
Math 451 – DeLillo
Note on Newton’s method for systems of nonlinear equations – 9/19/12

Newton’s method for systems of nonlinear equations, like Newton’s method
for solving f(x) = 0 for a single-valued nonlinear function f of one variable x,
is a based on producing a sequence of solutions x(k) to successive linear prob-
lems such that x(k) converges to the solution xexact. The linear problems are
derived from linear approximations to f(x) at x = x(k). Suppose we have a
(nonlinear) vector-valued function F (X) of n variables X = [x1, x2, . . . , xn]T]
where F has n components fj(X), j = 1, 2, , . . . , n, and we wish to find a zero
Xexact of F , such that F (Xexact) = [0, 0, . . . , 0]T . That is, we wish to solve

F (X) =




f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)


 =




0
0
...
0


 .

Since there are n equations in n unknowns, there is some hope that we may
have a solution. In fact, usually there are multiple solutions (or none), just
as in the scalar case. Recall from Calculus III (where usually n = 2 or
3) that scalar-valued functions fj(x1, x2, . . . , xn) can be approximated by a
linear function (the tangent plane for n = 2) at a given point X = Xk =
[xk

1, x
k
2, . . . , x

k
n]T , (xk

i here denotes the kth iterate of xi and NOT xi raised to
the kth power) that is by

fj(x1, x2, . . . , xn) ≈ fj(x
k
1, x

k
2, . . . , x

k
n) +

∂fj(x
k
1, x

k
2, . . . , x

k
n)

∂x1

(x1 − xk
1)

+
∂fj(x

k
1, x

k
2, . . . , x

k
n)

∂x2

(x2 − xk
2) + · · ·

+
∂fj(x

k
1, x

k
2, . . . , x

k
n)

∂xn

(xn − xk
n),

for j = 1, 2, . . . , n. We can write this in matrix-vector notation as

F (X) ≈ F (Xk) + J(Xk)(X −Xk),

1

where J(Xk) is the n× n Jacobian matrix,

J(X) =




∂f1(X)
∂x1

∂f1(X)
∂x2

. . . ∂f1(X)
∂xn

∂f2(X)
∂x1

∂f2(X)
∂x2

. . . ∂f2(X)
∂xn

...
... . . .

...
∂fn(X)

∂x1

∂fn(X)
∂x2

. . . ∂fn(X)
∂xn




evaluated at X = Xk. For the Newton step, we solve the linear system,

JUk = −F (Xk)

for the Newton update Uk = X − Xk, (an n × 1 vector). We can do this
easily in MATLAB using the Gaussian elimination with the backslash \,

Uk = −J\F (Xk).

Then we form the update

Xk+1 = Xk + Uk = Xk − J\F (Xk)

and repeat the process until the components of either F (Xk) or Uk get suf-
ficiently small, just as in the scalar case.

Here is a simple example from the class diary. Let

F =

[
x2

1 + x2
2 − 1

x2
1 − x2

2

]
.

The solutions to F = 0 are obviously any combinations of x1 = ±√2/2, x2 =
±√2/2. The Jacobian matrix is

J =

[
2x1 2x2

2x1 −2x2

]
.

In the diary for 9/19/12 we started with an initial guess X1 = [1, 1.3]T and
saw that the Newton iterations converged rapidly to the solution [

√
2/2,

√
2/2].

2

