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Abstract
This paper is concerned with sample path properties of real-valued isotropic Gaussian
fields on compact two-point homogeneous spaces. In particular, we establish the prop-
erty of strong local nondeterminism of an isotropic Gaussian field and then exploit
this result to establish an exact uniform modulus of continuity for its sample paths.

Keywords Isotropy · Jacobi polynomial · Strong local nondeterminism · Uniform
modulus of continuity
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1 Introduction

The regularity and fractal properties of sample paths of Gaussian random fields have
been studied extensively by many authors, for example [2, 13, 18, 35, 37–39], [28,
42, 48, 49, 51–53], but the index set of the random fields is typically restricted to be
the Euclidean space Rd . In many of the aforementioned references, the properties of
strong local nondeterminism (SLND) have played important roles in studies of the
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exact regularity properties, fractal measure functions, multifractal analysis (e.g., the
set of the fast points), local times of Gaussian random fields. Moreover, the properties
of strong local nondeterminism are also closely related to the prediction theory of
Gaussian random fields in spatial statistics (cf. [44–46]). Recently, the investigation
of sample path properties of random fields over the unit sphere S2 has been conducted
by [19], [20], [22]. The main result of [19] provides a sufficient condition in terms
of the angular power spectrum for an isotropic spherical Gaussian random field on
S
2 to have the property of strong local nondeterminism. As an application of SLND,

[19, Theorem 2] establishes the exact uniform modulus of continuity of the isotropic
spherical Gaussian random field. Their result is much more precise than the Hölder
continuity proved in [22, Theorem 4.5].

This paper is concerned with isotropic Gaussian random fields on a d-dimensional
compact two-point homogeneous space M

d . Our main objective is to extend the
method in [19] from the setting of S2 to M

d and provide a condition in terms of the
angular power spectrum for an isotropic Gaussian random field to be strongly local
nondeterministic. This latter property is not only useful for studying precise sample
path properties (we show this by proving the exact uniform modulus of continuity)
but also important for prediction theory of isotropic Gaussian random fields on M

d ,
which will be studied separately.

It is well known that Md is a compact Riemannian symmetric space of rank
one and belongs to one of the following five families ([17], [50]): the unit spheres
S
d (d = 1, 2, . . .), the real projective spaces P

d(R) (d = 2, 4, . . .), the complex
projective spaces P

d(C) (d = 4, 6, . . .), the quaternionic projective spaces P
d(H)

(d = 8, 12, . . .), and the Cayley elliptic plane P16(Cay) or P16(O). There are at least
two different approaches to the subject of compact two-point homogeneous spaces
[31], including an approach based on Lie algebras and a geometric approach, which
are used in probability and statistics literature [4, 15, 33, 41]. All compact two-point
homogeneous spaces share the same property that all geodesics in a given one of these
spaces are closed and have the same length [15]. In particular, when the unit sphere
S
d is embedded into the space Rd+1, the length of any geodesic line is equal to that

of the unit circle, that is, 2π . In what follows, the distance ρ(x1, x2) between two
points x1 and x2 on M

d is defined in such a way that the length of any geodesic line
on allMd is equal to 2π , or the distance between any two points is bounded between
0 and π , i.e., 0 ≤ ρ(x1, x2) ≤ π . Over Sd , for instance, ρ(x1, x2) is defined by
ρ(x1, x2) = arccos(x′

1x2) for all x1, x2 ∈ S
d , where x′

1x2 is the inner product between
x1 and x2. Expressions of ρ(x1, x2) on other spaces may be found in [6] and [24].

Gaussian random fields on M
d have been studied in [4, 9, 15, 26, 31, 33], among

others, while theoretical investigations and practical applications of scalar and vector
random fields on spheres may be found in [4, 7, 11, 15, 23, 29, 30, 33, 34], [55–57].
A series representation for a real-valued isotropic Gaussian random field on M

d is
presented in [33, Chapter 2]. More generally, a series representation is provided in
[31] for a vector random field that is isotropic and mean square continuous onMd and
stationary on a temporal domain, and a general form of the covariance matrix function
is derived for such a vector random field, which involve Jacobi polynomials and the
distance defined on M

d . Parametric and semiparametric covariance matrix structures
onMd are constructed in [26].
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Table 1 Parameters α and β

associated with Jacobi
polynomials overMd

M
d α β

S
d , d = 1, 2, … d−2

2
d−2
2

P
d (R), d = 2, 3, … d−2

2 − 1
2

P
d (C), d = 4, 6, … d−2

2 0

P
d (H), d = 8, 12, … d−2

2 1

P
16(Cay) 7 3

A second-order random field Z = {Z(x), x ∈ M
d} is called stationary (homo-

geneous) and isotropic, if its mean function EZ(x) does not depend on x, and its
covariance function,

cov(Z(x1), Z(x2)) = E[(Z(x1) − EZ(x1))(Z(x2) − EZ(x2))], x1, x2 ∈ M
d ,

depends only on the distanceρ(x1, x2) between x1 and x2.Wedenote such a covariance
function byC(ρ(x1, x2)), x1, x2 ∈ M

d , and call it an isotropic covariance function on
M

d . An isotropic random field {Z(x), x ∈ M
d} is said to be mean square continuous

if

E|Z(x1) − Z(x2)|2 → 0, as ρ(x1, x2) → 0, x1, x2 ∈ M
d .

It implies the continuity of the associated covariance function in terms of ρ(x1, x2).
For a real-valued isotropic and mean square continuous random field on M

d , its
covariance function is of the form ([26], [31])

C(ρ(x1, x2)) =
∞∑

n=0

bn p
(α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ M

d , (1)

where {bn, n ∈ N0} is a summable sequence of nonnegative constants (N0 denotes the
set of nonnegative integers), p(α,β)

0 (x) ≡ 1 and

p(α,β)
n (x) = P(α,β)

n (x)

P(α,β)
n (1)

, x ∈ R, n ∈ N.

Here and in what follows,

P(α,β)
n (x) = Γ (α+n+1)

n!Γ (α+β+n+1)

n∑
k=0

(n
k

)Γ (α+β+n+k+1)
Γ (α+k+1)

( x−1
2

)k
,

x ∈ R, n ∈ N0,

(2)
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are the Jacobi polynomials [47] with specific pair of parameters α and β given in Table
1, and Γ (x) represents the Gamma function. It is known that |p(α,β)

n (x)| ≤ 1, and

P(α,β)
n (1) = Γ (α + n + 1)

n!Γ (α + 1)
. (3)

On the other hand, if C(ρ(x1, x2)) is a function of the form (1), then there exists a
real-valued isotropic Gaussian randomfield onMd withC(ρ(x1, x2)) as its covariance
function [26], [31].

Many of the probabilistic and regularity properties of {Z(x), x ∈ M
d} are deter-

mined by the property of the coefficient sequence {bn, n ∈ N0} in (1). For instance,
a necessary and sufficient condition obtained in [10] for the covariance function
C(ρ(x1, x2)) to be strictly positive definite on M

d = S
d (d ≥ 2) is that there are

infinitely many positive b2n’s and infinitely many positive b2n+1’s in (1), and a neces-
sary and sufficient condition onMd 	= S

d is that [5] there are infinitely many positive
bn’s in (1). Otherwise, there exist an integer m ≥ 1, xi ∈ M

d and nonzero ai ∈ R

(i = 0, . . . ,m) such that var
( m∑
i=0

ai Z(xi )
)

= 0, or, equivalently,
m∑
i=0

ai Z(xi ) equals

a constant with probability 1 so that a linear (deterministic) relationship exists among
Z(x0), . . . , Z(xm). It implies that the mean square prediction error vanishes when
Z(x0) is predicted via the linear combination of others. Thus, a necessary condition
for {Z(x), x ∈ M

d} to have the property of local nondeterminism is to keep infinitely
many bn’s in (1) away from zero, while the only known sufficient conditions in the
literature are those on S

2 in [19]. We refer the readers to Ref. [19] and [51] for a
detailed description of the property of strong local nondeterminism over Rd as well
as S2.

The property of strong local nondeterminism is established in this paper under an
asymptotic condition on {bn, n ∈ N0} for an isotropic, mean square continuous, and
centered Gaussian random field {Z(x), x ∈ M

d}. The Gaussian setting is highlighted
here, because of the following identity for the conditional variance of Z(x) given
Z(x1), . . . , Z(xm),

var(Z(x)|Z(x1), . . . , Z(xm)) = inf E

(
Z(x) −

m∑

i=1

ai Z(xi )
)2

, (4)

where the infimum is taken over all (a1, . . . , am)′ ∈ R
m . Notice that the right-hand side

of (4) may be interpreted as the mean square prediction error, when one tries to predict
Z(x) through the linear combination of Z(x1), . . . , Z(xm). A positive lower bound
in terms of the locations x, x1, . . . , xm for var(Z(x)|Z(x1), . . . , Z(xm)) obtained in
Theorem 1 of [19] reflects a property of strong local nondeterminism, in the particular
case ofMd = S

d and d = 2. In this paper, we pursue this line of investigation further
from S

2 to M
d . In particular, we establish a property of strong local nondeterminism

in Sect. 2 for a large class of isotropic Gaussian fields on M
d . As an application of

the SLND property, we determine the exact uniform modulus of continuity of the
sample function Z(x) in Sect. 3. This result extends that of [19] from S

2 to M
d and
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significantly improves theHölder continuity for Z(x) in [9, Corollary 5.3]; see Remark
2 for a comparison of these two results. Finally, the proofs of propositions and theorems
are given in Sect. 4.

2 Strong Local Nondeterminism

In what follows let α = d−2
2 , and let β be given in the last column of Table 1 associated

with α. Our focus is on a Gaussian random field {Z(x), x ∈ M
d} that is isotropic and

mean square continuous on M
d , whose covariance function is known ([26], [31]) to

be of the form (1). The main result of this section is Theorem 1, which establishes the
property of strong local nondeterminism for {Z(x), x ∈ M

d} under certain asymptotic
condition on the coefficient sequence {bn, n ∈ N0} in (1). In the particular case of
M

d = S
d and d = 2, the SLND property was derived in [19].

Theorem 1 Suppose that {Z(x), x ∈ M
d} is a real-valued isotropic and mean square

continuous Gaussian random field with mean 0 and covariance function (1), where
{bn, n ∈ N0} is a summable sequence with nonnegative terms. If there are n0 ∈ N and
positive constants ν and γ1, such that

bn(n + 1)ν+1 ≥ γ1, ∀ n ≥ n0, (5)

then there is a positive constant γ such that the inequality

var(Z(x)|Z(x1), . . . , Z(xm)) ≥ γ

(
min

1≤i≤m
ρ(x, xi )

)ν

(6)

holds for all m ∈ N and all x, xi ∈ M
d (i = 1, . . . ,m).

Remark 1 The following are some remarks about Theorem 1.

(i) Inequality (6)was obtained in [19] in the particular case ofMd = S
2 and ν ∈ (0, 2],

where the condition (A) requires both lower bound and upper bound on bn’s for

large n. In contrast, (5) is just a lower bound on bn’s, while the series of
∞∑
n=0

bn is

assumed to be convergent.
(ii) Inequality (5) implies that {bn, n ∈ N0} is away from zero for all large n ∈ N. In

this case, the covariance function (1) of {Z(x), x ∈ M
d} is strictly positive definite

[5].
(iii) It follows from (6) and Proposition 3 that the lower bound in (6) is optimal under

(12) with ν ∈ (0, 2). In this case, the SLND is a useful tool for studying var-
ious regularity and fractal properties of {Z(x), x ∈ M

d}. See Sect. 3 for more
information.

(iv) When ν ≥ 2, the lower bound in (6) is not optimal as shown by Lemma 4 in [19]
for the special case of Md = S

d and d = 2. As far as we know, an optimal lower
bound for var(Z(x)|Z(x1), . . . , Z(xm)) is not known when ν ≥ 2.
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To prove Theorem 1, we will make use of Propositions 1 and 2. Proposition 1 is
quite interesting in its own right, since D is an arbitrary index set.

Proposition 1 If C(x1, x2) is a covariance function on D, then so is the function
C(x0, x0)C(x1, x2) − C(x1, x0)C(x2, x0), x1, x2 ∈ D, for any fixed point x0 ∈ D.

For a continuous function g(θ) on [0, π ], we expand it in terms of the Jacobi
polynomials [47] as follows

g(θ) =
∞∑

n=0

b(α,β)
n (g)p(α,β)

n (cos θ), θ ∈ [0, π ], (7)

where the coefficients b(α,β)
n (g) are given by

b(α,β)
n (g) = (2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + β + 1)Γ (α + 1)

×
∫ π

0
g(x)P(α,β)

n (cos x) sin2α+1
( x
2

)
cos2β+1

( x
2

)
dx, n ∈ N0.

(8)

In the proof of Proposition 2, we actually construct a specific function gε(θ) that
satisfies the following properties (i) - (iii). Such a function is termed as a spherical
bump function [19] in the case of Md = S

d and d = 2.

Proposition 2 For any constants r > 1, n0 ∈ N, and parameters α and β associated
with M

d as listed in Table 1, there exists a positive constant Mr such that, for any
ε ∈ (0, π ], there is a continuous function gε(θ) on [0, π ] that satisfies
(i) gε(0) = 1, and gε(θ) = 0 for ε ≤ θ ≤ π ,
(ii) b(α,β)

n (gε) = 0 for 0 ≤ n < n0,
(iii) |b(α,β)

n (gε)| ≤ Mrε(1 + nε)−r .

The proofs of Propositions 1 and 2 and Theorem 1 are presented in Sect. 4.

3 Modulus of Continuity

As we have mentioned in Introduction, the property of strong local nondeterminism
plays important roles for studying precise regularity and fractal properties, multifractal
analysis, local times, and prediction theory of Gaussian random fields. It would be
interesting to apply Theorem 1 to study these problems for isotropic Gaussian random
fields on compact two-point homogeneous spaces.

In this section, as an application of Theorem 1, we determine the exact uniform
modulus of continuity of {Z(x), x ∈ M

d} on M
d . Theorem 2 extends Theorem 2 of

[19] from S
2 toMd and improves Corollary 5.3 in [9] significantly (see Remark 2 for

details).
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Theorem 2 Assume that {Z(x), x ∈ M
d} is a real-valued isotropic and mean square

continuous Gaussian random field with mean 0 and covariance function (1). If there
are n0 ∈ N and positive constants γ1, γ2 and ν ∈ (0, 2), such that

γ1 ≤ bn(n + 1)ν+1 ≤ γ2, ∀ n ≥ n0, (9)

then there is a positive and finite constant κ such that, with probability 1,

lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|Z(x1) − Z(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| = κ. (10)

Remark 2 We compare Theorem 2 with the regularity property of {Z(x), x ∈ M
d}

proved in [9]. Proposition 5.1 of [9] characterizes the Hölder regularity of the
covariance function (1). Combining this with the Kolmogorov–Chentsov theorem for
Riemannian Manifolds in [21], Cleanthous et al. [9, Corollary 5.3] proved the Hölder
continuity of the sample function Z(x). Under our condition (9), condition (5.1) in
[9] is satisfied for every constant N < ν

2 . Hence, it follows from Corollary 5.3 in [9]
(Notice that N in (5.1) is written as η in Corollary 5.3) that for any 0 < γ < ν

2 ,

sup
x1,x2∈Md

|Z(x1) − Z(x2)|
ρ(x1, x2)γ

< ∞, a.s.

This only provides an upper bound for the uniform modulus of continuity of Z(x),
which is larger than ρ(x1, x2)ν/2√| ln ρ(x1, x2)|, at least when ρ(x1, x2) is sufficiently
small. Meanwhile, (10) provides an exact uniform modulus of continuity of Z(x) on
M

d . We remark that (10) cannot be proved by applying the Kolmogorov–Chentsov
theorem as in [9]. Our method of proof, as well as that in [19], is based on the Gaussian
techniques (cf. [2]), the property of strong local nondeterminism, and a conditioning
argument from Meerschaert et al. [37].

For a centered isotropic Gaussian random field {Z(x), x ∈ M
d} with covariance

function C(ρ(x1, x2)) given by (1), its variogram is

γ (x1, x2) = 1

2
E(Z(x1)−Z(x2))2 =

∞∑

n=0

bn(1− p(α,β)
n (cos ρ(x1, x2))), x1, x2 ∈ M

d .

(11)
Under the assumption (9) on the coefficients {bn, n ∈ N0} in (1), we obtain upper
and lower bounds for the variogram of the Gaussian random field {Z(x), x ∈ M

d} in
terms of the distance function over Md in Proposition 3, which will be employed to
prove Theorem 2. Some related asymptotic relationships between {bn, n ∈ N0} and
the variogram may be found in [32]. Under a stronger condition than (9), the upper
bound in (12) is also obtained in [9, Proposition 5.2].

Proposition 3 For a real-valued isotropic and mean square continuous Gaussian ran-
dom field {Z(x), x ∈ M

d} with mean 0 and covariance function (1), if (9) holds for
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a fixed n0 ∈ N and positive constants γ1, γ2, and ν ∈ (0, 2), then there are positive
constants δ0, K1 and K2 such that

K1ρ(x1, x2)ν ≤ E (Z(x1) − Z(x2))2 ≤ K2ρ(x1, x2)ν (12)

holds for all x1, x2 ∈ M
d with ρ(x1, x2) ≤ δ0.

Proposition 3 implies that many regularity and fractal properties of {Z(x), x ∈
M

d} are determined by the index ν. For example, the upper bound in (12) and the
Kolmogorov–Chentsov theorem together imply that Z(x) is Hölder continuous of any
order less than ν

2 , as having proved in [9, Corollary 5.3]. It can also be shown in
a standard way that the Hausdorff dimension of the trajectory (the graph set) of Z ,
GrZ(Md) = {(x, Z(x)), x ∈ M

d} ⊆ M
d × R, is given by

dimH GrZ(Md) = d + 1 − ν

2
, a.s.,

where dimH denotes Hausdorff dimension [12]. Because of these results, we call ν
2

the fractal index of the random field {Z(x), x ∈ M
d}. When one uses such a random

field as a statistical model to fit data sampled from values defined on M
d , it will be

important to estimate the fractal index ν
2 . We refer to [36] for more information on

statistical inference of randomfields on the sphere and to [6] for general nonparametric
theory of statistics on manifolds.

Remark 3 If (9) holds for some ν > 2, we believe that the sample function of {Z(x),
x ∈ M

d} is continuously differentiable and it would be interesting to study its topo-
logical properties and excursion probabilities (see [2] for more information). We will
not pursue this open problems in the present paper.

Next we give two examples of isotropic covariance functions on M
d and derive

their expansions of the form (1). The covariance function in Example 1 satisfies (9),
one of two functions in Example 2 satisfies (9), but the other does not. In what follows
bn ∼ an means that lim

n→∞
bn
an

= 1.

Example 1 For ν ∈ (0, 2], it is shown in Example 4 of [26] that

C(ρ(x1, x2)) = 1 −
(
sin

ρ(x1, x2)
2

)ν

, x1, x2 ∈ M
d ,

is the covariance function of an isotropic Gaussian randomfield onMd . For ν ∈ (0, 2),
it can be shown that

b(α,β)
n ∼ −2Γ

(
α + ν

2 + 1
)

Γ (α + 1)Γ
(− ν

2

)
nν+1

,
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after the coefficients in (1) are found. In fact, applying the formula (8) to C(x) =
1 − (

sin x
2

)ν , the coefficients in (1) are

b(α,β)
n = (2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + β + 1)Γ (α + 1)∫ π

0
C(x)P(α,β)

n (cos x) sin2α+1
( x
2

)
cos2β+1

( x
2

)
dx

= (2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + β + 1)Γ (α + 1){∫ π

0
P(α,β)
n (cos x) sin2α+1

( x
2

)
cos2β+1

( x
2

)
dx

−
∫ π

0
P(α,β)
n (cos x) sin2α+ν+1

( x
2

)
cos2β+1

( x
2

)
dx

}

= (2n + α + β + 1)Γ (n + α + β + 1)

2Γ (n + β + 1)Γ (α + 1)

{∫ 1

−1
P(α,β)
n (y)

(
1 − y

2

)α (
1 + y

2

)β

dy

−
∫ 1

−1
P(α,β)
n (y)

(
1 − y

2

)α+ ν
2
(
1 + y

2

)β

dy

}

= (2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + β + 1)Γ (α + 1)

{
Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
δn0

− Γ
(
α + ν

2 + 1
)
Γ (β + n + 1)Γ

(
n − ν

2

)

Γ (n + 1)Γ
(− ν

2

)
Γ

(
α + β + ν

2 + n + 2
)
}

, n ∈ N0,

where the third equality is obtained by making the transform y = cos x , the last one

from formulas (7.391.1) and (7.391.4) of [16], and δn0 =
{
1, n = 0,
0, n ∈ N.

Example 2 Let

g1(x) = (π − x)2, g2(x) = 2π2(π − x)2 − (π − x)4, x ∈ [0, π ].

In the following, we show that the functions g1(ρ(x1, x2)) and g2(ρ(x1, x2)) are
covariance functions of isotropic Gaussian random fields onMd . For β = − 1

2 , apply-
ing formula (8) and integrating by parts we get

b

(
α,− 1

2

)

n (g1) = 2
√

πΓ (n)

nΓ (n + 1
2 )

2n + α + 1

n + α + 1
2

Γ (α + 3
2 )Γ (n + α + 1)

Γ (α + 1)Γ (n + α + 3
2 )

,

and

b

(
α,− 1

2

)

n (g2) = 12b

(
α,− 1

2

)

n (g1)

( ∞∑

k=0

1

(n + k)2
−

∞∑

k=0

1

(n + k + α + 3
2 )

2

)
, n ∈ N0.
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Therefore,

lim
n→∞ n2b

(
α,− 1

2

)

n (g1) = 4
√

πΓ
(
α + 3

2

)

Γ (α + 1)
, lim

n→∞ n4b

(
α,− 1

2

)

n (g2) =
48

√
πΓ

(
α + 5

2

)

Γ (α + 1)
.

Following Example 1 of [26], it can be shown that g1(ρ(x1, x2)) is a positive definite
function on all Md , which implies that their asymptotic spectral coefficients are the
same on all Md with the same dimension d, i.e.,

lim
n→∞ n2b(α,β)

n (g1) = 4
√

πΓ
(
α + 3

2

)

Γ (α + 1)
.

Similar conclusion applies to g2(x), and

lim
n→∞ n4b(α,β)

n (g2) =
48

√
πΓ

(
α + 5

2

)

Γ (α + 1)
.

Since the spectral coefficients for g1(ρ(x1, x2)) and g2(ρ(x1, x2)) decay at the rates
n−2 and n−4, respectively, the corresponding Gaussian random fields onMd have the
SLND properties with ν = 1 and ν = 3, respectively, in Theorem 1.

4 Proofs

In this section, we provide proofs for our main results, in the order of Propositions 1-3
and Theorems 1-2.

4.1 Proof of Proposition 1

Suppose that C(x1, x2) is the covariance function of a Gaussian random field {Z(x),
x ∈ D}. For every n ∈ N, any xk ∈ D and any ak ∈ R (k = 1, . . . , n), by applying the
Cauchy–Schwarz inequality we obtain

{
E

(
(Z(x0) − EZ(x0))

n∑

k=1

ak(Z(xk) − EZ(xk))

)}2

≤ var(Z(x0)) var

(
n∑

k=1

ak(Z(xk) − EZ(xk))

)
,

or

n∑

i=1

n∑

j=1

aia jC(xi , x0)C(x j , x0) ≤ C(x0, x0)
n∑

i=1

n∑

j=1

aia jC(xi , x j ).

123



Journal of Theoretical Probability (2023) 36:2403–2425 2413

This implies that C(x0, x0)C(x1, x2) − C(x1, x0)C(x2, x0), xi , x2 ∈ D, is a positive
definite function and thus is a covariance function on D.

4.2 Proof of Proposition 2 (Construction of a Bump Function)

Given constants r > 1, n0 ∈ N, and a manifoldMd with parameters α and β as given
in Table 1, we construct the following function gε(θ) on [0, π ],

gε(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

φ

(
sin θ

2
sin ε

2

)
, if β is an integer,

cos
(

θ
2

)
φ

(
sin θ

2
sin ε

2

)
, if β − 1

2 is an integer,
(13)

where

φ(x) =
{

(1 − x2)R+
P2K (x)
P2K (0) , if d is odd,

(1 − x2)R+PK (1 − 2x2), if d is even,

in which y+ = (y + |y|)/2, R and K are integers such that

R ≥ r + α − 1

2
, K = n0 + R + �α� + �β�,

and PK (x) is the Legendre polynomial of degree K .
Notice that gε(θ) also depends on α, β, n0, and r . We will show that this function

satisfies the conditions (i), (ii), and (iii) in Proposition 2. It is clear that gε(θ) is
continuous on [0, π ], gε(0) = 1, and gε(θ) = 0 for θ ≥ ε, so the condition (i) is
satisfied.

For an odd d, β + 1
2 is an integer, as is seen from Table 1. Making the transform

y = sin θ
2/ sin ε

2 , we obtain

∫ π

0
gε(θ)P(α,β)

n (cos θ) sin2α+1
(

θ

2

)
cos2β+1

(
θ

2

)
dθ

=
∫ ε

0
cos

(θ

2

)(
1 − sin2 θ

2

sin2 ε
2

)R P2K
(
sin θ

2
sin ε

2

)

P2K (0)
P(α,β)
n (cos θ) sin2α+1

(θ

2

)
cos2β+1

(θ

2

)
dθ

= 2 sin2α+2 ε
2

P2K (0)

∫ 1

0
(1 − y2)R y2α+1

(
1 − y2 sin2

ε

2

)β+ 1
2
P2K (y)P(α,β)

n

(
1 − 2y2 sin2

ε

2

)
dy

=
∫ 1

−1
P2K (y)h1(y

2)dy,
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where

h1(y
2) = sin2α+2 ε

2

P2K (0)
(1 − y2)R y2α+1

(
1 − y2 sin2

ε

2

)β+ 1
2
P(α,β)
n

(
1 − 2y2 sin2

ε

2

)

is a polynomial of y of degree 2n + 2R + 2α + 2β + 1. For 0 ≤ n < n0, we have

2K = 2n0 + 2R + 2α + 2β + 1 > 2n + 2R + 2α + 2β + 1,

so that
∫ 1
−1 P2K (y)h1(y2)dy = 0 by the orthogonality of the Legendre polynomial. It

implies that b(α,β)
n (gε) = 0 for 0 ≤ n < n0.

For an even d and β 	= − 1
2 , α and β are integers, as is seen fromTable 1. Bymaking

the transform y = sin θ
2/ sin ε

2 and followed by a change of variable w = 1− 2y2, we
obtain

∫ π

0
gε(θ)P(α,β)

n (cos θ) sin2α+1 θ

2
cos2β+1 θ

2
dθ

=
∫ ε

0

(
1 − sin2 θ

2

sin2 ε
2

)R

PK

(
1 − 2 sin2 θ

2

sin2 ε
2

)
P(α,β)
n (cos θ) sin2α+1 θ

2
cos2β+1 θ

2
dθ

= 2 sin2α+2 ε

2

∫ 1

0
(1 − y2)R y2α+1

(
1 − y2 sin2

ε

2

)β

PK
(
1 − 2y2

)
P(α,β)
n

(
1 − 2y2 sin2

ε

2

)
dy

= 1

2
sin2α+2 ε

2

∫ 1

−1

(
1 + w

2

)R (
1 − w

2

)α (
1 − 1 − w

2
sin2

ε

2

)β

× PK (w)P(α,β)
n

(
1 − (1 − w) sin2

ε

2

)
dw

=
∫ 1

−1
PK (w)h2(w)dw,

where h2(w) is the polynomial of degree of n + R + α + β defined by

h2(w) = 1

2
sin2α+2 ε

2

(
1 + w

2

)R (
1 − w

2

)α (
1 − 1 − w

2
sin2

ε

2

)β

× P(α,β)
n

(
1 − (1 − w) sin2

ε

2

)
.

For 0 ≤ n < n0, it follows from the orthogonality of the Legendre polynomials and
K = n0 + R + α + β > n + R + α + β that

∫ 1
−1 PK (w)h2(w)dw = 0 and thus

b(α,β)
n (gε) = 0. Therefore the condition (ii) is satisfied for all cases.
Now we prove |b(α,β)

n (gε)| ≤ Mrε(1+nε)−r for some Mr > 0. By Theorem 8.1.1
of [47],

lim
n→∞

( x

2n

)α

P(α,β)
n

(
cos

x

n

)
= Jα(x),
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where Jα(x) is the Bessel function of the first kind, we have

lim
ε→0, nε=k

b(α,β)
n (gε)

ε
= 2k2α+1

Γ (α + 1)
I α
k (φ), (14)

where

I α
k (φ) =

∫ 1

0
φ(y)

Jα(ky)

kα

( y

2

)α+1
dy.

In particular, for α = − 1
2 ,

I
− 1

2
k (φ) = 1√

π

∫ 1

0
φ(y) cos(ky)dy.

Since φ(y) is an even polynomial with derivatives up to order R − 1 vanishing at 1,
integration by parts gives

I
− 1

2
k (φ) = 1√

πkR+1

(
φ(R)(1)gR(k) −

∫ 1

0
φ(R+1)(y)gR(ky)dy

)
,

where

gR(y) =
{

(−1)�R/2� sin(y), if R is even,
(−1)�R/2� cos(y), if R is odd.

For α = 0, integrating by parts and using the derivative formulas,

(J1(x)x)
′ = J0(x)x, J0(x)

′ = −J1(x),

we get

I 0k (φ) = 1

2

∫ 1

0
φ(y)J0(ky)ydy

= 1

2kR+1

(
φR(1)hR(k) −

∫ 1

0
φR+1(y)hR(ky)ydy

)
,

where

hR(y) =
{

(−1)�R/2� J1(y), if R is even,
(−1)�R/2� J0(y), if R is odd,

and φm(y) are defined recursively by φ0(y) = φ(y), and for m ≥ 0,

φ2m+1(y) = φ′
2m(y), φ2m+2(y) = (yφ2m+1(y))

′/y,
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which are well defined since φ(y) is an even polynomial. For higher dimensions, using
the derivative formula (Jα(x)/xα)′ = −Jα+1(x)/xα , we get

I α+1
k (φ) = − d

2kdk
I α
k (φ).

For large k,

I α
k (φ) =

⎧
⎨

⎩

φ(R)(1)
√

πkR+1(−2k)α+ 1
2

(
gR+α+ 1

2
(k) + O

( 1
k

))
, odd-dimensional Md ,

φR(1)
2kR+1(−2k)α

(
hR+α(k) + O

( 1
k

))
, even-dimensional Md .

Notice that for even-dimensionalMd , the derivatives of φ up to order R − 1 vanish at
1, so φR(1) = φ(R)(1). Using the asymptotic form of Bessel functions,

Jα(z) =
√

2

π z

(
cos(z − α

2
π − π

4
) + O

(
1

z

))
,

we get the unified asymptotic form of I α
k (φ),

I α
k (φ) = φ(R)(1)√

2π2αkR+α+ 3
2

(
sin(k + π

2
(R − α − 1

2
)) + O

(
1

k

))
.

Substituting it in Eq. (14), we see that there is a constant C1 > 0 such that for large
k = nε,

|b(α,β)
n (gε)| ≤ C1ε

2k2α+1

Γ (α + 1)

|φ(R)(1)|√
2π2αkR+α+ 3

2

= C121−α|φ(R)(1)|
Γ (α + 1)

√
2π

εk−(R+ 1
2−α)

≤ C121−α|φ(R)(1)|
Γ (α + 1)

√
2π

ε(nε)−r .

On the other hand, by Eq. (8), there exists C2 > 0, such that for any n > 0 and ε > 0,

|b(α,β)
n (gε)| = (2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + β + 1)Γ (α + 1)
P(α,β)
n (1)

×
∫ ε

0
gε(θ)p(α,β)

n (cos θ) sin2α+1
(

θ

2

)
cos2β+1

(
θ

2

)
dθ

≤ C2ε(nε)2α+1.

Therefore there exists Mr > 0 such that |b(α,β)
n (gε)| ≤ Mrε(1 + nε)−r .
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4.3 Proof of Proposition 3 (Estimation of the Variogram)

To show (12), we apply the following recurrence relation of the Jacobi polynomials
[47],

p(α,β)
n (cos θ) − p(α,β)

n+1 (cos θ) = 2n + α + β + 2

α + 1
p(α+1,β)
n (cos θ) sin2

θ

2
.

It is known that |p(α,β)
n (x)| ≤ 1 for x ∈ [−1, 1], which gives that for all 0 ≤ θ ≤ π ,

1 − p(α,β)
n (cos θ) =

n−1∑

j=0

(p(α,β)
j (cos θ) − p(α,β)

j+1 (cos θ))

=
n−1∑

j=0

2 j + α + β + 2

α + 1
p(α+1,β)
j (cos θ) sin2

θ

2

≤ n(n − 1) + (α + β + 2)n

α + 1
sin2

θ

2

≤ K1 n
2θ2

for some constant K1 > 0 that depends only on α and β. Hence, for θ = ρ(x1, x2),
by (11) and the condition that 0 < ν < 2 and bn(n + 1)ν+1 ≤ γ2, we obtain

E(Z(x1) − Z(x2))2 = 2
∞∑

n=0

bn
(
1 − p(α,β)

n (cos θ)
)

≤ 2
∑

0≤n<1/θ

bnK1n
2θ2 + 4

∑

n≥1/θ

bn

≤ 2γ2
∑

1≤n<1/θ

K1n
1−νθ2 + 4γ2

∑

n≥1/θ

n−ν−1

≤ K2θ
ν,

(15)

for some finite constant K2 > 0. For obtaining the last inequality, we have used
integrals to bound the two sums from above. This proves the upper bound in (12).

On the other hand, the lower bound in (12) follows from Theorem 1 because

E(Z(x1) − Z(x2))2 ≥ var(Z(x1)|Z(x2)) ≥ γρ(x1, x2)ν.

Alternatively, it can be proved in the following elementary way. For θ ∈ [0, π ],

p(α,β)
n (cos θ) =

n∑

m=0

(−1)m
(
n

m

)
Γ (n + α + β + m + 1)Γ (α + 1)

Γ (n + α + β + 1)Γ (α + m + 1)
sin2 m

θ

2
.
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Let

g(θ) = 1 − p(α,β)
n (cos θ)

sin2 θ
2

= n(n + α + β + 1)

α + 1

−
n∑

m=2

(−1)m
(
n

m

)
Γ (n + α + β + m + 1)Γ (α + 1)

Γ (n + α + β + 1)Γ (α + m + 1)
sin2m−2 θ

2
.

We will bound g(θ) from below. Since

(
n

m

)
Γ (n + α + β + m + 1)Γ (α + 1)

Γ (n + α + β + 1)Γ (α + m + 1)
sin2m−2 θ

2

≤ (n + α + β + m)2mΓ (α + 1)

m!Γ (α + m + 1)

(θ

2

)2m−2
,

for any ε > 0, there exists δ > 0 such that for n ≥ α + β + 1 and 0 ≤ nθ ≤ δ,

n∑

m=2

(n + α + β + m)2mΓ (α + 1)

m!Γ (α + m + 1)

(θ

2

)2m−2 ≤
n∑

m=2

4n2(nθ)2m−2Γ (α + 1)

m!Γ (α + m + 1)
≤ n2ε.

Therefore, there exists K3 > 0 for which

1 − p(α,β)
n (cos θ) = g(θ) sin2

θ

2
≥ K3(nθ)2.

Given that bn ≥ γ1n−ν−1 for large n, there exists K4 > 0 such that

∞∑

n=0

bn
(
1 − p(α,β)

n (cos θ)
)

≥
δ/θ∑

n=α+β+1

K3(nθ)2

nν+1 ≥ K4θ
ν.

4.4 Proof of Theorem 1 (Property of SLND)

Write ε = min
1≤i≤m

ρ(x, xi ). For the Gaussian random field {Z(x), x ∈ M
d}, in order to

verify inequality (6), because of identity (4) it suffices to show that there is a positive
constant γ such that

E

(
Z(x) −

m∑

i=1

ai Z(xi )
)2

≥ γ εν, (16)
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holds for all n ∈ N, x, xk ∈ M
d (k = 1, . . . , n) with min

1≤k≤n
ρ(x, xk) > 0 and all

ak ∈ R (k = 1, . . . , n). We have

E

(
Z(x) −

m∑

i=1

ai Z(xi )
)2

= C(x, x) − 2
m∑

i=1

aiC(x, xi ) +
n∑

i=1

n∑

j=1

ai a jC(xi , x j )

=
∞∑

n=0

bn

⎡

⎣1 − 2
m∑

i=1

ai p
(α,β)
n (cos ρ(x, xi )) +

m∑

i=1

m∑

j=1

ai a j p
(α,β)
n (cos ρ(xi , x j ))

⎤

⎦

=
∞∑

n=0

bn

⎡

⎣
(
1 −

m∑

i=1

ai p
(α,β)
n (cos ρ(x, xi ))

)2

+
m∑

i=1

m∑

j=1

ai a j
(
p(α,β)
n (cos ρ(xi , x j )) − p(α,β)

n (cos ρ(x, xi ))p
(α,β)
n (cos ρ(x, x j ))

)
⎤

⎦

≥
∞∑

n=0

bn

(
1 −

m∑

i=1

ai p
(α,β)
n (cos ρ(x, xi ))

)2
,

where the last inequality holds since, for every n ∈ N,

m∑

i=1

m∑

j=1

aia j

(
p(α,β)
n (cos ρ(xi , x j )) − p(α,β)

n (cos ρ(x, xi ))p(α,β)
n (cos ρ(x, x j ))

)
≥ 0,

which is due to Proposition 1, while p(α,β)
n (cos ρ(x1, x2)) is known to be a covariance

function on M
d by Lemma 3 of [31].

For a continuous function gε(θ) on [0, π ] satisfying conditions (i)-(iii) in Proposi-
tion 2 with r > 1 + ν

2 , we consider

I =
∞∑

n=0

b(α,β)
n (gε)

(
1 −

m∑

k=1

ak p
(α,β)
n (cos ρ(x, xk))

)
.

On one hand, it follows from ρ(x, xk) ≥ ε and Proposition 2 (i) that gε(ρ(x, xk)) = 0
(k = 1, . . . ,m), so that

I =
∞∑

n=0

b(α,β)
n (gε) −

m∑

k=1

ak

∞∑

n=0

b(α,β)
n (gε)p

(α,β)
n (cos ρ(x, xk))

= gε(0) −
m∑

k=1

akgε(ρ(x, xk))

= 1.
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On the other hand, an application of the Cauchy–Schwarz inequality yields that

I 2 =
{ ∞∑

n=n0

b(α,β)
n (gε)√

bn

√
bn

(
1 −

m∑

k=1

ak p

(
d−1
2

)

n (cos ρ(x, xk))
)}2

≤
∞∑

n=n0

(
bnl(α,β)(gε)

)2

bn

∞∑

n=n0

bn

(
1 −

m∑

k=1

ak p
(α,β)
n (cos ρ(x, xk))

)2

≤ 1

Mrεν

∞∑

n=n0

bn

(
1 −

m∑

k=1

ak p

(
d−1
2

)

n (cos θ(x, xk))
)2

,

where the last inequality follows from |b(α,β)
n (gε)| ≤ Mrε(nε + 1)−r by Proposition

2 (iii), bn(n + 1)ν+1 ≥ K for n ≥ n0 by (5), and

∞∑

n=n0

(
b(α,β)
n (gε)

)2

bn
≤

∞∑

n=0

M2
r ε2(nε + 1)−2r

K (n + 1)−ν−1

≤ M2
r

K
ε2

∫ ∞

0

(1 + x)ν+1

(εx + 1)2r
dx = M2

r

K

ε−ν

2r − ν − 2
.

Consequently, inequality (6) is obtained.

4.5 Proof of Theorem 2 (Exact UniformModulus of Continuity)

We start with the following zero-one law, which is proved by applying the Karhunen–
Loève expansion for Z(x) (cf. [33, Chapter 2]) and Kolmogorov’s zero-one law.

Lemma 1 Let {Z(x), x ∈ M
d} be a real-valued, centered isotropic Gaussian random

field on M
d that satisfies the conditions of Theorem 2. Then there is a constant K ∈

[0,∞] such that

lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|Z(x1) − Z(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| = K , a.s. (17)

Proof Recall fromMalyarenko [33, Chapter 2] that {Z(x), x ∈ M
d} has the following

Karhunen–Loève expansion

Z(x) = Cd

∞∑

l=0

h(Md ,l)∑

m=1

√
bl

h(Md , l)
Xl,mYl,m(x), (18)
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with convergence in L2(Ω, L2(Md)). In the above, Cd =
√

2π(d+1)/2

Γ ((d+1)/2) if Md = S
d

and Cd = 1 in all the other cases in Table 1; h(Md , l) is given by

h(Md , l) = (2l + α + β + 1)Γ (β + 1)Γ (l + α + β + 1)Γ (l + α + 1)

Γ (α + 1)Γ (α + β + 2)l!Γ (l + β + 1)
,

where α and β are the parameters given in Table 1, {bl , l ≥ 0} is the coefficient
sequence in (1), and the sequences {Xl,m} , and {Yl,m} are specified as follows:

– {Xl,m} is a sequence of i.i.d. standard normal random variables.
– {Yl,m} are the eigenfunctions of the Laplace-Beltrami operator ΔMd on M

d , i.e.,

−ΔMd Yl,m = λlYl,m,

where the eigenvalues λl = λl(α, β) = l(l + α + β + 1), for all l ∈ N0.

For every l ≥ 0, the eigenfunctions {Yl,m, 1 ≤ m ≤ h(Md , l)} corresponding to the
same eigenvalue λl form a finite-dimensional vector space of dimension h(Md , l). It is
known that, for every (l,m), the eigenfunction Yl,m(x) is continuously differentiable
and M

d is compact. Recall that ν ∈ (0, 2). Hence for every integer L ≥ 0,

lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|ZL(x1) − ZL(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| = 0, a.s.,

where

ZL(x) = Cd

L∑

l=0

h(Md ,l)∑

m=1

√
bl

h(Md , l)
Xl,mYl,m(x).

Hence for every constant κ1 ≥ 0, the event

Eκ1 =
{
lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|Z(x1) − Z(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| ≤ κ1

}

is a tail event with respect to {Xl,m}. By Kolmogorov’s zero-one law, we have P(Eκ1)

= 0 or 1. This implies (17) with K = sup{κ1 ≥ 0 : P(Eκ1) = 0}. ��
Now we prove Theorem 2.

Proof of Theorem 2 Because of the zero-one law in Lemma 1, it is sufficient to prove
the existence of positive and finite constants K5 and K6 such that

lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|Z(x1) − Z(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| ≤ K5 a.s. (19)
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and

lim
ε→0

sup
x1,x2∈Md

ρ(x1,x2)≤ε

|Z(x1) − Z(x2)|
ρ(x1, x2)ν/2

√| ln ρ(x1, x2)| ≥ K6 a.s. (20)

Theproof of (19) is quite standard.ByProposition 3, the canonicalmetricdZ defined

by dZ (x1, x2) =
√
E
[
(Z(x1) − Z(x2))2

]
satisfies dZ (x1, x2) ≤ K ρ(x1, x2)ν/2 for all

x1, x2 ∈ M
d . This implies that for every ε ∈ (0, π), we have

N (Md , dZ , ε) ≤ K ε− 2d
ν , (21)

where N (Md , dZ , ε) denotes the minimum number of dZ -balls of radius ε that are
needed to cover Md . Hence, (19) follows from (21) and Theorem 1.3.5 in [2].

For any n ≥ n0, we choose a sequence of 2n points {xn,i , 1 ≤ i ≤ 2n} ⊆ M
d

that are equally spaced along a geodesic of length s, where s is an arbitrary positive
constant. Then for every 2 ≤ k ≤ 2n , we have

ρ(xn,k, xn,k−1) = s

2n − 1
. (22)

With the choice of {xn,i , 1 ≤ i ≤ 2n}, we now prove (20) in a way that is similar to
the proof in [19]. Notice that

lim
ε→0

sup
x,y∈Md ,
ρ(x,y)≤ε

|Z(x) − Z(y)|
ρ(x, y)ν/2

√| ln ρ(x, y)| ≥ lim inf
n→∞ max

2≤k≤2n

|Z(xn,k) − Z(xn,k−1)|
2−nν/2

√
n

.

(23)
It is sufficient to prove that, almost surely, the last limit in (23) is bounded below by a
positive constant. This is done by applying the property of strong local nondeterminism
in Theorem 1 and a standard Borel–Cantelli argument.

Let η > 0 be a constant whose value will be chosen later. We consider the events

Am =
{

max
2≤k≤m

∣∣Z(xn,k) − Z(xn,k−1)
∣∣ ≤ η2−nν/2√n

}

for m = 2, 3, . . . , 2n . By conditioning on A2n−1 first, we can write

P
(
A2n

) = P
(
A2n−1

)

× P

{∣∣Z(xn,2n ) − Z(xn,2n−1)
∣∣ ≤ η2−nν/2√n

∣∣A2n−1

}
.

(24)

Recall that, given the random variables in A2n−1, the conditional distribution of
the Gaussian random variable Z(xn,2n ) − Z(xn,2n−1) is still Gaussian, with the corre-
sponding conditional mean and variance as its mean and variance. By Theorem 1 and
(22), there exists γ3 > 0 independent of n such that

var
(
Z(xn,2n ) − Z(xn,2n−1)

∣∣A2n−1
) ≥ γ3 2

−nν.
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This and Anderson’s inequality (see [3]) imply

P

{∣∣Z(xn,2n ) − Z(xn,2n−1)
∣∣ ≤ η2−nν/2√n

∣∣ A2n−1

}

≤ P

{
N (0, 1) ≤ η√

γ3

√
n

}

≤ 1 −
√

γ3

η
√
n
exp

(
− η2n

2γ3

)

≤ exp

(
−

√
γ3

η
√
n
exp

(
− η2n

2γ3

))
.

(25)

In deriving the last two inequalities, we have applied Mill’s ratio and the elementary
inequality 1− x ≤ e−x for x > 0. Iterating this procedure in (24) and (25) for 2n − 1
more times, we obtain

P
(
A2n

) ≤ exp

(
−

√
γ3

η
√
n
2n exp

(
− η2n

2γ3

))
. (26)

By taking η > 0 small enough such that η2 < 2γ3 ln 2, we have
∞∑
n=1

P (A2n ) < ∞.

Hence the Borel–Cantelli lemma implies that

P

(
lim inf
n→∞ max

2≤k≤2n

|Z(xn,k) − Z(xn,k−1)|
2−nν/2

√
n

≥ η

)
= 1.

This finishes the proof of Theorem 2. ��
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