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Abstract
The covariance matrix function is characterized in this paper for a Gaussian or ellip-
tically contoured vector random field that is stationary, isotropic, and mean square
continuous on the compact two-point homogeneous space. Necessary and sufficient
conditions are derived for a symmetric and continuous matrix function to be an
isotropic covariance matrix function on all compact two-point homogeneous spaces. It
is also shown that, for a symmetric and continuous matrix function with compact sup-
port, if it makes an isotropic covariance matrix function in the Euclidean space, then
it makes an isotropic covariance matrix function on the sphere or the real projective
space.

Keywords Covariance matrix function · Elliptically contoured random field ·
Gaussian random field · Isotropy · Stationarity · Jacobi polynomial · Bessel function
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1 Introduction

A d-dimensional compact two-point homogeneous spaceMd is a compactRiemannian
symmetric space of rank one, and belongs to one of the following five families [14,29]:
the unit spheres Sd (d = 1, 2, . . .), the real projective spacesPd(R) (d = 2, 4, . . .), the
complex projective spaces Pd(C) (d = 4, 6, . . .), the quaternionic projective spaces
P
d(H) (d = 8, 12, . . .), and the Cayley elliptic plane P

16(Cay) or P16(O). There
are at least two different approaches to the subject of compact two-point homoge-
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Table 1 Parameters α and β

associated with Jacobi
polynomials overMd

M
d α β

S
d , d = 1, 2, … d−2

2
d−2
2

P
d (R), d = 2, 3, … d−2

2 − 1
2

P
d (C), d = 4, 6, … d−2

2 0

P
d (H), d = 8, 12, … d−2

2 1

P
16(Cay) 7 3

neous spaces [21], including an approach based on Lie algebras and a geometric
approach, which are used in probabilistic literature [2,12,22], statistical literature [26],
and approximation theory literature [3,7]. All compact two-point homogeneous spaces
share the same property that all geodesics in a given one of these spaces are closed and
have the same length [12]. In particular, when the unit sphere Sd is embedded into the
spaceRd+1, the length of any geodesic line is equal to that of the unit circle, that is, 2π .
In what follows, the distance ρ(x1, x2) between two points x1 and x2 onMd is defined
in such a way that the length of any geodesic line on all Md is equal to 2π , or the
distance between any two points is bounded between 0 and π , i.e., 0 ≤ ρ(x1, x2) ≤ π .
Over Sd , for instance, ρ(x1, x2) is defined by ρ(x1, x2) = arccos(x′

1x2), x1, x2 ∈ S
d ,

where x′
1x2 is the inner product between x1 and x2. Expressions of ρ(x1, x2) on other

spaces may be found in [4].
Gaussian random fields onMd have been studied in [2,12,22], among others, while

theoretical investigations and practical applications of scalar and vector random fields
on spheres may be found in [2,5,6,8–10,12,15,16,18–20,22,23,32–34]. Recently, a
series representation is presented in [21] for a vector random field that is isotropic and
mean square continuous on M

d and stationary on a temporal domain, and a general
form of the covariance matrix function is derived for such a vector random field, which
involve Jacobi polynomials and the distance defined onMd . It is called for parametric
and semiparametric covariance matrix structures on M

d in [21], which are the topics
of this paper.

Consider an m-variate second-order random field {Z(x), x ∈ M
d}. It is called a

stationary (homogeneous) and isotropic random field, if its mean function EZ(x) =
(EZ1(x), . . . ,EZm(x))′ does not depend on x, and its covariance matrix function,

cov(Z(x1),Z(x2)) = E[(Z(x1) − EZ(x1))(Z(x2) − EZ(x2))′], x1, x2 ∈ M
d ,

depends only on the distanceρ(x1, x2) between x1 and x2.Wedenote such a covariance
matrix function by C(ρ(x1, x2)), x1, x2 ∈ M

d , and call it an isotropic covariance
matrix function onMd . An isotropic random field {Z(x), x ∈ M

d} is said to be mean
square continuous if, for k = 1, . . . ,m,

E|Zk(x1) − Zk(x2)|2 → 0, as ρ(x1, x2) → 0, x1, x2 ∈ M
d .

It implies the continuity of each entry of the associated covariance matrix function in
terms of ρ(x1, x2).
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Anm-variate isotropic andmean square continuous randomfield onMd has a series
representation [21], for d ≥ 2,

Z(x) =
∞∑

n=0

B
1
2
nVn P

(α,β)
n (cos ρ(x,U)), x ∈ M

d ,

where {Vn, n ∈ N0} is a sequence of independent m-variate random vectors with
E(Vn) = 0 and cov(Vn,Vn) = a2nIm , U is a random vector uniformly distributed on
M

d and is independent of {Vn, n ∈ N0 }, {Bn, n ∈ N0} is a sequence ofm×m positive
definite matrices,

∑∞
n=0 Bn P

(α,β)
n (1) converges, Im is an m × m identity matrix, N0

and N denote the sets of nonnegative integers and of positive integers, respectively,

P(α,β)
n (x) = Γ (α + n + 1)

n!Γ (α + β + n + 1)

n∑

k=0

(
n

k

)
Γ (α + β + n + k + 1)

Γ (α + k + 1)

(
x − 1

2

)k

,

x ∈ R, n ∈ N0, (1)

are Jacobi polynomials [28] with specific pairs α and β given in Table 1, and

an =
(

Γ (β + 1)(2n + α + β + 1)Γ (n + α + β + 1)

Γ (α + β + 2)Γ (n + β + 1)

) 1
2

, n ∈ N0. (2)

The covariance matrix function of {Z(x), x ∈ M
d} is

C(ρ(x1, x2)) =
∞∑

n=0

Bn P
(α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ M

d . (3)

On the other hand, there exists an m-variate isotropic Gaussian or elliptically con-
toured random field on M

d with C(ρ(x1, x2)) as its covariance matrix function [21],
if C(ρ(x1, x2)) is an m × m symmetric matrix function of the form (3).

Given a symmetric matrix function C(ϑ) whose entries are continuous on [0, π ],
Sect. 2 presents the characterizations for C(ρ(x1, x2)) to be the covariance matrix
function of an isotropic elliptically contoured vector random field onMd , in terms of
the positive definiteness of a sequence of symmetric matrices. It is characterized in
Sect. 3 for C(ρ(x1, x2)) to be an isotropic covariance matrix function on all possible
M

d . If C(ϑ) makes C(‖x1 − x2‖) an isotropic covariance matrix function in Rd , does
it makeC(ρ(x1, x2)) an isotropic covariance matrix function onMd? A partial answer
to this question or the conjecture in [24] is given in Sect. 4, when C(ϑ) is compactly
supported on [0, π ] and d is odd. Proofs of theorems are given in Sect. 5.

2 Isotropic CovarianceMatrix Functions onM
d

The covariancematrix function is characterized in this section of an isotropic andmean
square continuous elliptically contoured vector random field on M

d . Theorem 1 pro-
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vides a useful tool for verifying whether a continuousmatrix function is the covariance
matrix function of an isotropic vector elliptically random field on M

d , by checking
that each of a sequence of matrices is positive definite and a relevant infinite series is
convergent, and Theorem 2 presents the interrelationship of an isotropic covariance
matrix function on different compact two-point homogeneous spaces.

Theorem 1 Let α and β be the pair forMd in Table 1. For an m×m symmetric matrix
function C(ϑ) whose entries are continuous on [0, π ], the following statements are
equivalent:

(i) C(ρ(x1, x2)) is the covariance matrix function of an m-variate isotropic ellipti-
cally contoured random field on M

d ;
(ii) C(ϑ) is of the form

C(ϑ) =
∞∑

n=0

Bn P
(α,β)
n (cosϑ), ϑ ∈ [0, π ], (4)

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices, and the
series

∑∞
n=0 n

αBn converges;
(iii) the matrices

H(α,β)
n =

∫ π

0
C(ϑ)P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ, n ∈ N0,

(5)

are positive definite, and the series
∑∞

n=0 n
α+1H(α,β)

n converges.

Note that P(α,β)
n (1) = Γ (n+α+1)

Γ (n+1)Γ (α+1) , n ∈ N0. By the asymptotic formula (5.11.12)

of [25], Γ (n+α+1)
Γ (n+1) ∼ nα (n → ∞),

∑∞
n=0 Bn P

(α,β)
n (1) converges if and only if∑∞

n=0 n
α Bn converges. The convergence of

∑∞
n=0 n

αBn in Theorem1 (ii) is necessary
to guarantee the convergence of the series in (4) for ϑ = 0, and is also sufficient for
the convergence for all ϑ ∈ [0, π ], since |P(α,β)

n (cos θ)| ≤ P(α,β)
n (1), n ∈ N0. The

condition that
∑∞

n=0 n
α+1H(α,β)

n converges in Theorem 1 (iii) is equivalent to the
convergence of

∑∞
n=0 n

αBn in Theorem 1 (ii).
There are two key parameters associated with M

d in Table 1, α and β, which are
not dependent each other, except for Sd where α = β. The parameter β is a constant
with respect to d orMd , except for Sd . The following formula expresses a coefficient
H(α,β)

n on M
d in terms of two coefficients H(α−1,β)

n and H(α−1,β)
n+1 on M

d−2 (d ≥ 3).

Corollary 1 For d ≥ 3,

H(α,β)
n = (n + α)H(α−1,β)

n − (n + 1)H(α−1,β)
n+1

2n + α + β + 1
, n ∈ N0. (6)
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Identity (6) follows directly from (5) and (4.5.4) of [28],

2n + α + β + 1

2
(1 − x)P(α,β)

n (x) = (n + α)P(α−1,β)
n (x)

− (n + 1)P(α−1,β)
n+1 (x), x ∈ R. (7)

A dual identity of (7) is

2n + α + β + 1

2
(1 + x)P(α,β)

n (x) = (n + β)P(α,β−1)
n (x)

+ (n + 1)P(α,β−1)
n+1 (x), x ∈ R, (8)

from which and from (5) we obtain the following corollary.

Corollary 2 For d ≥ 3,

H(α,β)
n = (n + β)H(α,β−1)

n + (n + 1)H(α,β−1)
n+1

2n + α + β + 1
, n ∈ N0. (9)

Notice that the parameter α in Table 1 is either a nonnegative integer or an integer
plus half, according to whether the dimension d is even or odd. For these two cases, in
the next two corollaries we are going to writeH(α,β)

n as a linear combination ofH(0,β)
j

or H

(
− 1

2 ,β
)

j , j ≥ n, respectively, which are coefficients in low dimensions.

For an even d ≥ 4 or a positive integer α = d−2
2 , successively using identity (7), the

n + α degree polynomial (1− x)αP(α,β)
n (x) can be expressed as a linear combination

of polynomials P(0,β)
n+ j (x), j = 0, 1, . . . , n + α. More precisely, it can be established

by induction on α that

(
1 − x

2

)α

P(α,β)
n (x) =

α∑

j=0

(−1) j a(0)
j (n)P(0,β)

n+ j (x), x ∈ R, n ∈ N0, (10)

where

a(0)
j (n) = α!Γ (n + α + 1)(2n + 2 j + β + 1)Γ (2n + j + β + 1)

j !(α − j)!n!Γ (2n + j + α + β + 2)
,

j = 0, 1, . . . , α. (11)

The following corollary is derived from (5) and (10).

Corollary 3 For α ∈ N,

H(α,β)
n =

α∑

j=0

(−1) j a(0)
j (n)H(0,β)

n+ j , n ∈ N0. (12)
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For an odd d ≥ 3, α + 1
2 = d−1

2 is a positive integer. Successively using identity

(7), the n+α+ 1
2 degree polynomial (1−x)α+ 1

2 P(α,β)
n (x) can be expressed as a linear

combination of polynomials P

(
− 1

2 ,β
)

n+ j (x), j = 0, 1, . . . , n + α + 1
2 , and, by induction

on α + 1
2 ,

(
1 − x

2

)α+ 1
2

P(α,β)
n (x) =

α+ 1
2∑

j=0

(−1) j a

(
− 1

2

)

j (n)P

(
− 1

2 ,β
)

n+ j (x), x ∈ R, n ∈ N0,

(13)

where

a

(
− 1

2

)

j (n) = Γ
(
α+ 3

2

)
(n + j)!Γ (n+α+1)

(
2n+2 j+β+ 1

2

)
Γ

(
2n+ j+β+ 1

2

)

j !Γ (
α − j + 3

2

)
n!Γ (

n + j + 1
2

)
Γ (2n + j + α + β + 2)

,

j = 0, 1, . . . , α. (14)

The following corollary follows directly from (5) and (13).

Corollary 4 For α + 1
2 ∈ N,

H(α,β)
n =

α+ 1
2∑

j=0

(−1) j a

(
− 1

2

)

j (n)H

(
− 1

2 ,β
)

n+ j , n ∈ N0. (15)

Second-order elliptically contoured random fields form one of the largest sets, if
not the largest set, which allows any possible correlation structure [17]. Examples of
elliptically contoured random fields include Gaussian, Student’s t, Cauchy, Laplace,
logistic, hyperbolic, hyperbolic secant, variance Gamma, normal inverse Gaussian, K-
differenced, stable, Linnik, and Mittag–Leffler random fields. The characterizations
in Theorem 1 are available for a second-order elliptically contoured vector random
field. However, they may not be available for other non-Gaussian random fields, such
as a log-Gaussian, χ2, binomial-χ2, K-distributed, or skew-Gaussian one, for which
admissible correlation structure must be investigated on a case-by-case basis.

In what follows, every covariance matrix function is set up under the ellipti-
cally contoured background. To distinguish the distances of the five families listed
in Table 1, whenever necessary, we adopt the symbol ρSd (x1, x2) for the distance over
S
d , ρPd (R)(x1, x2) for the distance on P

d(R), and so on. The next theorem shows the
interrelationship of an isotropic covariance matrix function on different compact two-
point homogeneous spaces. It looks like that isotropic covariance matrix structures on
S
d are richer than those on other compact two-point homogeneous spaces.

Theorem 2 Suppose that C(ϑ) is an m ×m symmetric matrix function and each of its
entries is continuous on [0, π ].
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(i) For an odd d ≥ 3, if C(ϑ) makes C
(
ρPd (R)(x1, x2)

)
an isotropic covariance

matrix function on P
d(R), then it makes C

(
ρSd (x1, x2)

)
is an isotropic covari-

ance matrix function on S
d . For an even d, if C

(
ρPd (R)(x1, x2)

)
is an isotropic

covariance matrix function on P
d(R), then C

(
ρSd−1(x1, x2)

)
is an isotropic

covariance matrix function on S
d−1.

(ii) For an even d ≥ 4, if C
(
ρPd (C)(x1, x2)

)
is an isotropic covariance matrix func-

tion onPd(C), thenC
(
ρSd (x1, x2)

)
is an isotropic covariancematrix function on

S
d for d ≥ 4, and C

(
ρPd (H)(x1, x2)

)
is an isotropic covariance matrix function

on P
d(H) if d = 8, 12, . . . .

(iii) For d = 8, 12, . . ., if C
(
ρPd (H)(x1, x2)

)
is an isotropic covariance matrix func-

tion on P
d(H), then C

(
ρSd (x1, x2)

)
is an isotropic covariance matrix function

on S
d .

(iv) If C
(
ρSd (x1, x2)

)
is an isotropic covariance matrix function on S

d , then

both C
(

ρ
Pd (R)

(x1,x2)
2

)
+C

(
π − ρ

Pd (R)
(x1,x2)
2

)
and

{
C

(
ρ
Pd (R)

(x1,x2)
2

)
− C (π−

ρ
Pd (R)

(x1,x2)
2

)}
cos

(
ρ
Pd (R)

(x1,x2)
2

)
are isotropic covariance matrix functions on

P
d(R).

3 Isotropic CovarianceMatrix Functions on All Dimensions

Except forP16(Cay), the dimension d ofMd can take infinitelymany values, as shown
in Table 1. If anm×m continuous matrix functionC(ϑ) on [0, π ]makesC(ρ(x1, x2))
an isotropic covariance matrix function on all possibleMd (all five families described
in Sect. 1), then it is called an isotropic covariance matrix function on M

∞. Such a
matrix function is characterized in the following theorem.

Theorem 3 For an m × m symmetric matrix function C(ϑ) whose all entries are
continuous on [0, π ], the following statements are equivalent:

(i) C(ρ(x1, x2)) is an isotropic covariance matrix function onM∞;
(ii) C(ϑ) is of the form

C(ϑ) =
∞∑

n=0

Bn(1 + cosϑ)n, ϑ ∈ [0, π ], (16)

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices and∑∞
n=0 2

nBn converges;
(iii) C

(
π
2 − arcsin x

)
is of the form

C
(π

2
− arcsin x

)
=

∞∑

n=0

Bn(1 + x)n, x ∈ [−1, 1], (17)

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices and∑∞
n=0 2

nBn converges;
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(iv) C (π − 2 arcsin x) is of the form

C (π − 2 arcsin x) =
∞∑

n=0

2nBnx
2n, x ∈ [0, 1], (18)

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices and∑∞
n=0 2

nBn converges.

It is understandable that the characterizations in Theorem 3 differ from those on all
spheres S∞ presented in [18]. Actually, the set of isotropic covariancematrix functions
onM∞ is a proper subset of that on S

∞.

Corollary 5 If C(ρ(x1, x2)) is an isotropic covariance matrix function on M
∞, then

(i) C(ϑ) is a positive definite matrix for each fixed ϑ ∈ [0, π ];
(ii) C(ϑ1) − C(ϑ2) is a positive definite matrix for 0 ≤ ϑ1 ≤ ϑ2 ≤ π ;
(iii) for ϑ ∈ (0, π), C′(ϑ) is a negative definite matrix, whenever the derivative

exists.

Since each Bn is positive definite, Corollary 5 is due to (16), Part (i) from the fact
that 1+ cosϑ is nonnegative, Part (ii) from that 1+ cosϑ is decreasing on [0, π ], and
Part (iii) from Part (ii) and C′(ϑ) = − limδ→0+ C(ϑ)−C(ϑ+δ)

δ
.

Example 1 For an m × m symmetric matrix function whose entries are second-order
polynomials,

C(ϑ) = B0 + B1ϑ + B2ϑ
2, ϑ ∈ [0, π ],

it makes C(ρ(x1, x2)) an isotropic covariance matrix function on M
∞ if and only

if B0 − π2B2 and B2 are positive definite matrices, and B1 = −2B2π . To derive a
form of (18) for C (π − 2 arcsin x), we employ the Taylor expansions of arcsin x and
(arcsin x)2,

arcsin x =
∞∑

n=0

(2n)!
22n(n!)2(2n + 1)

x2n+1, x ∈ [−1, 1], (19)

(arcsin x)2 =
∞∑

n=1

22n−1((n − 1)!)2
(2n)! x2n, x ∈ [−1, 1], (20)

and obtain

C (π − 2 arcsin x)

= B0 + πB1 + π2B2 − 2 (B1 + 2πB2) arcsin x + 4B2(arcsin x)
2

= B0 + πB1 + π2B2 − 2 (B1 + 2πB2)

∞∑

n=0

(2n)!
22n(n!)2(2n + 1)

x2n+1

+ 4B2

∞∑

n=1

22n−1((n − 1)!)2
(2n)! x2n, x ∈ [0, 1].
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ByTheorem3 (iv),B0+πB1+π2B2 andB2 must be positive definite, andB1+2πB2 =
0.

Moreover, if B0 − π2B2 and B2 are m × m positive definite matrices, then

C(ρ(x1, x2)) =
(
B0 − 2πB2ρ(x1, x2) + B2(ρ(x1, x2))2

)◦�

is an isotropic covariance matrix function on M
∞, where � is a natural number, and

B◦� denotes the Hadamard � power of B = (bi j ), whose entries are b�
i j , the � power

of bi j , i, j = 1, . . . ,m.

Example 2 Given twom×m symmetric matricesB1 andB2, consider anm×m matrix
function

C(ϑ) = B1 exp

(
ϑ

2

)
+ B2 exp

(
−ϑ

2

)
, ϑ ∈ [0, π ].

By Theorem 3, C(ρ(x1, x2)) is an isotropic covariance matrix function onM∞ if and
only if B2 = B1eπ is a positive definite matrix. To see this, notice that exp(arcsin x)
possesses the Taylor series with positive coefficients (see, for instance, formula 1.216
of [13])

exp(arcsin x) =
∞∑

n=0

anx
n = 1 + x + x2

2! + 2x3

3! + 5x4

4! + · · · , x ∈ [−1, 1],

(21)

from which we obtain

C (π − 2 arcsin x) =
∞∑

n=0

(
(−1)nB1e

π
2 + B2e

− π
2

)
anx

n, x ∈ [0, 1].

A comparison between the last equation with (18) results in the positive definiteness
of B1e

π
2 + B2e− π

2 and

(−1)2n+1B1e
π
2 + B2e

− π
2 = 0, n ∈ N0,

or, equivalently, the positive definiteness of B2 = B1eπ .

Example 3 Given an m × m symmetric matrix B with entries bi j , the entries of an
m × m matrix function C(ϑ) are defined by

Ci j (ϑ) = exp

(
bi j cos

ϑ

2

)
+ exp

(
−bi j cos

ϑ

2

)
, ϑ ∈ [0, π ], i, j = 1, . . . ,m.
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It makes C(ρ(x1, x2)) an isotropic covariance matrix function on M
∞ if and only if

B◦2 is a positive definite matrix, by Theorem 3, since

C (π − 2 arcsin x) = 2
∞∑

n=0

B◦2n

(2n)! x
2n, x ∈ [0, 1],

and
∑∞

n=0
B◦2n
(2n)! converges.

In the scalar case m = 1, the following corollary is a consequence of Theorem 3,
and, by Theorem 2 of [2], (22) is an isotropic covariance function on M

∞.

Corollary 6 For a continuous function C(ϑ) on [0, π ], the following statements are
equivalent:

(i) C(ρ(x1, x2)) is an isotropic covariance function onM∞;
(ii) C(ϑ) is of the form

C(ϑ) =
∞∑

n=0

bn(1 + cosϑ)n, ϑ ∈ [0, π ], (22)

where {bn, n ∈ N0} is a sequence of nonnegative numbers and
∑∞

n=0 2
nbn

converges;
(iii) C

(
π
2 − arcsin x

)
is of the form

C
(π

2
− arcsin x

)
=

∞∑

n=0

bn(1 + x)n, x ∈ [−1, 1], (23)

where {bn, n ∈ N0} is a sequence of nonnegative numbers and
∑∞

n=0 2
nbn

converges;
(iv) C (π − 2 arcsin x) is of the form

C (π − 2 arcsin x) =
∞∑

n=0

2nbnx
2n, x ∈ [0, 1], (24)

where {bn, n ∈ N0} is a sequence of nonnegative numbers and
∑∞

n=0 2
nbn

converges.

The exponential function exp
(−ϑ

2

)
is an important generator on all spheres S∞.

But, interestingly, it does not make exp
(
−ρ(x1,x2)

2

)
an isotropic covariance function

onM∞, since it follows from (21) that

exp

(
−π − 2 arcsin x

2

)
= exp

(
−π

2

) ∞∑

n=0

anx
n, 0 ≤ x ≤ 1,
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so that (24) fails. Nevertheless, cosh
(

π−ρ(x1,x2)
2

)
is an isotropic covariance function

onM∞, as is seen from Example 2.

Example 4 For a constant ν ∈ (0, 2],

C(ϑ) = 1 −
(
sin

ϑ

2

)ν

, ϑ ∈ [0, π ],

makesC(ρ(x1, x2)) an isotropic covariance function onM∞. Corollary 6 is applicable,
with a form (24) of C(π − 2 arcsin x) given by

C (π − 2 arcsin x) = 1 −
(
sin

π − 2 arcsin x

2

)ν

= 1 − (1 − x2)
ν
2

=

⎧
⎪⎨

⎪⎩

x2, ν = 2,

∞∑
n=1

n∏
k=1

(k− ν
2 )

n! x2n, ν ∈ (0, 2), x ∈ [0, 1).

Moreover, for constants νi ∈ (0, 2], an m × m matrix function C(ϑ) with entries

Ci j (ϑ) = 1 −
(
sin

ϑ

2

)max(νi ,ν j )

, ϑ ∈ [0, π ], i, j = 1, . . . ,m,

makes C(ρ(x1, x2)) an isotropic covariance function onM∞, by Theorem 3, since an

m ×m matrix with entries k − max(νi ,ν j )

2 = min
(
k − νi

2 , k − ν j
2

)
is positive definite,

for k ≥ 1.

Lemma 1 (i) For n ∈ N0,

(
1 + x

2

)n

=
n∑

k=0

ϕ
(α,β)
k P(α,β)

n (x), x ∈ R, (25)

where

ϕ
(α,β)
k = Γ (n + β + 1)n!(2k + α + β + 1)Γ (k + α + β + 1)Γ (k + α + 1)

Γ (k + n + α + β + 2)Γ (k + β + 1)k!(n − k)!Γ (α + 1)P(α,β)
n (1)

.

(ii) With ak given by (2), if U is a random vector uniformly distributed onMd , then

Z(x) =
n∑

k=0

ak
(
ϕ

(α,β)
k

) 1
2
P(α,β)
n (cos ρ(x,U)), x ∈ M

d ,

is a scalar isotropic random field on M
d with mean 0 and covariance function(

1+cos ρ(x1,x2)
2

)n
.
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Lemma 2 (i) For a fixed β > −1 and n ∈ N,

lim
α→∞

P(α,β)
n (cosϑ)

P(α,β)
n (1)

=
(
1 + cosϑ

2

)n

, ϑ ∈ [0, π ]. (26)

(ii) For a fixed β ≥ − 1
2 and ϑ ∈ (0, π ], as α → ∞, the limit in (26) is uniformly

for all n ∈ N; that is, for any ε > 0, there exists A(ε, ϑ, β) such that, for any
α > A(ε, ϑ, β) and n ∈ N,

∣∣∣∣∣
P(α,β)
n (cosϑ)

P(α,β)
n (1)

−
(
1 + cosϑ

2

)n
∣∣∣∣∣ < ε. (27)

To prove Theorem 3, we need Lemmas 1 and 2. With identity (25) taken from [1],
Lemma 1 (ii) is derived from (25) and Lemma 3 of [21]. The proof of Lemma 2 (ii) is
given in Sect. 5.4, while limit (26) in Lemma 2 (i) is from (18. 6.2) of [25].

4 Isotropic CovarianceMatrix Functions onM
d Generated from

Those in the Euclidean Space

For an m ×m symmetric matrix function C(ϑ) with all entries continuous on [0,∞),
in this section we show that it makes C

(
ρSd (x1, x2)

)
and C

(
ρPd (R)(x1, x2)

)
isotropic

covariancematrix functions on Sd andPd(R), respectively, if it is compactly supported
and it makes C(‖x1 − x2‖) an isotropic covariance matrix function in R

d , whenever
d is odd.

An m-variate stationary random field {Z(x), x ∈ R
d} is said to be isotropic, if its

covariance matrix function cov(Z(x1),Z(x2)) depends only on the Euclidean distance
‖x1 − x2‖ between two points x1 and x2 in R

d . When {Z(x), x ∈ R
d} is mean

square continuous, cov(Z(x1),Z(x2)) is continuous in R
d and possesses an integral

representation [30],

cov(Z(x1),Z(x2)) =
∫ ∞

0
Ωd(‖x1 − x2‖ω)dF(ω), x1, x2 ∈ R

d ,

where F(ω), ω ∈ [0,∞), is an m × m right-continuous, bounded matrix function
with F(0−) = 0, F(ω2) − F(ω1) is positive definite for every pair of ω1 and ω2 with
0 ≤ ω1 ≤ ω2,

Ωd(ω) = 2
d
2 −1Γ

(
d

2

)
ω− d

2 +1 Jd
2 −1(ω), ω ≥ 0,
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and Jν(x) is the Bessel function of the first kind [28]. For an integer or positive order
ν, Jν(x) possesses a series representation

Jν(x) =
( x
2

)ν
∞∑

k=0

(−1)k

k!Γ (ν + k + 1)

( x
2

)2k
, x > 0.

Theorem 4 Suppose that C(ϑ) is an m ×m symmetric matrix function on [0,∞) and
all its entries are continuous on [0,∞). For an odd d, if C(‖x1 − x2‖) is an isotropic
covariance matrix function in Rd , and, if all entries of C(ϑ) are compactly supported
with

Ci j (ϑ) = 0, ϑ ≥ π, i, j = 1, . . . ,m,

then C
(
ρSd (x1, x2)

)
is an isotropic covariance matrix function on S

d , and
C

(
ρPd (R)(x1, x2)

)
is an isotropic covariance matrix function on P

d(R).

It is not clear whether a similar result holds for an even integer d. Nevertheless,
the following corollary is a consequence of Theorem 4, since an isotropic covariance
matrix function inRd is also an isotropic covariance matrix function inRd−1 (d ≥ 2),
and d − 1 is odd for an even d.

Corollary 7 Let C(ϑ) be as in Theorem 4. For an even integer d, if C(‖x1 − x2‖) is
an isotropic covariance matrix function in R

d , then C
(
ρSd−1(x1, x2)

)
is an isotropic

covariance matrix function on S
d−1, and C

(
ρPd−1(R)(x1, x2)

)
is an isotropic covari-

ance matrix function on P
d−1(R).

The requirement that C(ϑ) vanishes over [π,∞) is not crucial in Theorem 4, since
it is always possible to change the scale for a compactly supported function. This
results in the following corollary.

Corollary 8 Suppose that all entries of C(ϑ) are continuous on [0,∞), and

Ci j (ϑ) = 0, ϑ ≥ l, i, j = 1, . . . ,m,

where l is a positive constant. For an odd integer d, if C(‖x1 − x2‖) is an isotropic
covariance matrix function in R

d , then C
( l

π
ρSd (x1, x2)

)
is an isotropic covariance

matrix function on S
d , and C

( l
π
ρPd (R)(x1, x2)

)
is an isotropic covariance matrix

function on P
d(R).

Theorem 4, which contains Theorems 3 and 4 of [19] as special cases where
d = 1, 3, is conjectured in [19] with the comment that “A difficulty arises when
one deals with the connection between the two bases, the Bessel functions for Rd

and ultraspherical polynomials for Sd”. Such a difficulty is overcome in Theorem 5,
where identity (28) builds a useful connection between an integral with respect to
Jacobi polynomials and an integral with respect to the Bessel function, observing that
the right-hand side of (28) is related to the Fourier transform of the isotropic function
g(‖x‖), x ∈ R

d . In the scalar case m = 1, Theorem 4 is proved on S
d via another

approach and is conjectured on M
d in [24], with an interesting example in [31].
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Theorem 5 Suppose that g(x) is a continuous function on [0, π ], and that α + 1
2 is a

nonnegative integer.

(i) For a nonnegative integer β + 1
2 , there is a number ξn ∈ [n, n+α +β +1] such

that

∫ π

0
g(ϑ)P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ

= Γ (n + α + 1)

2α+1n!
∫ π

0

Jα(ξnx)

ξα
n

g(x)xα+1dx, n ∈ N0. (28)

(ii) If the cosine series of g(x) converges at x = 0, and

∫ π

0
Jα(ωx)g(x)xα+1dx ≥ 0, ω ≥ 0, (29)

then, for each β with β + 1
2 ∈ N0,

h(α,β)
n =

∫ π

0
g(ϑ)P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ≥0, n ∈ N0,

(30)

the infinite series
∑∞

n=0 n
α+1h(α,β)

n converges, and g(x) can be written as the
Jacobi series

g(x)=
∞∑

n=0

n!(2n+α+β+1)Γ (n+α+β+1)

Γ (n+α+1)Γ (n+β+1)
h(α,β)
n P(α,β)

n (cos x), 0 ≤ x ≤ π.

In a particular case where α = β = − 1
2 , (28) holds with ξn = n. As a likely

explanation for why identity (28) works well for a positive integer α + 1
2 ,

(
π
2x

) 1
2 Jα(x)

is the spherical Bessel function of the first kind [25] and is a linear combination of
sin x , cos x , and rational functions, according to (10.49.2) of [25]. This may lead to
its connection to P(α,β)

n (cos x), which is simply a polynomial of cos x .

5 Proofs

5.1 Proof of Theorem 1

In the particular case d = 1,Md = S
1, and Theorem 1 is known [19,20]. For d ≥ 2, it

suffices to verify the equivalence between (ii) and (iii), while the equivalence between
(i) and (ii) is shown in [21].
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(ii)�⇒ (iii). Suppose thatC(ϑ) is of the form (3).Making the transform u = cosϑ ,
we obtain

H(α,β)
n =

∫ π

0
C(ϑ)P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ

=
∫ π

0

( ∞∑

k=0

Bk P
(α,β)
k (cosϑ)

)
P(α,β)
n (cosϑ) sin2α+1

(
ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ

=
∞∑

k=0

Bk

∫ π

0
P(α,β)
k (cosϑ) P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ

= 2−(α+β+1)
∞∑

k=0

Bk

∫ 1

−1
P(α,β)
k (u) P(α,β)

n (u) (1 − u)α(1 + u)βdu

= Γ (n + α + 1)Γ (n + β + 1)

n!(2n + α + β + 1)Γ (n + α + β + 1)
Bn, n ∈ N0,

where the exchange between the integral and the infinite summation is ensured by
the convergence of

∑∞
k=0 Bk P

(α,β)
k (1), and the last equality is due to the following

orthogonal property of the Jacobi polynomials [28],

∫ 1

−1
P(α,β)
i (x)P(α,β)

j (x)(1 − x)α(1 + x)βdx

=
{

2α+β+1

2 j+α+β+1
Γ ( j+α+1)Γ ( j+β+1)

j !Γ ( j+α+β+1) , i = j,

0, i 
= j,
(31)

for each pair of α > −1 and β > −1.
ThematrixH(α,β)

n is positive definite, sinceBn is so.The convergenceof
∑∞

k=0 k
αBk

implies that that of
∑∞

k=0 k
α+1H(α,β)

k , since limk→∞ Γ (k+α+1)Γ (k+β+1)
k!Γ (k+α+β+1) = 1.

(iii) �⇒ (ii). If H(α,β)
n (n ∈ N0) are positive definite, then so are

Bn = n!(2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)
H(α,β)

n , n ∈ N0.

The convergence of
∑∞

n=0 n
α+1H(α,β)

n implies those of
∑∞

n=0 n
αBn ,

∑∞
n=0 Bn P

(α,β)
n

(1), and the infinite series at the right-hand side of (4), which converges to C(ϑ)

uniformly over [0, π ].
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5.2 Proof of Theorem 2

(i) For an odd d ≥ 3, α + 1
2 = d−1

2 is a positive integer. In (13) taking β = α and

substituting x by −x , from identity P(α,β)
n (−x) = (−1)n P(β,α)

n (x) we obtain

(1 + x)
d−1
2 P

(
d−2
2 , d−2

2

)

n (x) =
d−1
2∑

j=0

a

(
− 1

2

)

j (n)P

(
d−1
2 ,− 1

2

)

n+ j (x), x ∈ R, n ∈ N0,

and, from (5),

H

(
d−2
2 , d−2

2

)

n =
∫ π

0
C(ϑ)P

(
d−2
2 , d−2

2

)

n (cosϑ) sind−1
(

ϑ

2

)
cosd−1

(
ϑ

2

)
dϑ

= 21−d
∫ π

0
C(ϑ)(1 + cosϑ)

d−1
2 P

(
d−2
2 , d−2

2

)

n (cosϑ) sind−1
(

ϑ

2

)
dϑ

= 21−d

d−1
2∑

j=0

a

(
− 1

2

)

j (n)

∫ π

0
C(ϑ)P

(
d−1
2 ,− 1

2

)

n+ j (cosϑ) sind−1
(

ϑ

2

)
dϑ

= 21−d

d−1
2∑

j=0

a

(
− 1

2

)

j (n)H

(
d−2
2 ,− 1

2

)

n , n ∈ N0,

where the positive constant a

(
− 1

2

)

j (n) is given by (14) with α = β = d−2
2 .

If C
(
ρPd (R)(x1, x2)

)
is an isotropic covariance matrix function on Pd(R), then, by

Theorem1,H

(
d−2
2 ,− 1

2

)

n is positive definite. So isH

(
d−2
2 , d−2

2

)

n , n ∈ N0. The convergence

of
∑∞

n=0 n
dH

(
d−2
2 ,− 1

2

)

n implies that of
∑∞

n=0 n
dH

(
d−2
2 , d−2

2

)

n . Thus, C
(
ρSd (x1, x2)

)
is

an isotropic covariance matrix function on S
d , by Theorem 1.

For an even d, if C
(
ρPd (R)(x1, x2)

)
is an isotropic covariance matrix function on

P
d(R), then it is an isotropic covariance matrix function on Pd−1(R), with d−1 being

odd, and, consequently, C
(
ρSd−1(x1, x2)

)
is an isotropic covariance matrix function

on Sd−1.
(ii) For an even d ≥ 4, α = d−2

2 is an even integer. Substituting x by −x , (10)
becomes

(1 + x)αP(β,α)
n (x) =

α∑

j=0

a(0)
j (n)P(β,0)

n+ j (x), x ∈ R, n ∈ N0. (32)
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For β = α = d−2
2 , it follows from (5) and (32) that

H

(
d−2
2 , d−2

2

)

n = 22−d
∫ π

0
C(ϑ)(1 + cosϑ)

d−2
2 P

(
d−2
2 , d−2

2

)

n

(cosϑ) sind−1
(

ϑ

2

)
cos

(
ϑ

2

)
dϑ

= 22−d

d−2
2∑

j=0

a(0)
j (n)

∫ π

0
C(ϑ)P

(
d−1
2 ,0

)

n+ j (cosϑ) sind−1
(

ϑ

2

)
cos

(
ϑ

2

)
dϑ

= 22−d

d−2
2∑

j=0

a(0)
j (n)H

(
d−2
2 ,0

)

n , n ∈ N0.

If C
(
ρPd (C)(x1, x2)

)
is an isotropic covariance matrix function on P

d(C), then, by

Theorem 1, H

(
d−2
2 ,0

)

n is positive definite. So is H

(
d−2
2 , d−2

2

)

n , n ∈ N0. By Theorem 1,
C

(
ρSd (x1, x2)

)
is an isotropic covariance matrix function on S

d .
For d = 8, 12, . . . , ifC

(
ρPd (C)(x1, x2)

)
is an isotropic covariance matrix function

onPd(C), thenH

(
d−2
2 ,0

)

n is positive definite, by Theorem 1. So isH

(
d−2
2 ,1

)

n , n ∈ N0, by
identity (9). As a result, C

(
ρPd (H)(x1, x2)

)
is an isotropic covariance matrix function

on Pd(H).
(iii) It can be derived in a way similar to the proof of Part (ii).
(iv) Since C

(
ρSd (x1, x2)

)
is an isotropic covariance matrix function on S

d , C(ϑ)

is of the form (4) with α = β = d−2
2 , and, thus,

C
(

ϑ

2

)
+ C

(
π − ϑ

2

)

=
∞∑

n=0

Bn

{
P

(
d−2
2 , d−2

2

)

n

(
cos

ϑ

2

)
+ P

(
d−2
2 , d−2

2

)

n

(
− cos

ϑ

2

)}

=
∞∑

n=0

Bn

{
P

(
d−2
2 , d−2

2

)

n

(
cos

ϑ

2

)
+ (−1)n P

(
d−2
2 , d−2

2

)

n

(
cos

ϑ

2

)}

= 2
∞∑

n=0

B2n P

(
d−2
2 , d−2

2

)

2n

(
cos

ϑ

2

)

= 2
∞∑

n=0

Γ
(
2n + d

2

)
Γ (n + 1)B2n

Γ
(
n + d

2

)
Γ (2n + 1)

P

(
d−2
2 ,− 1

2

)

n (cosϑ) ,

where the second and the last equalities follow from identities (4.1.3) and (4.1.5)
of [28], respectively. It follows from Γ (n+κ+1)

Γ (n+1) ∼ nκ that
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lim
n→∞

Γ
(
2n + d

2

)
Γ (n + 1)

Γ
(
n + d

2

)
Γ (2n + 1)

= 2
d
2 −1,

and the convergence of
∑∞

n=0 n
d−2
2 Bn implies that of

∑∞
n=0

Γ
(
2n+ d

2

)
Γ (n+1)B2n

Γ
(
n+ d

2

)
Γ (2n+1)

P

(
d−2
2 ,− 1

2

)

n (1). By Theorem 1,C
(

ρ
Pd (R)

(x1,x2)
2

)
+C

(
π − ρ

Pd (R)
(x1,x2)
2

)
is an isotropic

covariance matrix function on Pd(R).
Similarly, it follows from identities (4.1.3) and (4.1.5) of [28] that

C
(

ϑ

2

)
− C

(
π − ϑ

2

)
= 2

∞∑

n=0

B2n+1P

(
d−2
2 , d−2

2

)

2n+1

(
cos

ϑ

2

)

= 2 cos

(
ϑ

2

) ∞∑

n=0

Γ
(
2n + d

2 + 1
)
Γ (n + 1)B2n+1

Γ
(
n + d

2

)
Γ (2n + 2)

P

(
d−2
2 , 12

)

n (cosϑ) ,

and, from (8),
(
C

(
ϑ

2

)
− C

(
π − ϑ

2

))
cos

(
ϑ

2

)

= 1

2

∞∑

n=0

Γ
(
2n + d

2 + 1
)
Γ (n + 1)B2n+1

Γ
(
n + d

2

)
Γ (2n + 2)

(1 + cosϑ)P

(
d−2
2 , 12

)

n (cosϑ)

=
∞∑

n=0

Γ
(
2n + d

2 + 1
)
Γ (n + 1)B2n+1

Γ
(
n + d

2

)
Γ (2n + 2)(4n + d + 1)

(
(2n + 1)P

(
d−2
2 ,− 1

2

)

n (cosϑ)

+ 2(n + 1)P

(
d−2
2 ,− 1

2

)

n+1 (cosϑ)

)
,

which implies that
(
C

(
ρ
Pd (R)

(x1,x2)
2

)
− C

(
π − ρ

Pd (R)
(x1,x2)
2

))
cos

(
ρ
Pd (R)

(x1,x2)
2

)
is

an isotropic covariance matrix function on P
d(R) by Theorem 1.

5.3 Proof of Theorem 3

It suffices to establish the equivalence between statements (i) and (ii), while the equiv-
alence between statements (ii) and (iii) is due to the identity ϑ = π

2 − arcsin(cosϑ),

ϑ ∈ [0, π ], and that between statements (ii) and (iv) is made by the transform
x = cos ϑ

2 , 0 ≤ x ≤ 1.
(ii) �⇒ (i): Let C(ϑ) take the form (16). For each n ∈ N0, (1 + cos ρ(x1, x2))n is

an isotropic covariance function on eachMd , by Lemma 1 (i). So is C(cos ρ(x1, x2)),
by Theorem 2 of [21].

(i) �⇒ (ii): Suppose that C(ρ(x1, x2)) is an isotropic covariance matrix function
on M

∞. Then it is an isotropic covariance matrix function on each M
d , and, for
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each possible pair of α and β in Table1, by Theorem 1 (ii), C(ϑ) must be of the
form

C(ϑ) =
∞∑

n=0

B(α,β)
n

P(α,β)
n (cosϑ)

P(α,β)
n (1)

, ϑ ∈ [0, π ], (33)

where {B(α,β)
n , n ∈ N0} is a sequence ofm×m positive definite matrices and the series∑∞

n=0 B
(α,β)
n converges.

When β = α = d−2
2 , limit (18. 6.4) of [25] reads limα→∞ P(α,β)

n (cosϑ)

P(α,β)
n (1)

= cosn ϑ .

In (33) taking α → ∞ and applying Lemma 1 of [27] yields (see [18])

C(ϑ) =
∞∑

n=0

Bn cos
n ϑ, ϑ ∈ [−π, π ],

which contains (16) as a special case.
When β is fixed as listed in Table 1, we consider the scalar case m = 1 first, under

which (33) reduces to

C(ϑ) =
∞∑

n=0

b(α,β)
n

P(α,β)
n (cosϑ)

P(α,β)
n (1)

, ϑ ∈ [0, π ],

where the nonnegative series
∑∞

n=0 b
(α,β)
n converges. For the nonnegative convergent

series
∑∞

n=0 b
(α,β)
n , its terms are bounded by

0 ≤ b(α,β)
n ≤

∞∑

k=0

b(α,β)
k = C(0), n ∈ N0.

By Cantor’t diagonal argument, there exists a subsequence {αk, k ∈ N} and a nonneg-
ative sequence {bn, n ∈ N0} such that for any n ∈ N0,

lim
k→∞ b(αk ,β)

n = bn . (34)

For ϑ ∈ (0, π ], we have

C(ϑ) −
∞∑

n=0

bn

(
1 + cosϑ

2

)n

=
∞∑

n=0

b(αk ,β)
n

P(αi ,β)
n (cosϑ)

P(αk ,β)
n (1)

−
∞∑

n=0

bn

(
1 + cosϑ

2

)n
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=
∞∑

n=0

b(αk ,β)
n

(
P(αk ,β)
n (cosϑ)

P(αi ,β)
n (1)

−
(
1 + cosϑ

2

)n
)

+
∞∑

n=0

(b(αk ,β)
n − bn)

(
1 + cosϑ

2

)n

,

where the first sum converges to 0 as αk → ∞ by Lemma 2 (ii), and the second sum
converges to 0 by the dominated convergence, since

∞∑

n=0

b(αk ,β)
n

(
1 + cosϑ

2

)n

≤
∞∑

n=0

C(0)

(
1 + cosϑ

2

)n

= 2C(0)

1 − cosϑ
,

and (34) implies

lim
k→∞

∞∑

n=0

b(αk ,β)
n

(
1 + cosϑ

2

)n

=
∞∑

n=0

bn

(
1 + cosϑ

2

)n

.

For ϑ = 0, (16) is also valid, since its both sides are continuous.
In a vector casem ≥ 2, ifC(ρ(x1, x2)) is an isotropic covariancematrix function on

M
∞, then a′C(ρ(x1, x2))a is an isotropic covariance function onM∞ for an arbitrary

a ∈ R
m . Thus,

a′C(ϑ)a =
∞∑

n=0

bn(a)(1 + cosϑ)n, ϑ ∈ [0, π ],

where {bn(a), n ∈ N0} is a sequence of nonnegative numbers, and
∑∞

n=0 2
nbn(a)

converges. Similarly, for an arbitrary b ∈ R
m ,

(a + b)′C(ϑ)(a + b) =
∞∑

n=0

bn(a + b)(1 + cosϑ)n, ϑ ∈ [0, π ], (35)

and

(a − b)′C(ϑ)(a + b) =
∞∑

n=0

bn(a − b)(1 + cosϑ)n, ϑ ∈ [0, π ]. (36)

Taking the difference between (35) and (36) yields

a′C(ϑ)b =
∞∑

n=0

bn(a + b) − bn(a − b)

2
(1 + cosϑ)n, ϑ ∈ [0, π ], (37)

noticing that C(ϑ) is symmetric. The form (16) of C(ϑ) and the convergence of∑∞
n=0 2

nBn are obtained from (37) by taking the i th entry of a and the j th entry of b
equal to 1 and the rest being 0, for i, j ∈ {1, . . . ,m}.
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Multiplying both sides of (16) by an arbitrary a ∈ R
m yields

a′C(ϑ)a =
∞∑

n=0

a′Bna(1 + cosϑ)n, ϑ ∈ [0, π ],

where the left-hand side is an isotropic covariance function on M
∞, so that the

coefficients at the right-hand side, a′Bna, have to be nonnegative; in other words,
{Bn, n ∈ N0} must be a sequence of positive definite matrices.

5.4 Proof of Lemma 2

Forα > β > − 1
2 ,

P(α,β)
n (cosϑ)

P(α,β)
n (1)

admits an integral representation (see, formula (18.10.3)

of [25])

P(α,β)
n (cosϑ)

P(α,β)
n (1)

=
∫ 1

0

∫ π

0

(
1 + cosϑ

2
− r2

1 − cosϑ

2

+ır sin ϑ cosφ

)n

h(α,β)(r , φ)dφdr , (38)

where ı is the imaginary unit, and

h(α,β)(r , φ) = (1 − r2)α−β−1r2β+1 sin2β φ
∫ 1
0

∫ π

0 (1 − r2)α−β−1r2β+1 sin2β φdφdr
, 0 ≤ r ≤ 1, 0 ≤ φ ≤ π,

is a nonnegative function with the range between 0 and 1. Notice that

∣∣∣∣

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n∣∣∣∣

≤
(
1 + cosϑ

2
+ r2

1 − cosϑ

2

)n

+
(
1 + cosϑ

2

)n

.

For a given 0 < ϑ ≤ π and ε > 0, there exists N (ε, ϑ) such that for any n > N (ε, ϑ)

and r < 1
2 ,

∣∣∣∣

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n∣∣∣∣ <
ε

2
. (39)

On the other hand, there exists 0 < δ(ε, ϑ) < 1
2 such that (39) holds for any 0 ≤ n ≤

N (ε, ϑ) and 0 ≤ r < δ(ε, ϑ). Therefore, (39) holds for any 0 ≤ r < δ(ε, ϑ) and
n ∈ N0. For α > β > − 1

2 , it follows from (38) that
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∣∣∣∣∣
P(α,β)
n (cosϑ)

P(α,β)
n (1)

−
(
1 + cosϑ

2

)n
∣∣∣∣∣

=
∣∣∣∣
∫ 1

0

∫ π

0

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n

h(α,β)(r , φ)dφdr

∣∣∣∣

≤
∫ 1

0

∫ π

0

∣∣∣∣

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n∣∣∣∣ h
(α,β)(r , φ)dφdr

=
∫ δ(ε,ϑ)

0

∫ π

0

∣∣∣∣

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n∣∣∣∣ h
(α,β)(r , φ)dφdr

+
∫ 1

δ(ε,ϑ)

∫ π

0

∣∣∣∣

(
1 + cosϑ

2
− r2

1 − cosϑ

2
+ ır sin ϑ cosφ

)n

−
(
1 + cosϑ

2

)n∣∣∣∣ h
(α,β)(r , φ)dφdr

≤ ε

2
+ 4Γ (α + 1)(1 − δ(ε, ϑ)2)α−β−1

Γ (α − β)Γ (β + 1)
< ε,

where the last inequality holds since it possible to find A(ε, ϑ, β) such that, for α >

A(ε, ϑ, β),

4Γ (α + 1)(1 − δ(ε, ϑ)2)α−β−1

Γ (α − β)Γ (β + 1)
<

ε

2
.

Noticing that A(ε, ϑ, β) is finite when β → − 1
2 , inequality (27) also holds for α >

A(ε, ϑ, β) and β = − 1
2 .

5.5 Proof of Theorem 4

In case m = 1, Theorem 4 follows directly from Theorem 5.
For m ≥ 2, define g(x) = a′C(x)a, x ≥ 0, for an arbitrary a ∈ R

m . Since
C(‖x1−x2‖) is an isotropic covariancematrix function inRd , g(x) satisfies inequality
(29) by Theorems 3.1 and 3.2 of [30], so that inequality (30) holds for each n ∈ N0,
i.e., Theorem 1 (iii) is satisfied. Consequently,C(ρ(x1, x2)) is an isotropic covariance
matrix function on S

d or Pd(R).
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5.6 Proof of Theorem 5

(i) For n ∈ N0, write

g(α,β)
n = n!√π

Γ (n + α + 1)

∫ π

0
g(ϑ)P(α,β)

n (cosϑ) sin2α+1
(

ϑ

2

)
cos2β+1

(
ϑ

2

)
dϑ

and

g(α)(ω) =
√

π

2α+1

∫ π

0
g(x)

Jα(ωx)

ωα
xα+1dx, ω ≥ 0.

Then (6) reads

(2n + α + β + 2)g(α+1,β)
n = g(α,β)

n − g(α,β)
n+1 , n ∈ N0, (40)

and it follows from the identity d
dx

(
Jα(x)
xα

)
= − Jα+1(x)

xα that

g(α+1)(ω) = − 1

2ω

dg(α)(ω)

dω
. (41)

What needs a proof now is the following equivalent form of identity (28),

g(α,β)
n = g(α)(ξn), n ∈ N0. (42)

In a particular case where α = β = − 1
2 , (42) holds with ξn = n, since

P

(
− 1

2 ,− 1
2

)

n (cosϑ) = (2n)!
22n(n!)2 cos(nϑ), J− 1

2
(x) =

√
2

πx cos x , and

g

(
− 1

2 ,− 1
2

)

n =
∫ π

0
g(ϑ) cos(nϑ)dϑ = g(

− 1
2

)(n), n ∈ N0.

Next we verify (42) for α > − 1
2 and β = − 1

2 , where α + 1
2 is a positive integer.

Define h(ω) = g(
− 1

2

)(
√

ω), ω ≥ 0. Then

g(α)(ω) = (−1)α+ 1
2
dα+ 1

2

dωα+ 1
2

h(ω2). (43)

By induction on α + 1
2 or simply on α, we can show that

g

(
α,− 1

2

)

n = (−1)α+ 1
2

(
α + 1

2

)
! D

[
n2, (n + 1)2, . . . ,

(
n + α + 1

2

)2
]
h, (44)
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where

D[y1, . . . , yk]h =
k∑

j=1

h(y j )∏k
i=1,i 
= j (y j − yi )

is the (k − 1)th divided difference of h(x). Indeed, this is true for α = − 1
2 . Assuming

that (44) is valid for an α, then, by identity (40),

g

(
α+1,− 1

2

)

n = g

(
α,− 1

2

)

n − g

(
α,− 1

2

)

n+1

2n + α + 3
2

= (−1)α+ 1
2
(
α + 1

2

)!
2n + α + 3

2

{
D

[
n2, (n + 1)2, . . . ,

(
n + α + 1

2

)2
]
h

−D

[
(n + 1)2, (n + 2)2, . . . ,

(
n + α + 3

2

)2
]
h

}

= (−1)α+ 3
2
(
α + 3

2

)!
n2 − (

n + α + 3
2

)2

{
D

[
n2, (n + 1)2, . . . ,

(
n + α + 1

2

)2
]
h

−D

[
(n + 1)2, (n + 2)2, . . . ,

(
n + α + 3

2

)2
]
h

}

= (−1)α+ 3
2

(
α + 3

2

)
!D

[
n2, (n + 1)2, . . . ,

(
n + α + 3

2

)2
]
h,

i.e., (44) is valid for α + 1. Applying the mean value theorem [11] to the divided

difference on the right-hand side of (44), g

(
α,− 1

2

)

n can be written as

g

(
α,− 1

2

)

n = (−1)α+ 1
2 h

(
α+ 1

2

)

(ςn),

for someςn ∈
[
n2,

(
n + α + 1

2

)2]
. Comparing itwith (43) yields g

(
α,− 1

2

)

n = g(α)(ξn),

where ξn = √
ςn ∈ [

n, n + α + 1
2

]
.

Lastly, we verify (42) by induction on β + 1
2 or β. The case of β = − 1

2 has been
proved. Suppose that (42) is valid for some β. By identity (9), we obtain

g(α,β+1)
n = n + β + 1

2n + α + β + 2
g(α,β)
n + n + α + 1

2n + α + β + 2
g(α,β)
n+1

= n + β + 1

2n + α + β + 2
g(α)(ξn1) + n + α + 1

2n + α + β + 2
g(α)(ξn2),
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where ξn1 ∈ [n, n+α +β +1] and ξn2 ∈ [n, n+α +β +2]. In other words, g(α,β+1)
n

is an interpolation between g(α)(ξn1) and g(α)(ξn2). Since g(α)(ω) is a continuous
function for integrable g(x), we have

g(α,β+1)
n = g(α)(ξn),

for some ξn between ξn1 and ξn2 , which resides in the interval [n, n + α + β + 2].
(ii) Under assumption (29), it follows from (28) that g(α,β)

n ≥ 0. It remains to
prove that

∑∞
n=0 g

(α,β)
n P(α,β)

n (1) is bounded. For the continuous function g(x), we
can define the formal Jacobi series,

ĝ(α,β)(x) =
∞∑

n=0

g(α,β)
n [g]P(α,β)

n (cos x),

where

g(α,β)
n [g] = n!(2n + α + β + 1)Γ (n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)

×
∫ π

0
g(x)P(α,β)

n (cos x) sin2α+1
( x
2

)
cos2β+1

( x
2

)
dx,

and [g] indicates the dependency of g(α,β)
n on g. For n ∈ N, define

S(α,β)
n [g](x) =

n−1∑

k=0

g(α,β)
k [g]P(α,β)

k (cos x).

If g(x) ∈ Pn(cos x), the space of polynomialswith degree less thann, then S(α,β)
n [g](x)

= g(x). Denote by V (α,β) the set of functions h(x) for which h(α,β)
n [h] ≥ 0 for all

n ∈ N0. As is shown in Part (i), g ∈ V

(
α,− 1

2

)

. What we are going to show is that

S(α,β)
n [g](0) =

n−1∑

k=0

g(α,β)
k [g]P(α,β)

k (1)

is bounded for any β + 1
2 ∈ N0 and n ∈ N.

First we prove the case of β = − 1
2 . If α = − 1

2 , it is obvious since the Jacobi series
for α = β = − 1

2 is the cosine series. For α ≥ 1
2 , noticing that the Jacobi functions

converge to cosine functions as n → ∞, which implies by the Riemann lemma that
limn→∞ g(α,β)

n [g] = 0, we apply (40) to obtain V (α,β) ⊆ V (α−1,β). Setting

φ(x) = S(α,β)
n [g](x) ∈ Pn(cos x),
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we have g − φ ∈ V (α,β) ⊆ V (α−1,β), and

S(α−1,β)
n [g](0) = S(α−1,β)

n [φ](0) + S(α−1,β)
n [g − φ](0)

≥ S(α−1,β)
n [φ](0) = φ(0) = S(α,β)

n [φ](0)
= S(α,β)

n [g](0).

As a result,

S

(
α,− 1

2

)

n [g](0) ≤ S

(
− 1

2 ,− 1
2

)

n [g](0).

Thus, the convergence of the cosine series for g at x = 0, or equivalently, the uniform

boundedness of S

(
− 1

2 ,− 1
2

)

n [g](0), implies that S

(
α,− 1

2

)

n [g](0) is uniformly bounded for
all n ∈ N0.

To see that S(α,β)
n [g](0) is uniformly bounded for all β ≥ − 1

2 and n ∈ N0, notice

that (40) implies that for the function φ(x) defined above, g(α,β+1)
n−1 [φ] ≥ 0, and

g(α,β+1)
k [g − φ] = 0

for all k < n − 1. Therefore

S(α,β)
n [g](0) = S(α,β)

n [φ](0) = S(α,β+1)
n [φ](0) ≥ S(α,β+1)

n−1 [φ](0) = S(α,β+1)
n−1 [ f ](0).

The uniform boundedness of S

(
α,− 1

2

)

n [g](0) results in the uniform boundedness of
S(α,β)
n [g](0) over all β ≥ − 1

2 and n ∈ N0.
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