
Supplementary Notes to Math 551-Numerical
Methods, Spring 2010

Tom DeLillo, WSU Math Dept.

April 15, 2010

1 Introductory remarks-Lecture 1/19/10

I will try to maintain here a record of my lectures, with varying levels of
detail, as a supplement to our text [CM]. This is not meant to replace or
completely reproduce the lectures. Please let me know if you spot any typos
or errors. I will also post pdf files of older notes when necessary and type
them up here in this latex file as frequently as I can manage. (Students who
want to learn latex, can volunteer to help! I will send you the latex file as
a sample to help you get started.) A good supplement to our text is the
book [CVL]. It contains some more detailed derivations and some analysis
(one theorem per chapter) of the many of the methods we will be discussing.
Some of my notes here and in class will follow [CVL]. Another text to be
aware of in [TB] which we use frequently in our Math 751, Numerical Linear
Algebra course offered each Fall. I will adopt the idea there of introducing
the singular value decomposition almost immediately, since it sheds so much
light on the properties of matrices and linear systems Ax = b which will be
an ongoing concern to us.

A glance at the table of contents of our text [CM] will show you that
this course will probably draw from every undergraduate math course that
you have taken from calculus to differential equations to linear algebra. The
point of this course is to develop efficient, accurate, and relaible methods for
computing numerical solutions to many of the problems you have discussed
in your core mathematics courses. You will need access to MATLAB and are
advised to get the Student Edition of MATLAB.

1



Table 1: Approximate syllabus

Week Tuesday lecture Thursday lecture
1 Sec. 1.7 difference quotient error
2 lin. alg. rev.: Sec. 2.9 norms . . . , matrix norms, Sec. 10.1 SVD
3 SVD cont. SVD, oper. counts
4 oper. counts, start Chap. 2 Chap. 2...
5 lutx, bslashtx, oper. counts det(A), A−1

6 tridisolve sec. 3.1-poly. interp.
7 3.2,3.3 pw cubic, spline 3.4, 3.5 spline, periodic
8 finish Chap 3 4.1,4.2, Newton, Picard iter.
9 4.3,4.4 secant Exam I thru 4.4
10
11
12
13
14
15

I’ll include here some short, unpolished pieces of MATLAB code to il-
lustrate the discussion. I’ll try to make these available on my web page
eventually, but many of them are short enough that you can just type them
in yourself.

Numerical methods, along with theory and experiment, are fundamen-
tal to modern applied science and engineering. For an incisive overview of
the field of numerical analysis, read Nick Trefethen’s essay in the Appendix
of [TB] on The Definition of Numerical Analysis or on his web site [LNT]—
read it now and at the conclusion of this course. For those of you who
consider yourselves to be pure mathematicians, you might take the attitude
that you don’t fully understand a topic unless you know how to compute
effectively!

1.1 Floating point arithmetic-Lecture 1/19/10

We will not go through Chapter 1 of the text in detail. We reviewed section
1.7 of the text and the fact that a double precision floating point number is

2



stored as a 64 bit word with 52+1 bits used to store the mantissa. (The sign
and the exponent base 2 are stored in the remaining 12 bits. 8 bits =1 byte,
so a real floating point number is 8 bytes and 8 MB = 106 floating point
numbers.) Since

210 = 1024 ≈ 103 we have 2−52 =
(
2−10

)5.2 ≈ (
10−3

)5.2 ≈ 10−16,

double precision gives at 16 digits accuracy, i.e., at most 16 significant digits.
We call εmachine ≈ 10−16 the machine epsilon or roundoff (eps in MATLAB;
see p. 35–36 for a more precise definition). When a floating point calculation
is done the answer must be, in effect, rounded to 16 digits when it is stored.
A good model for a floating point operation such as addition, that suppresses
the details of the particular computer is

fl(x + y) = (x + y)(1 + ε) for some |ε| ≤ εmachine;

simlarly for multiplication and other operations. Note that this replaces the
unknown features of a particular computer’s adder with exact addition of
the original numbers perturbed by a very small but unknown amount. This
will facilate our occasional analysis of rounding error. To see the effect of
rounding error, run the mfile

%machepstd.m

x=1;

y=1;

z=x+y;

n=0;

data=[0 1 2];

while z>x

n+1;

y=y/2;

z=x+y;

data=[data;n y z];

end

When does this program stop?
Accumulation of rounding error in the 16th digit is very slow when adding

even very many numbers, so not much loss of accuracy can be expected. How-
ever, a great deal of accuracy can be lost if two nearly equal numbers are sub-
tracted and many leading digits cancel. For instance, .12345-.12344=.00001

3



results in a loss of four significant digits, since the leading 0’s in .00001 are
not significant. This is an example of catastrophic cancellation. To see the
effects of this in finite precison floating point arithmetic, run the following
code for approximating exp(x) by a truncated Taylor series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

and compare the answer with the built-in exp(x). For x = 1 you can get an
accurate answer with a few terms. For x = 10, 20, . . . , you can eventually get
good accuracy by taking enough terms. However, for x = −10,−20, . . . the
summation of the series produces worse and worse results. This is due to the
fact that exp(−20) is a very small number and we are trying to compute is by
summing very large terms in the series with alternating signs. There MUST
be a large amount of cancellation to produce a small number. However, we
only have 16 digits available to cancel, so there is no way to get the correct
value. An easy fix in this case the to note that exp(−x) = 1/ exp(x). See
also problem 1.39 in the text.

%ExpTaytd

x=input(’x value = ’);

nterms=input(’number of terms in series = ’);

s=1;

term=1;

data=[0 s];

for k=1:nterms

term=x*term/k;

s=s+term;

data=[data;k s];

end

Note that the code computes the terms in the series recursively.

1.2 Approximating derivatives numerically-Lecture 1/21/10

We will analyze the rounding error in divided difference approximations to
the derivative. This will illustrate the limitations to doing calculus on a
computer and give a simple example of how one might analyze the effects of
roundoff error. First, we recall the following useful ideas:

4



Definition 1. (Big-Oh notation) g(h) = O(hk) if there exists C, ε > 0 such
that |g(h)| ≤ C|h|k for all |h| ≤ ε.

Recall the Taylor series for f at x,

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2!
h2 +

f (3)(x)

3!
h3 + O(h4). (1)

Also recall the definition of the derivative of f ,

f ′(x) = lim
h→0

f(x + h)− f(x)

h
. (2)

What happens if we try to compute f ′(x) numerically by letting h → 0 on a
computer using (2)? Let’s call the one-sided difference quotient as

Dhf(x) :=
f(x + h)− f(x)

h
.

Note that, using (1),

Dhf(x) =
f(x + h)− f(x)

h

=
f(x) + f ′(x)h + f ′′(x)

2!
h2 + O(h3)− f(x)

h

= f ′(x) +
f ′′(x)

2
h + O(h2).

That is, Dhf(x) gives an O(h) approximation to f ′x). This is called first
order accuracy, i.e., the error is O(hp) where p = 1 is the order of accuracy.
This approximation could be made as accurately as we please by letting h
get small, if we had exact (infinite precision) arithmetic. The trouble is that
for most functions f(x) the computer will give the value f(x)+Cεmachine for
some small constant C, not the exact value f(x), and similarly for f(x + h).
Therefore, the computer gives

Dhf(x) = fl

(
f(x + h)− f(x)

h

)
=

f(x + h)− f(x) + Cεmach

h

= f ′(x) +
f ′′(x)

2
h + O(h2) +

Cεmach

h
,

5



and so the error using Dhf(x) can be modeled as

errD(h) = |f ′(x)−Dhf(x)| ≈ C ′h +
Cεmach

h
.

Note: When h is small f(x+h) ≈ f(x), so there will be catastrophic cancel-
lation of leading digits in f(x + h)− f(x).

If we run the following code for, say, a = 1 and n = 20, we will get
approximations of d sin(x)/dx|x=1 = cos(1) for h = 10−1, 10−2, . . . , 10−n. A
plot of the log of the error is given in Figure 1. Note that the error decreases
to about 10−8 for h = 10−8 as h decreases and then starts to increase. We see
that letting h go to zero does not improve the accuracy. What is happening
and can we improve the results?

%derivtd

a=input(’enter a =’);

n=input(’enter n =’);

for k=1:n

h(k)=10^(-k);

Dh=( sin(a+h(k))-sin(a) )/h(k);

err(k)=abs(Dh-cos(a));

end

Our simple model, in fact, roughly predicts the outcome of this calcula-
tion. To find the minimum of errD(h), solve

derrD(h)

dh
= C ′ − Cεmach

h2
= 0

to find the optimal h,

hopt =
√

(C ′/C)εmach ≈ √
εmach ≈ 10−8,

(assuming C ′/C = O(1)), just as we see in Figure 1. We also see that the
optimal error is roughly predicted,

erropt = errD(hopt) = C ′hopt +
Cεmach

hopt

≈ hopt ≈ 10−8.

To improve these results requires a difference approximation of higher or-
der which we now discuss and which will be the basis of your first assignment.

6



0 2 4 6 8 10 12 14 16 18 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n

lo
g 

of
 e

rr
or

error in one−sided difference approximation

Figure 1: Error in the one-sided difference approximation to
d sin(x)/dx|x=1 = cos(1)using h = 10−n, n = 1, 2, . . . , 20.

We develop the centered difference by averaging one sided differences,

Chf(x) :=
1

2
(Dhf(x) + D−hf(x))

=
1

2

(
f(x + h)− f(x)

h
+

f(x− h)− f(x)

−h

)

=
f(x + h)− f(x− h)

2h
.

Using the Taylor series (1), we find that

f(x + h)− f(x− h) = f(x) + f ′(x)h +
f ′′(x)

2!
h2 +

f (3)(x)

3!
h3 + O(h4)

−f(x) + f ′(x)h− f ′′(x)

2!
h2 +

f (3)(x)

3!
h3 + O(h4)

= f ′(x)2h +
f (3)(x)

3
h3 + O(h4).

7



Therefore,

Chf(x) =
f(x + h)− f(x− h)

2h
= f ′(x) +

f (3)(x)

3!
h2 + O(h3),

so the truncation error error (in exact arithmetic) is

f ′(x)− Chf(x) =
f (3)(x)

3!
h2 + O(h3) = O(h2).

That is, the centered difference is second order accurate. (Systematic deriva-
tions of higher order finite difference schemes are given in texts or courses on
the numerical solution of differential equations.) Similar to the error using
Dhf(x), the error using Chf(x) in floating point arithmetic can be modelled
as

errC(h) = |f ′(x)− Chf(x)| ≈ C ′h2 +
Cεmach

h
.

Homework 1 due Th 2/4/10.
a) Revise the code derivtd.m above to compute errC(h) and find hopt

and errC(hopt) computationally. Turn in a copy of your code and a plot like
Figure 1.

b) Find hopt by minimizing errC(h) above, as we did for errD(h) and
compare your estimate to the computed value in a). Also, find errC(hopt)
and compare it to the value in a).

Remark 1. How would you find hopt if you did not know the exact derivative,
did not have a good model of errD(h), and could only compute Dhf(x) for
various h’s? One possible strategy might be to look at the differences between
successive Dhf(x)’s: |Dh(k)f(x)−Dh(k−1)f(x)| for k = 1, . . . , n and see where
they cease to improve. This is shown in Figure 2 for f(x) = sin(x), x = 1.

This is a simple example of the type of results that occur in the numer-
ical solution of inverse problems, an active area of research the WSU Math
Department. An inverse problem is roughly a problem where you can mea-
sure the “effect” and want to find the “cause”, as contrasted with the more
common direct problem where you have a mathematical model of the “cause”
and want to compute the outcome or “effect”. In practice, measurements al-
ways have errors or “noise”. Often for inverse problems, the high frequency
components in the (small) measurement noise can be greatly amplified in the
calculation of the “cause” and completely overwhelm the answer. You must
filter out the amplified noise without filtering out all the useful information.

8



0 2 4 6 8 10 12 14 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n

lo
g(

|D
h(

n)
−

D
h(

n−
1)

)|

Differences in D
h
f(x) for successive h=10−n

Figure 2: Successive differences in one-sided difference approximation to
d sin(x)/dx|x=1 = cos(1)using h = 10−n, n = 1, 2, . . . , 20.

Such a procedure is called regularization. (The direct problem often damps
out errors in high frequency terms and leads to easier calculations.) A typ-
ical error for an inverse problem calculation will start to converge to 0 and
then diverge as in our Figures above. This is called semiconvergence. The
problem is to select the optimal solution with no knowledge of the actual
error. You should generally have some knowledge of the noise level δ if you
hope to make any progress.

Extra credit homework 1, due date to be determined.
Reproduce Figure 2. Try the same procedure for the centered difference.

Do you get a good estimate for hopt? For floating point arithmetic the noise
level δ = εmach. Suppose you only know f(x) to accuracy f(x)(1 + rand ∗ δ)
where, say, δ = 10−6 or 10−3, . . . and rand is the MATLAB random number
generator. See if you can find hopt in this case. Write up your results in a
clear way and turn in your writeup with codes and plots. You may work in
teams of two or three people. Try to write a report in latex.

9



2 Vector and matrix norms and the SVD-

Lect. 1/26/10, 1/28/10, 2/2/10

Recommended reading: text sec. 2.9 and 10.1, and [TB], Lectures 1–5 (es-
pecially for the case of complex vectors and matrices).

As background for Chapter 2 on Linear equations—solving Ax = b—we
will review some facts from linear algebra and discuss matrix and vector
norms. We will also discuss the singular value decomposition of a matrix
(square or rectangular), svd(A), since it gives so much information about A.

2.1 Linear algebra review-Lect. 1/26/10

See Lectures 1 and 2 of [TB] or your favorite linear algebra text. For conve-
nience, we’ll often denote an m× n matrix A as

A = [aij] =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 = [a1|a2| · · · |an]

where aj is the jth column of A. Then multiplication of A times an n
(column) vector x gives this

y := Ax =
n∑

j=1

xjaj ∈ range(A) = column space ofA.

Therefore we can solve Ax = b if and only if b is in the vector subspace
spanned by the columns of A, i.e. < a1, a2, . . . , an >, the space of all linear
combinations of the columns aj of A.

Some facts and definitions from linear algebra:
Matrix-vector multiplication is linear, that is, A(αx + βy) = αAx + βAy

for any vectors x, y and scalars α, β.
The vectors a1, a2, . . . , an are linearly independent, if x1a1 + x2a2 + · · ·+

xnan = 0 implies the scalars x1 = x2 = · · · = xn = 0. In this case, the
vectors aj form a basis for the vector space V (= Rn) and the dimension of
V is dim(V ).

The null space of A is null(A) = {x|Ax = 0}.
rank(A) = number of linearly independent columns of A = number of

linearly independent rows of A = rank(AT ) ≤ min(m,n).

10



Theorem 1. For A ∈ Rn×n the following conditions are equivalent:

(a) A−1 exists.

(b) rank(A)=n.

(c) range(A)=Rn.

(d) null(A)={0}.
(e) 0 is not an eigenvalue of A.

(f) det(A) 6= 0.

(g) Ax = b has a unique solution.

Note, a solution x to Ax = b exists if b ∈ range(A), and so if y ∈null(A),
then A(x+y) = Ax = b. Therefore, the solution x is unique if null(A) = {0}.

2.2 Vector and matrix norms-1/26,28/10

Let our vectors be column vectors, x, y ∈ Rn×1. The inner or dot product is

x · y := xT y =
[

x1 x2 · · · xn

]



y1

y2
...

yn


 =

n∑
i=1

xiyi.

The 2-norm of x is ‖x‖2 :=
√

x · x =
√∑n

i=1 x2
i . Recall x ·y = ‖x‖2‖y‖2 cos θ

for the angle θ between x and y with 0 ≤ θ ≤ π. Thus the dot product give
geometric information in Euclidean space Rn, i.e., lengths (or distances) and
angles. Recall for x, y 6= 0, xT y = 0 implies θ = π/2 and so x and y are
perpendicular or orthogonal.

The Kronecker delta is defined by

δij =

{
1 when i = j,
0 when i 6= j.

Definition 2. A set of n linearly independent vectors u1, u2, . . . , un such
that uT

i uj = δij is an orthonormal basis for Rn, i.e., the ui’s are mutually
orthogonal unit vectors.

11



Definition 3. An n × n matrix Q = [q1|q2| · · · |qn] is orthogonal if QT Q =
[qT

i qj] = QQT = I. Note that in this case the columns qi of Q form an
orthonormal basis for Rn and Q−1 = QT . (For complex matrices, replace the

transpose of Q by the Hermitian transpose QH = Q
T
.)

The general definition of a norm is

Definition 4. A norm is a function ‖·‖ : Rn → R such that for any x, y ∈ Rn

and any α ∈ R

(i) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0

(ii) ‖αx‖ = |α|‖x‖
(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, the triangle inequality.

Note that ‖x‖2 satisfies the definition. We will also occasionally use two
other norms,

‖x‖1 :=
n∑

i=1

|xi|

and
‖x‖∞ := max

i=1,...,n
|xi|.

Recommended exercise: Prove that all of these norms satisfy the definition.
These norms are built in to MATLAB as norm(x)=norm(x,2), norm(x,1),

and norm(x,inf). The unit circle in R2 for each of these norms is shown in
Figure (to be included).

Recomended problem: Given a nonsingular matrix A and a norm ‖ · ‖,
define ‖x‖A := ‖Ax‖. Show that ‖ · ‖A is a norm.

Norms will be useful to us for computing errors, e.g. between an “exact”
x and a computed approximation xcomp to x,

absolute error := ‖x− xcomp‖ and relative error :=
‖x− xcomp‖

‖x‖ .

In general, relative errors can be at best ≈ εmach (or exactly 0). Errors using
‖ · ‖1 give an upper bound on the componentwise error.

We will also use norms on matrices.

12



Definition 5. The matrix norm ‖A‖ induced by a vector norm ‖x‖ is

‖A‖ := max
‖x‖=1

‖Ax‖.

Note that the definition of the matrix norm is in terms of (given) vector
norms. Recall that ‖Ax‖ is a continuous function of (the components of) x
and so (by a Theorem from Advanced Calculus) must achieve its maximum
value for some x on the compact(=closed and bounded) set ‖x‖ = 1. ‖Ax‖
also achieves its mininmum. These facts are illustrated for the norm ‖ · ‖2

for a 2× 2 matrix in Figure 3. Note that for x 6= 0, ‖ x
‖x‖‖ = 1. Therefore

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ = the maximum magnification of x by A.

Example 1. In any induced norm, the identity I has norm 1,

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

Example 2. Note that for Q orthogonal,

‖Qx‖2
2 = (Qx)T Qx = xT QT Qx = xT x = ‖x‖2

2.

Therefore
‖Q‖2 = max

‖x‖2=1
‖Qx‖2 = max

‖x‖2=1
‖x‖2 = 1.

Example 3. For ‖ · ‖ = ‖ · ‖2, ‖ · ‖1, or ‖ · ‖∞ and Λ = diag(λ1, λ2, . . . , λn),

‖Λ‖ = max
i=1,...,n

|λi|.

Can you prove this?

Matrix norms satisfy the definition of a norm. There are other matrix
norms, but the induced norms satisfy the nice properties ‖Ax‖ ≤ ‖A‖‖x‖
and ‖AB‖ ≤ ‖A‖‖B‖.
Proof. The first inequality is obvious from the definition of ‖A‖ and imme-
diately gives the second inequality, since

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖.

13



Definition 6. Two norms ‖·‖ and |||·||| are equivalent if there exist constants
C ≥ c > 0 such for any x

c‖x‖ ≤ |||x||| ≤ C‖x‖.
For instance, ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞, where c = 1 and C =

√
n. Note

that for x = [1, 0, 0, · · · , 0]T equality is achieved for the left inequality and
for x = [1, 1, · · · , 1]T equality is achieved for the right inequality, so no larger
c or smaller C can be found. In such cases, the bounds are called “sharp”.
What are the best constants for other combinations or our norms? Similar
results hold for our matrix norms.

Theorem 2. All vector norms are equivalent.

As a conseqence, if a sequence of vectors converges xi → x in one norm,
i.e., if ‖xi − x‖ → 0, then the sequence converges in any other norm
|||xi−x||| → 0, so we may use any convenient norm to monitor convergence.
(This equivalence is not true in general for norms for infinite dimensional
spaces of functions, which makes functional analysis more complicated.)

2.3 Eigenvalues and eigenvectors - 1/28/10

Recall that for A ∈ Rn×n, if Ax = λx, then x is an eigenvector of A and λ is
the associated eigenvalue. p(λ) := det(λI−A) is the nth degree characteristic
polynomial of A. The eigenvalues of A are the zeros of p(λ), that is, the
solutions of p(λ) = 0. For A real, the eigenvalues λ are real or occur in
complex conjugate pairs, λ = µ + iη and λ = µ − iη (Why?). For n = 2,
we can solve for λ using the quadratic formula. This is the first “formula”
we all learn. It solves a nonlinear equation. It is misleading, since there are
many, many nonlinear equations in the world and few of them have formulas
for their solution. In fact, for n > 4, Galois theory tells us that there are no
“formulas” (=expressions in terms of the elementary operations of addition,
subtraction, multiplication, division, or finding roots using the coefficients
of p(λ)) for solving p(λ) = 0. This is a nonlinear problem and so, to solve
the eigenvalue problem, we must use an iterative method such as Newton’s
method to produce a sequence converging to an eigenvalue. (Some standard
numerical methods for finding eigenvalues, such as the QR algorithm, are
discussed in Chapter 8 and built in to MATLAB. We may not get to this
material. These methods are treated more fully in [TB] and our Math 751
course.)

14



Recall that there are exactly n eigenvalues λi, i = 1, . . . , n of our n × n
matrix A, and so p(λ) =

∏n
i=1(λ−λi). A root λi that repeats exactly k times

is called an eigenvalue of (algebraic) multiplicity k. To find the associated
eigenvector, we must solve the singular linear problem (A−λiI)xi = 0 for xi 6=
0. Then cxi is also a solution, so we may normalize xi such that, e.g., ‖xi‖2 =
1. There is always at least one such xi. However, an eigenvalue of (algebraic)
multiplicity k ≥ 2 may have only j linearly independent eigenvectors with
1 ≥ j < k. j is the geometric multiplicity of λi. If j < k, the eigenvalue

(and matrix) is defective. A canonical example is A =

[
2 1
0 2

]
where λ1 = 2

with algebraic multiplicity 2, but x1 =

[
1
0

]
is the only eigenvector. (You

should be able to calculate eigenvalues and eigenvectors of 2 and selected
3× 3 matrices by hand, if necessary, on an exam.) Therefore, the geometric
multiplicity of λ1 = 2 is 1 and A is defective, i.e., A does not have a complete
set of n linearly independent eigenvectors; cf. the Jordan canonical form
in [CM, Section 10.8] or in your linear algebra text.

If A ∈ Rn×n is not defective, with a complete set of n linearly inde-
pendent eigenvectors xi and corresponding eigenvalues λi, then the matrix
X := [x1|x2| · · · |xn] has rank n and so X−1 exists. Further,

AX = [Ax1|Ax2| · · · |Axn]

= [λ1x1|λ2x2| · · · |λnxn]

= [x1|x2| · · · |xn]




λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . . . . . . . .
...

0 0
0 0 · · · 0 λn




= XΛ,

where Λ = diag(λ1, λ2, . . . , λn). That is, A = XΛX−1, is the eigendecom-
position of A, or in other words, X diagonalizes A, i.e., X−1AX = Λ. If
A = [aij] = [aji] = AT , then A is symmetric. In this case, A has real eigen-
values (Why?) and a complete set of orthonormal eigenvectors. That is X
is orthogonal and so A = XΛXT . Such factorizations of matrices are a re-
curring theme in numerical linear algebra. The next topics, the svd and the
LU factorizations, are examples.

15



Definition 7. A is positive definite if xT Ax > 0 for all vectors x 6= 0.

Note that if A is symmetric (to insure λ and x are real), positive definite
and Ax = λx with ‖x‖2 = 1, then

0 < xT Ax = xT (λx) = λxT x = λ‖x‖2
2 = λ.

That is the eigenvalues of a positive definite matrix are positive.

2.4 The svd - 1/28/10, 2/2/10

The svd is defined for general (complex) rectangular matrices. (In the com-
plex case replace orthogonal matrices by unitary matrices U , i.e., UHU = I,

where UH = U
T

is the Hermitian transpose of U . Note that UH = U ′ and
UT = U.′ in MATLAB.) We’ll just consider real square matrices for the mo-
ment. Since AT A is symmetric positive (semi)definite (semi if xT AT Ax = 0
for some x 6= 0), it has eigenvalues λi ≥ 0 and a complete set of orthonormal
eigenvectors vi, i = 1, . . . , n. Let V := [v1|v2| · · · |vn]. Then V is orthog-
onal and AT AV = V Λ where Λ = diag(λ1, λ2, . . . , λn) where we assume
λ1 ≥ λ2 ≥ · · ·λn ≥ 0, wlog. That is Avi = λivi. Define σi :=

√
λi, called the

ith singular value of A, and ui = 1
σi

Avi. Note that uT
i uj = 1

σiσj
vT

i AT Avj = δij,

so the ui’s are orthonormal and U := [u1|u2| · · · |un] is orthogonal. This gives
us the singular value decomposition or svd of A,

A = UΣV T where Σ := diag(σ1, σ2, · · · , σn) or Avi = σiui

where σ1 ≥ σ2 ≥ · · · σn ≥ 0. The ui’s and vi’s are the left and right singular
vectors of A.

We compute by hand the svd of A =

[
1 1
1 1

]
. First, AT A =

[
2 2
2 2

]
.

The eigenvalues of AT A are found by solving

det(λI − AT A) =

∣∣∣∣
λ− 2 −2
−2 λ− 2

∣∣∣∣ = (λ− 2)2 − 4 = 0.

Therefore, λ1 = 4 ≥ λ2 = 0 with associated orthonormal eigenvectors,

v1 =

[
1/
√

2

1/
√

2

]
and v2 =

[
1/
√

2

−1/
√

2

]
. Therefore, σ1 = 2 ≥ σ2 = 0 and,

16



in this case u1 = v1, u2 = v2. (Since σ2 = 0 we must just choose u2 orthogo-
nal to u1.) Summarizing, the svd is

A =

[
1 1
1 1

]
= UΣV T =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
2 0
0 0

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
.

(In this case, the svd is just the eigendecompostion of A since A is symmetric
postitive semidefinite. Try this matrix in MATLAB, [U,S,V]=svd(A). Note
that here rank(A)=1, which is the number of nonzero singular values of A,
In general, the rank of a matrix is the number of nonzero singular values.
However, in practice singular values may not be exactly 0. Instead, if an
n× n matrix A has singular values,

σ1 ≥ σ2 ≥ · · · ≥ σr >> εtol. ≥ σr+1 ≥ · · · ≥ σn ≥ 0,

we can say the rank of A is r to a tolerance of εtol..
(Below there is a small sample code to try, illustrating the meaning of

the svd for a 2× 2 matrix.)
Our next main concern is to solve Ax = b, for A nonsingular using Gaus-

sian elimination. We could use the svd instead, but it is more expensive.
However, it is very illuminating to see how this is done. Since the ui’s and
vi’s form orthonormal bases for Rn, for the given b we have b =

∑n
j=1 bjuj.

Note that bj = uT
j b = ‖b‖2 cos θ, the component of b in the uj direction.

Similarly, the unknown x =
∑n

j=1 xjvj with xj = vT
j x. We need to find the

xj’s. Note that

Ax = UΣV T x =
n∑

j=1

σj(v
T
j x)uj =

n∑
j=1

σjxjuj = b =
n∑

j=1

bjuj.

Therefore, the solution is xj =
bj

σj
, j = 1, . . . , n, i.e,

x =
n∑

j=1

bj

σj

vj =
n∑

j=1

uT
j b

σj

vj.

Another way to write the svd is as an outer product expansion,

A =
n∑

i=1

σiuiv
T
i .

17



The n × n matrices uiv
T
i ’s are outer products of ui and vi (cf. the inner

product uT
i vi). They are rank one. (Why?) The inverse A−1 can be written

as

A−1 =
n∑

i=1

viu
T
i

σi

.

Is this the svd of A−1?

Remark 2. For A nearly singular the σj/σ1 ≈ 0 for j ≈ n. Therefore, if those
bj’s are O(1), i.e. not very small, xj = bj/σj will be very large. If there are
errors in the bj’s associated with limits in the accuracy of measurements of b
(“noise” in the data), these errors are greatly amplified by the small singular
values and can overwhelm the computed solution x making it useless. The
ui’s and vi for large i ≈ n are usually associated with high frequency or highly
oscillatory components of b and x. One way to get a useful approximate
solution x is to filter or damp out inaccurate high frequency components xj.
This is another example of regularzation, referred to above. Regularization
techniques, as we said, are frequently needed to solve inverse problems, where
the matrices are often nearly singular (ill-conditioned; see below) and the data
may have only a few percent accuracy. Such techniques were use by some of
at WSU to solve inverse problems in acoustics [DIVW1, DIVW2, DH]. These
problems arose in attempts to locate sources of noise in the cabins of Cessna
business jets by taking pressure measurements (the data b or “effect”) near
the fuselage and trying to reconstruct the boundary vibrations (the solution
x or the “cause”). This is sometimes called nearfield acoustic holography and
has been used by the U. S. Naval Research Laboratory in Washington, D.C.
to understand noise sources in submarines in order to make them quieter.

Question: If you run the given MATLAB code for plotting y = Ax, the
lines in Figure 3 indicating min ‖y‖2 and max ‖y‖2 are not always orthogonal,
especially for elongated ellipses. Why?

% plot y=Ax, A 2x2 matrix, ||x||=1

n=128;

%A=rand(2,2);

A=randn(2,2);

x=[cos(2*pi*[0:n]/n);sin(2*pi*[0:n]/n)];

y=A*x;

for j=1:n

18



y2(j)orm(y(:,j),2);

end

[mmax,kmax]=max(y2);

[mmin,kmin]=min(y2);

subplot(1,2,1)

plot(x(1,:),x(2,:));

hold on;

plot([0 x(1,kmax)],[0,x(2,kmax)]);

hold on;

plot([0 x(1,kmin)],[0,x(2,kmin)]);

axis equal

hold on;

subplot(1,2,2)

plot(y(1,:),y(2,:))

hold on;

plot([0 y(1,kmax)],[0,y(2,kmax)]);

hold on;

plot([0 y(1,kmin)],[0,y(2,kmin)]);

axis equal

hold on;

2.5 Operation counts - 2/4/10

It is useful to understand the amount of computational work and memory
is required by a computer in order to run a given algorithm on a specified
problem involving, say, the solution of n equations or n numbers. Our “Big-
Oh” notation is handy here.

Definition 8. (Big Oh notation) f(n) = O(g(n)) if there exists C, N > 0
such that |f(n)| ≤ C|g(n)| for all |n| ≥ N .

If we are discussing computational work or “cost”, then we want to find
some simple function g(n) of n such that, say, the number of floating point
operations f(n) needed to solve a problem for n equations or pieces of data
is O(g(n)).

Today I’ll discuss some simple examples: searching a phone book with
n names, computing inner and outer products, matrix-vector, and matrix-
matrix multiplication with n×n matrices. How would you compute ABx?,. . . .

19



−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: Illustration of svd for a 2× 2 matrix.

Suggested short problem: This problem will give you some feeling for the
speed of your computer. Try the following MATLAB operations to compare
times for matrix-vector and matrix-matrix multiplication. Are they O(n2)
and O(n3)? Make a table listing times for n = 10, 100, 1000. Can you
estimate the speed of your computer in flops/second?

>> n=1000;

>> A=ones(n,n);

>> x=ones(n,1);

>> tic; A*x; toc

Elapsed time is 0.005466 seconds.

>> tic; A*A; toc

Elapsed time is 1.817824 seconds.

20



2.6 LU factorization - 2/9/10, 2/11/10

Sections 2.1–2.6 and handout on PA = LU . Operation counts: GEPP (=
Gaussian Elimination with Partial Pivoting) costs O(n3) flops. Forward and
backsubstitution cost O(n2) flops. See lutx, bslashtx, lugui.

2.7 Condition number - 2/16/10

Sections 2.6–2.9.
Some facts about condition number κ(A) = ‖A‖‖A−1‖.
κ(I) = 1.
κ(A) = ‖A‖‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ = 1.
κ2(A) = ‖A‖2‖A−1‖2 = σ1

σn
.

Theorem 3. If A is nonsingular and ‖E‖
‖A‖ < 1

κ(A)
, then A + E is nonsingular

(i.e., 1
κ(A)

is the relative distance from A to the nearest singular matrix. This

implies that the set of all nonsingular matrices is open.)

Proof. Suppose A + E is singular. The there exists and x 6= 0 such that
(A + E)x = 0. Therefore

Ax = −Ex

x = A−1Ex

‖x‖ ≤ ‖A−1‖‖E‖‖x‖
and so

1

κ(A)
=

1

‖A‖‖A−1‖ ≤
‖E‖
‖A‖ .

According to these estimates, if cond(A) ≈ 10p, you can expect lose about
the last p digits in the computed solution. To get some feeling for the error
estimates and conditioning, try using xc=A\b to solve Ax = b where

Ax =

[
1 1.001
1 1

] [
1
1

]
=

[
2.001

2

]
= b.

Be sure to use format long to see all the digits. Change 1.001 to 1.0001
1.00001, etc., and the corresponding b while leaving x = [1, 1]T , and watch
xc− x, the residual b− Axc, and cond(A) change.

21



2.8 How NOT to compute determinants, inverses, etc.
- 2/18/20

See text Probs. 2.7 and 2.11 for effective methods to compute det(A) and
A−1.

You should NOT use the recursive defintion from linear algebra where an
n × n determinant is calculated in terms of n n − 1 × n − 1 determinants.
The cost would therefors be O(n!). Here is an implementation of this. Note
that it use the recursive properties of MATLAB. That is the code calls itself:

function y = dettd(A)

% Computes the determinant of A recursively

% from the linear algebra definition.

% T. DeLillo, Math 451, Fall 2001.

[m,n]=size(A);

if m ~= n

disp(’A is not a square matrix’);

break

elseif n == 1

y=A(1,1);

elseif n > 1

y=0;

for j=1:n

B=A;

B(:,j)=[];

B(1,:)=[];

y=y + (-1)^(1+j)*A(1,j)*dettd(B);

end

end

Try this on some small matrices and use tic;\dettd(A);toc; to convince
yourself of the O(n!) cost. If you try a matrix with n greater than 8 or 9,
you should be prepared to kill the program with ctrl^.

2.9 Sparse matrices - 2/23/10

Section 2.10. Thomas algorithm tridisolve for solving a tridiagonal system
costs O(n) flops. Whenever a matrix A has “structure” or sparsity the cost
of solving Ax = b can often be reduced.

22



3 Interpolation

3.1 The interpolating polynomial - 2/25/10

Section 3.7, interpgui gives an overview and comparison of polynomial,
piecewise linear, piecewise Hermite cubic, and cubic spline interpolation
which we will study in detail. Discuss Section 3.1, Lagrangian form polyinterp,
power form and Vandermonde matrix vander.

3.2 Lecture - 3/2/10

To illustrate the products multiplying the yk’s in the Lagrange form of the
interpolating polynomial in section 3.1, try this:

>> x=[0 1 2 3];

>> y=[0 0 1 0];

>> u=(0:0.1:3);

>> v=polyinterp(x,y,u);

>> plot(x,y,’o’,u,v)

Polynomial interpolation at equidistant points and the Runge phenomenon;
run rungeinterp and see Prob. 3.9; remark on Weierstrass approximation
theorem.

Section 3.2, pw linear interpolation, Section 3.3 and 3.4, Piecewise linear
Hermite cubic and shape preserving pw cubic interpolation...; see Hr̈ner’s
algorithm, polyval (built into MATLAB), piecelin, pchip,...

Figure 4 graphically illustrates the difference between a C1 pw Hermite
cubic and a C2 pw cubic spline. Figure 4 (top) is a C1 function generated
by the following MATLAB commandes.

>> x=linspace(-1,1,1000);

>> y=zeros(1:500);

>> y=zeros(1,500);

>> y=zeros(501,1000)=x(501:1000).^2;

>> y(501:1000)=x(501:1000).^2;

>> plot(x,y);

>> axis([-1 1 -1 1])

Figure 4 (bottom) is a C1 function generated by the following MATLAB
commandes.

23



>> x=linspace(-1,1,1000);

>> y=zeros(1:500);

>> y=zeros(1,500);

>> y=zeros(501,1000)=x(501:1000).^3;

>> y(501:1000)=x(501:1000).^3;2>> plot(x,y);

>> axis([-1 1 -1 1])

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4: Illustration of C1 function (top) and C2 function (bottom).

24



3.3 Lecture - 3/4/10

Sections 3.5, 3.6 Cubic spline interpolation. We went through the derivation
of the tridiagonal system for the dk = P ′(xk), k = 1, . . . , n such that P ′′(x) ∈
C2[x1, xn]. This piecewise cubic interpolationg polynomial is known as a
cubic spline. The derivation is given in the text and in my posted handwritten
notes. The slopes d1, dn at the endpoints can be chosen in three ways: (1)
the not-a-knot strategy given in the text, (2) the draftsman’s spline1 where
P ′′(x1) = P ′′(xn) = 0, so that slopes P ′(x) is constant to the left and right
of [x1, xn] like a draftsman’s spline, and (3) the periodic cubic spline, which
we discuss here in more detail. Here the period is ∆ = xn − x1 and so
P j(x + ∆) = P j(x), j = 0, 1, 2. Therefore, P ′(x1) = d1 = P ′(xn) = dn. This
reduces the number of unknown dk’s by 1. In the case of equidistant xk’s
where hk = h = x2 − x1, using the basic relation

dk−1 + 4dk + dk+1 = 3(δk−1 + δk)

for k = 1 and k = n − 1 and d0 = dn−1 and d1 = dn by periodicity, we get
the near-tridiagonal system for the dk’s,

Ad =




4 1 0 · · · 0 0 1
1 4 1 · · · 0 0 0
0 1 4 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 4 1 0
0 0 0 · · · 1 4 1
1 0 0 · · · 0 1 4







d1

d2

d3
...

dn−3

dn−2

dn−1




= 3




δn−1 + δ1

δ1 + δ2

δ2 + δ3
...

δn−4 + δn−3

δn−3 + δn−2

δn−2 + δn−1




=: r.

The periodicity introduces 1’s in th upper right and lower left hand corners
of A. You are asked to fill in some entries of A for case of general hk and
modify splinetx in Computer Homework III (Problem 3.13).

1A draftsman’s spline is a flexible rod used in the old, pre-computer-graphics days
which was placed against the pins (knots) on draft paper in order to help draw a smooth
curve through the points. At the overhangs, the rod is straight. Between the endpoints,
the total bending (integral of the |P ′′(x)|2) is minimized; see [Hen, Section 5.8] to see that
this condition leads to our spline equations.

25



4 Zeros and Roots-solving nonlinear equations-

Lectures 3/11/10, 3/13/10, and 3/23/10.

(No class 3/16/10 and 3/18/10 for spring break.)

In general, we can’t expect “formulas” for solutions to nonlinear prob-
lems (The first formula we all learn, the quadratic formula, is misleading, in
that sense, and not even useful numerically if the roots are close together.)
Therefore, we usually need some type of iterative method which produces a
sequence converging to the solution, xn → x, n → ∞. The following defini-
tions are useful.

Definition 9. If xn converges to x and with en := |x − xn| and there is a
constant c ≥ 0 such that

en+1 ≤ cep
n, for all n sufficiently large,

then p is the order of convergence. p = 1 is called linear convergence and
p = 2 is called quadratic convergence. If p = 1 and limn→∞ en+1/en = r and
0 < r < 1, then r is called the (linear) convergence ratio and en ≤ Crn for
some C > 0.

Let’s recall some methods for solving a scalar equation f(x) = 0, where
f is a nonlinear function of x. If f ′(x) exists we can try Newton’s method,
of course. Instead, suppose f has the form f(x) = x− g(x). The solution x
is therefore a fixed point of g(x) since x = g(x). Then a method of successive
approximation suggests itself: Start with an initial guess x0 and iterate,

xn+1 = g(xn), n = 0, 1, 2 . . . .

If x = xexact is the solution, then convergence can be shown, if r = |g′(x)| < 1
with convergence ratio r and x0 is sufficiently close to xexact. If g is contnu-
ously differentiable, this follows from

x− xn+1 = g(x)− g(xn) = g′(ξn)(x− xn)

for some ξn between x and xn. Therefore,

lim
n→∞

en+1

en

= |g′(x)|

26



and so xn converges to x, if r|g′(x)| < 1.

Possible problem or demo. As an example, try x = g(x) = cos x, if
you’ve never done so. You don’t have to do any coding in MATLAB. Note
that there is a solution between 0 and π/2. Then just type, say, x=1 and,
repeatedly, x=cos(x) and watch the digits slowly line up. Be sure to use
format long. (Try Newton’s method using x=x-f(x)/f′(x) to see faster
quadratic convergence.)

A method of successive approximation or Picard’s method can also be
used in other contexts to establish existence of functions solving particular
equations. A familiar example, similar to Theordorsen’s method, is the proof
of existence and uniqueness of solutions to the initial value problem for a
general first order differential equation,

y′ = f(x, y), y(0) = y0,

as discussed in, e.g., [?, Sec. 2.11]. One starts with and initial guess φ0(x)
for the solution and iterates using the integral form of the equation,

φn+1(x) = y0 +

∫ x

0

f(t, φn(t))dt.

Convergence of the iterates to a unique solution can then be shown in a small
interval near 0 if f and fy are continuous.

Th 3/25/10 - Exam I on material through Section 4.4 of the text and
the notes to that point. I will base most questions on simple arguments or
calculations in these notes or the text. The exam is mainly meant to see
that you have been following the basic mathematical steps in the notes and
the text. The exam will consist of about five or six problems similar the the
following sample problems.

1. Derive the first few terms of the Taylor series for a given function.

2. Find the order of accuracy of the one-sided or the centered difference
approximation to the derivative.

3. Show that the 1-norm ‖x‖1 satisfies the definition of a norm.

27



4. If Q is an orthogonal matrix, show that

a) ‖Qx‖2 = ‖x‖2.

b) cond(Q) := κ2(Q) = 1.

c) If θ is the smallest angle between x and y and φ is the smallest
angle between Qx and Qy, show that θ = φ.

5. Find the SVD or eigenvalues and eigenvectors of a given matrix A.

6. Find PA = LU using GEPP.

7. Solve Ax = b using PA = LU and forward and backward substitution.

8. Count the number of floating point operations (flops) for forward or
backward substitution, GEPP, matrix-vector or matrix-matrix multi-
plication.

9. If Ax = b, A(x+δx) = b+δb, and A−1 exists, show that ‖δx‖
‖x‖ ≤ κ(A)‖δb‖

‖b‖

10. Set up the Vandermonde system for polynomial interpolation and solve
it for a simple example.

11. Dervive and perform a step or two of Picard, Newton, or the secant
method on a given function.

12. Explain a simple segment of MATLAB code.

13. Explain some basic fact about finite precision floating point arithmetic.

5 Homework

(Mainly) Written Homework

Homework 1 due Th 2/4/10.
a) (2 pts) Revise the code derivtd.m above to compute errC(h) and find

hopt and errC(hopt) computationally. Turn in a copy of your code and a plot
like Figure 1.

28



b) (2 pts) Find hopt by minimizing errC(h) above, as we did for errD(h)
and compare your estimate to the computed value in a). Also, find errC(hopt)
and compare it to the value in a).

Homework 2 (4 pts.) due Th 2/11/10. Find the svd of

A =

[
1 1
0 0

]

by a hand calculation and compare with the MATLAB result.

Homework 3 (4 pts.) due Th 2/11/10. Show that a real 2 × 2 matrix A
maps the unit circle ‖x‖2 = 1 to an ellipse y = Ax as illustrated in Figure 3.
(Hint: Verify the components of y satisfy the standard equation of the ellipse
y2
1

a2 +
y2
2

b2
= 1, if you choose the coordinate system and a and b properly.)

Homework 4 (4 pts.) due Th 2/18/10. Find PA = LU by a hand calcula-
tion using G.E.P.P. follwoing the class example for

A =




2 5 5
6 12 6
3 8 7


 .

Homework 5 due Th 3/4/10.
a) (2 pts) Show that for n = 3 and xj 6= xk, j 6= k, the Vandermonde

matrix V is nonsingular by showing that

det V =

∣∣∣∣∣∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣
6= 0.

b) (Bonus: 4 pts—due date open) Show det V 6= 0 for the general n ×
n Vandermonde matrix V with xj 6= xk, k 6= j. Hint: Use mathematical
induction.

Homework 6 (2 pts) due Th 3/4/10. Prob. 3.7 from text.

Homework 7 (8 pts) due 4/14. Prob. 5.4 from text.

29



Homework 8 (4 pts) due 4/14. Prob. 5.5 from text.

Computer Homework

Computer Homework I (4 pts.) due Th 3/11/10. Prob. 3.9 from text on
the Runge phenomenon.

Computer Homework II (6 pts.) due T 3/30/10. Prob. 3.13 from the
text; see also old Com puter HW III below for some possible extensions and
hints.

Computer Homework III (6 pts.) due Th 4/22/10. Program Simpson’s
rule. You may revise my short trapezoidal rule code traptd2(f,a,b,n)

posted on my webpage. Compare your program with traptd2 and quadtx

for some selected know integrals,
∫ 1

0
f(x)dx for f(x) =

√
x, x2, x3, x4 and

various n, e.g., n = 10, 100, 1000, . . . . Tabulate and comment on your results
in light of the error estimates in the posted notes on Newton-Cotes methods.
Also try the integral for π in text problems 6.3 and 6.4.

Old stuff not yet officially assigned for Spring 2010:

Computer Homework - bonus I (4 pts.) due date open. Prob. 2.19
from the text. (You may just hand in an orderly copy of the MATLAB
commands. You might want to use the MATLAB diary on command. Type
help diary. I do not want to see all the entries of the n × n matrix where
n = 100 or the n× 1 solution vector x!)

old Computer Homework III due T 3/24.
a) (2 pts) Fill in the ?’s in the matrix equation for the periodic cubic

spline,

30






2(hn−1 + h1) hn−1 0 · · · 0 0 h1

h2 2(h1 + h2) h1 · · · 0 0 0
0 h3 2(h2 + h3) h2 0 0 0
...

...
...

...
...

...
0 0 0 · · · hn−2 2(hn−3 + hn−2) hn−3

? 0 0 · · · 0 ? ?




×




d1

d2

d3
...

dn−2

dn−1




=




h1δn−1 + hn−1δ1

h2δ1 + h1δ2

h3δ2 + h2δ3
...

hn−2δn−3 + hn−3δn−2

hn−1δn−2 + hn−2δn−1




.

b) (4 pts) Problem 3.13 in text.
c) (bonus problem) Revise your code in part b) to interpolate points in the

x, y-plane forming a closed curve using chordal arclength
hk =

√
(xk+1 − xk)2 + (yk+1 − yk)2 as the spline parameter.

d) (bonus problem) Design, code, and test an efficient solver for the ma-
trices above for periodic cubic splines. The operation count should be O(n).

Computer Homework IV (2 pts) due T 4/23. Reproduce Figure 5.4 from
the text.

Take-home Final Exam Problems due on T 5/19/09.
1. Prob. 6.2 from text.
2. Prob. 6.20 from text.
3. Prob. 7.1 from text.
4. Prob. 7.8 from text:

a) Find J by a hand calculation.
b) (bonus) Find λ using the symbolic toolbox.

...(more may be added)...

A Final Project will be due at end on semester including a short presen-
tation and a writeup. You may work in teams of two or three people. Some

31



suggested problems, mostly from Chapter 7 are 7.9–13 (inclusive), 7.15–16
(inclusive), 7.21, 7,22, or 7.23. Think about this over the break and let me
know your tentative teams and choices. Ideally, each team should choose a
different problem You may also wish to look at other problems in the text.

References

[DH] T. DeLillo and T. Hrycak, A stopping rule for the conjugate gradient
regularization method for inverse problems in acoustics, J. Comput.
Acoustics, 14 (2006), pp. 397–414.

[DIVW1] T. DeLillo, V. Isakov, N. Valdivia, and L. Wang, The detection
of the source of acoustical noise in two dimensions, SIAM Journal of
Applied Math., 61 (2001), pp. 2104–2121.

[DIVW2] T. DeLillo, V. Isakov, N. Valdivia, L. Wang, The detection of sur-
face vibrations from interior acoustical pressure, Inverse Problems, 19
(2003), pp. 507–524.

[Hen] P. Henrici, Essentials of Numerical Analysis, John Wiley, New York,
1982.

[CM] Cleve Moler, Numerical Computing with MATLAB, SIAM, 2004.

[CVL] C. F. Van Loan, Introduction to Scientific Computing, Second edition,
Prentice-Hall, 2000.

[LNT] L. N. Trefethen, The definition of numerical analysis, SIAM News,
Nov. 1992
http://www.comlab.ox.ac.uk/nick.trefethen/home.html

[TB] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.

32


