck0, l = k + 1

. (83)

Setting y = 1 in Eq. (79), we get

(
u(1) − M − 1

2
[[u]]eimh

)
(1 − e−imh−λh)

= (−1)k+1

2
[[u]]

(
(−λh

2
)k+12ck0 + O((λh)k+2)

)
. (84)
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Substituting in [[u]], we get

λ + im = −χM
(k + 1)!k!

(2k + 2)!(2k + 1)!m
2k+2h2k+1 + o(m2k+2h2k+1), (85)

where χM = M for even k, and χM = 1/M for odd k. Normalizing u by

u(1) − M − 1

2
[[u]]eimh = e

imh
2 , (86)

we get from Eq. (79) that

u(y) = eimhy/2 + (−1)k+1

2
[[u]]

k∑

l=0

(−λh

2
)l RM,(−l)

k+1 (y) + o((mh)2k+1). (87)

Substituting in [[u]] and expressing u(y) as
∑k

n=0 unφn(y), we have

un = p(m)
n + (−1)k−nχM

(k + 1)!k!(2n + 1)!
(2k + 2)!(2k + 1)!n! (imh)2k+1−n + o((mh)2k+1−n),

(88)

where p(m)
n is the projection of eimhy/2 onto φn(y). �
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