Math 451 – DeLillo

Note on Newton's method for systems of nonlinear equations -9/19/12

Newton's method for systems of nonlinear equations, like Newton's method for solving f(x) = 0 for a single-valued nonlinear function f of one variable x, is a based on producing a sequence of solutions $x^{(k)}$ to successive linear problems such that $x^{(k)}$ converges to the solution x_{exact} . The linear problems are derived from linear approximations to f(x) at $x = x^{(k)}$. Suppose we have a (nonlinear) vector-valued function F(X) of n variables $X = [x_1, x_2, \ldots, x_n]^T$] where F has n components $f_j(X), j = 1, 2, \ldots, n$, and we wish to find a zero X_{exact} of F, such that $F(X_{exact}) = [0, 0, \ldots, 0]^T$. That is, we wish to solve

$$F(X) = \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Since there are n equations in n unknowns, there is some hope that we may have a solution. In fact, usually there are multiple solutions (or none), just as in the scalar case. Recall from Calculus III (where usually n=2 or 3) that scalar-valued functions $f_j(x_1, x_2, \ldots, x_n)$ can be approximated by a linear function (the tangent plane for n=2) at a given point $X=X^k=[x_1^k, x_2^k, \ldots, x_n^k]^T$, $(x_i^k$ here denotes the kth iterate of x_i and NOT x_i raised to the kth power) that is by

$$f_{j}(x_{1}, x_{2}, \dots, x_{n}) \approx f_{j}(x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k}) + \frac{\partial f_{j}(x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k})}{\partial x_{1}} (x_{1} - x_{1}^{k})$$

$$+ \frac{\partial f_{j}(x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k})}{\partial x_{2}} (x_{2} - x_{2}^{k}) + \dots$$

$$+ \frac{\partial f_{j}(x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k})}{\partial x_{n}} (x_{n} - x_{n}^{k}),$$

for j = 1, 2, ..., n. We can write this in matrix-vector notation as

$$F(X) \approx F(X^k) + J(X^k)(X - X^k),$$

where $J(X^k)$ is the $n \times n$ Jacobian matrix,

$$J(X) = \begin{bmatrix} \frac{\partial f_1(X)}{\partial x_1} & \frac{\partial f_1(X)}{\partial x_2} & \cdots & \frac{\partial f_1(X)}{\partial x_n} \\ \frac{\partial f_2(X)}{\partial x_1} & \frac{\partial f_2(X)}{\partial x_2} & \cdots & \frac{\partial f_2(X)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(X)}{\partial x_1} & \frac{\partial f_n(X)}{\partial x_2} & \cdots & \frac{\partial f_n(X)}{\partial x_n} \end{bmatrix}$$

evaluated at $X = X^k$. For the Newton step, we solve the linear system,

$$JU^k = -F(X^k)$$

for the Newton update $U^k = X - X^k$, (an $n \times 1$ vector). We can do this easily in MATLAB using the Gaussian elimination with the backslash \setminus ,

$$U^k = -J \backslash F(X^k).$$

Then we form the update

$$X^{k+1} = X^k + U^k = X^k - J \backslash F(X^k)$$

and repeat the process until the components of either $F(X^k)$ or U^k get sufficiently small, just as in the scalar case.

Here is a simple example from the class diary. Let

$$F = \left[\begin{array}{c} x_1^2 + x_2^2 - 1 \\ x_1^2 - x_2^2 \end{array} \right].$$

The solutions to F=0 are obviously any combinations of $x_1=\pm\sqrt{2}/2, x_2=\pm\sqrt{2}/2$. The Jacobian matrix is

$$J = \left[\begin{array}{cc} 2x_1 & 2x_2 \\ 2x_1 & -2x_2 \end{array} \right].$$

In the diary for 9/19/12 we started with an initial guess $X^1 = [1, 1.3]^T$ and saw that the Newton iterations converged rapidly to the solution $[\sqrt{2}/2, \sqrt{2}/2]$.